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We propose a joint optical flow and principal component analysis (PCA) method for motion detection. PCA is used to analyze
optical flows so that major optical flows corresponding to moving objects in a local window can be better extracted. This joint
approach can efficiently detect moving objects and more successfully suppress small turbulence. It is particularly useful for motion
detection from outdoor videos with low quality. It can also effectively delineate moving objects in both static and dynamic
background. Experimental results demonstrate that this approach outperforms other existing methods by extracting the moving
objects more completely with lower false alarms.

1. Introduction

The detection of moving objects is critical in many defense
and security applications, where motion detection is usually
performed in a preprocessing step, a key to the success
in the following target tracking and recognition. Many
videos used in defense and security applications are out-
door videos whose quality may be degraded by various
noisy sources, such as atmospheric turbulence, and sensor
platform scintillation. Meanwhile, moving objects may be
very small occupying a few pixels only, which makes motion
detection very challenging. Under this circumstance, existing
approaches may generate significant amount of false alarms.

Motion detection has been extensively investigated [1–
3]. Many research works are conducted for indoor videos
with large objects. As one of the major techniques, optical
flow-based approaches have been widely used for motion
detection. There are two classic methods of optical flow com-
putation in computer vision: Horn-Schunck (HS) method
and Lucas-Kanade (LK) method [4–7]. Both of them are
based on the two-frame differential algorithms. LK method
may not perform well in dense flow field; on the other
hand, HS method can detect minor motion of objects and
provide a 100% flow field [7]. Thus, we focus on HS method
for optical flow computation in our research. Considering

outdoor videos with low quality, special care needs to be
taken in order to better extract features related to moving
objects from optical flows while suppressing false alarms.

Principal component analysis (PCA) is a typical
approach in multivariate analysis [8]. It is also named the
discrete Karhunen-Loève transform (KLT) or the Hotelling
transform [9]. PCA includes the eigen-decomposition of
a data covariance matrix or singular value decomposi-
tion of a data matrix, usually after mean centering. It
projects the original data onto an orthogonal subspace,
where each direction is mutually decorrelated and major
data information is present in the first several principal
components (PCs). For optical flows in a local window,
moving objects have consistent flows while pixels with only
turbulence have random flows. Thus, if PCA is applied to the
two-dimensional (2D) data of optical flows, the difference
between desired motion pixels and random motion pixels
may be magnified because their contributions to the two
eigenvalues are very different; the contribution from random
motion pixels can be very small, even to the second eigen-
value. Experimental results show that this approach actually
is an effective way of analyzing outdoor videos; it can reduce
false alarms for videos with either static or dynamic back-
ground, and it is also useful to delineate the size of moving
objects.
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This paper is organized as follows. Section 2 explains
the proposed method based on optical flow and PCA.
Section 3 presents experiments using ground-based and
airborne videos. Section 4 draws the conclusion.

2. Proposed Method

HS method is a special approach of using global constraint
of smoothness to express a brightness variation in certain
areas of the frames in a video sequence. It is also a specially
defined framework to lay out the smoothness of the flow
field. Let I(x, y, t) represent the brightness of a pixel at (x, y)
coordinates and the tth frame. According to [4], the image
constraint at I(x, y, t) with Taylor series can be expressed as

∂I

∂x
∂x +

∂I

∂y
∂y +

∂I

∂t
∂t = 0, (1)

which results in
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where u = ∂x/∂t and v = ∂y/∂t are the x and y components
of the velocity or optical flow of I(x, y, t), respectively, and
Ix = ∂I/∂x, Iy = ∂I/∂y, and It = ∂I/∂t, are the derivatives
of the image at (x, y, t) in the corresponding directions. A
constrained minimization problem can be formulated to
calculate optical flow vector (uk+1, vk+1) for the (k + 1)th
frame:
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where uk and vk are the estimated local average optical flow
velocities, and α is a weighting factor. A larger value of α
results in a smoother flow; in our experiments using 8-bit
videos, it is empirically set to be 30000. Based on the norm of
an optical flow vector, one can determine if the motion exists
or not, while the direction of this vector provides the motion
orientation.

Two optical flow images can be constructed by pixel
optical flow vector (u, v). A mask of size n× n slides through
these u and v images. At location (i, j), a two-dimensional
(2D) data matrix X can be constructed, which includes all
the 2D vectors covered by the mask. The covariance matrix
can be calculated as

Σ = X
T

X, (4)

where X is the optical flow matrix after mean removal. After
eigen-decomposition, two eigenvalues (λ1, λ2) are assigned
to the central pixel of the mask. Motion detection is
accomplished by analyzing or thresholding the eignenvalue
(s). Since λ1 is the major flow component and λ2 is the minor
flow component, it may be more effective to considering
(λ1, λ2) than the values in the original (u, v) space.

Intuitively, only λ1 needs to be considered because it
corresponds to the major flow component and λ2 corre-
sponds to the minor flow component or even turbulence. An
appropriate threshold can be determined by using the Ostu’s
method on the λ1 histogram [10]. However, in practice,
λ2 should be considered as well since pixels inside object
boundaries usually have quite large λ2 but not λ1. Thus,
thresholding may need to be taken on the λ2 histogram; a
pixel is claimed to have motion if either λ1 or λ2 are above
the corresponding thresholds.

Thus, the motion detection algorithm can be described
as follows.

(1) Calculate optical flows between two adjacent frames
(after registration as needed).

(2) For each pixel in the 2D optical flow data, perform
PCA for a local mask (of size 3×3 in the experiment),
and two eigenvalues are assigned to the central pixel.

(3) Apply the Ostu’s thresholding to the eigenvalues of all
the pixels (λ2 in the experiment).

Figure 1 illustrates the framework of the proposed
method with a 3× 3 mask and resulting 2× 9 data matrices.

It is noteworthy that some variants exist when imple-
menting the proposed method differently.

(1) In Step (1), we may use the optical flow data from
multiple frames. For instance, optical flow data from
Frames 1 and 2 can be combined with optical flow
data from Frames 2 and 3; this may help to emphasize
the desired optical flows of moving objects and to
emphasize the randomness of turbulence.

(2) In Step (2), masks with different sizes can be used.
Intuitively, for a large moving object, mask size
should be large.

(3) In Step (3), thresholding can take place on either λ1

or λ2, depending upon the object size and the features
of turbulence.

In the experiments, we use two adjacent frames, a 3 ×
3 mask, and only λ2 for thresholding. It is to show that
such simplest implementation is sufficient to provide better
performance than other widely used techniques.

3. Experiments

In the experiments, videos with both static and dynamic
backgrounds were analyzed. They were taken by a commer-
cial Sony Camcorder. We compared our proposed method
with the original optical flow method, the motion detec-
tion methods based on Kalman filtering [11], background
modeling using Gaussian mixture model [12], difference-
based spatial temporal entropy image (DSTEI) [13], and
forward-backward motion history images (MHI) [14]. They
were chosen for comparison because they are either typical
methods or designed specifically for more complicated
videos (e.g., those with dynamic background).
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Figure 1: The framework of the proposed method.

(a) frame 1

(b) frame 2

Figure 2: The two input frames of a helicopter video.

3.1. Experiment 1: Ground-Based Video with Relatively Large
Object. In this experiment, a video with static background
in a small regional airport was studied, which was taken
when the camcorder was mounted on a tripod. As shown
in Figure 2, a Hughes Cayuse helicopter was the moving
object. Since the video was taken during a humid summer
afternoon, there were significant atmospheric turbulence
effects, which were visible around the vehicle, runway, and
tree profiles.

Figure 3: The result from optical flow method.

Figure 4: The result from Kalman filtering.

Figure 5: The result from background modeling.

Figure 3 shows the detection result using optical flow
only, where detected pixels were highlighted in red. It
contained many false alarm pixels in runway and tree
profiles. Figures 4, 5, 6, and 7 are the detection results using
Kalman filtering, background modeling, DSTEI, and MHI
methods, respectively. We can see that they all could detect
the helicopter but with some regions missing and a few
false alarm background pixels. The background modeling
method could detect the largest areas of the helicopter;
however, there were erroneously detected pixels scattered in
the scene (even in the sky area). This method relies on an
accurate background model, generally requiring complicated
computations.

Figure 8 is the result of the proposed method, where
almost all the false alarm pixels were removed (only two
pixels in the vehicles were left) and major regions in the
helicopter were detected. Compared to Figure 3, introducing
PCA can significantly improve the performance of optical
flow-based detection. Compared to the results in Figures 4–7,
the proposed method can reduce false alarm while detecting
larger regions in the moving object.
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Figure 6: The result from DSTEI method.

Figure 7: The result from MHI method.

Figure 8: The result from the joint optical flow and PCA method.

3.2. Experiment 2: Airborne Videos with Small Objects.
The second experiment used an airborne video with low
quality. It was taken by the camcorder mounted on the
helicopter in the video shown in Experiment 1. In addition
to atmospheric turbulence, scintillation from the airborne
platform (i.e., the small helicopter) further degraded the
video quality. As shown in Figure 9, there were three moving
vehicles on the highway, highlighted in yellow circles. They
consisted of only a few pixels. The two frames were pre-
registered using the method in [15].

Figure 10 shows the detection result using optical flow
only, where three vehicles on the highway were completely
detected and the shape of the vehicles were outlined
compactly. Figures 11, 12, 13, and 14 are the results for
comparison, where the three vehicles were detected but not
well delineated. For instance, the detected vehicle sizes were
too small when using Kalman filtering and background
modeling, and too big when using DSTEI and MHI.
More false alarm pixels were contained in these results.
Figure 15 is the result using optical flow and PCA, which
could further reduce false alarm and the vehicle sizes
seemed to be more reasonable. Although the proposed

(a) frame 1

(b) frame 2

Figure 9: The two input frame about an airborne video.

Figure 10: The result from optical flow method.

method provided the best result, there were still several
false alarmed pixels, mainly located around the edges of
buildings.

We found out that such false alarms in airborne videos
with small moving objects can be better removed by corner-
based detection [16]. Harris corners were detected from
two difference images, and many false alarm pixels around
buildings could be removed; false alarms were further
reduced through local tracking of detected corners in several
consecutive frames. The drawback is that the detected
result contains only object corners. In conjunction with the
proposed method, the complete regions of moving objects
can be segmented for the corner-based detection while
the false alarm can be reduced in the proposed method.
As shown in Figure 16(a), the corner-based method can
accurately detect the three vehicles without false alarms;
however, it detects only a corner corresponding to an object
as detailed in Figure 16(b). Figure 16(c) shows the extracted
vehicles using the MHI method, where the object sizes
were slightly magnified. Figure 16(d) is the extracted vehicles
using the proposed method, where the object sizes were
reasonably reduced and pruned.
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Figure 11: The result from Kalman filtering.

Figure 12: The result from background modeling.

Figure 13: The result from DSETI method.

Figure 14: The result from MHI method.

Figure 15: The result from the joint optical flow and PCA method.

(a) detected vehicles based on corner detection

(b) the three vehicles in (a)

(c) extracted entire region using MHI method

(d) extracted entire region using our method

Figure 16: The result by combining the corner detection and the
propose method.

The result using another airborne video is shown in
Figure 17, which further demonstrated that our method can
better extract object sizes.

4. Conclusion

In this paper, we propose a joint optical flow and PCA
approach for motion detection. Instead of considering the
original optical flow, the two eigenvalues of the covariance
matrix of local optical flows are analyzed. Since the first
eigenvalue represents the major motion component and the
second eigenvalue represents the minor motion component
or turbulence, they are more useful to detect true motions
while more successfully suppressing false alarms. The pro-
posed method is also effective in extracting the actual size of
moving objects.

The computational complexity involved in PCA includes
the calculation of covariance matrix of local optical flow and
its eigen-decomposition. For a mask of size n×n, the number
of multiplications in calculating the covariance matrix of
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(a) detected vehicles based on corner detection

(b) the four vehicles in (a)

(c) extracted entire region using MHI method

(d) extracted entire region using our method

Figure 17: The result by combining the corner detection and the
propose method in another airborne video.

size 2 × 2 is (2n)2, and complexity of eigen-decomposition
is generally O(23). For an image frame with m pixels, the

total computational complexity is O(m(2n)2 + m23). It can

be reduced to O(βm(2n)2) if using iterative PCA (IPCA) as
discussed in [17], where β is a small integer. As the future
work, we will investigate the performance when using IPCA
to expedite motion detection.
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