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Abstract

Automatically identifying and analyzing head ges-
tures is useful in many situations like smart meeting
rooms and intelligent driver assistance. In this paper,
we show that head movements can be broken into its
elemental forms (i.e. moving and fixation states) and
combinations of these elemental forms give rise to var-
ious head gestures. Our approach which we term, Op-
tical flow based Head Movement and Gesture Analyzer
(OHMeGA), segments head gestures into moving and
fixation states using optical flow tracking and intermit-
tent head pose estimation. OHMeGA runs in real-time,
is simple to implement and set up, is robust and is ac-
curate. Furthermore, segmenting head gestures into its
elemental forms gives access to higher level semantic
information such as fixation time and rate of head mo-
tion. Experimental analysis shows promising results.

1. Research Motivation and Background

Humans express their state of mind through many
modalities. While spoken words and written languages
are powerful tools for expressing one’s thoughts and in-
tentions, in many situations complementary head move-
ments prove to be very useful in understanding an in-
dividual’s state of mind. For example, analyzing head
gestures have given valuable insight into driver behavior
[2] [3] [16], in meeting like scenarios [8] [13] [1], for
surveillance [11], in human-machine interaction [14],
and in the study of public displays [12], [5].

While the most accurate means of analyzing head
gestures is using head pose estimation, however, it can
be computationally intensive for the task at hand. We
introduce a hybrid algorithm called OHMeGA, which
segments head gesture sequences into understandable
and logical elemental states (i.e. head movements and
fixations) using Lucas-Kanade optical flow algorithm
[6] and uses head pose estimation occasionally to re-
move any uncertainty in the spatial location of fixation.
Detecting a sequence of elemental states not only iden-

tifies the type of head gesture, but also gives higher level
semantic information such as fixation time and rate of
change of head motion associated with the head gesture.
As we will show in the following section, this approach
is simple to implement and set up, and runs in real-time.

2. OHMeGA: Concept and Algorithm

Head gestures are composed of elemental states such
as head movements and head fixations. These elemental
states, when represented in a state machine as shown in
Fig. 1 give real-time information on spatially where the
head was previously fixated and in what direction the
head is currently moving.

Figure 1. State diagram of OHMeGA for head gesture
analysis.

The OHMeGA state diagram in Fig. 1 has two ma-
jor parts: one part to represent horizontal movements
and another part to represent vertical movements in the
image plane. Using a frontal facing camera, head move-
ments in the pitch and yaw rotation angles can be bro-
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Figure 2. Typical head movements, gestures, fixations and temporal dynamics, which need to be analyzed.

ken into horizontal and vertical movements in the image
plane. States associated with horizontal movements are
move right (MR), move left (ML), fixation right (FxR),
and fixation left (FxL) and states associated with verti-
cal movements are move up (MU), move down (MD),
fixation up (FxU) and fixation down (FxD). The remain-
ing two neutral states are used to indicate that in its re-
spective direction the fixation is neutral, and thus when
both horizontal and vertical movements are in neutral
state it indicates fixation straight. Fig. 2 shows an ex-
ample of representing a typical head gesture in elemen-
tal states.

To begin, the OHMeGA is initialized into a fixation
state using head pose estimation, which can be easily
determined within few frames using many number of
techniques [9], [17] [4] [10]. Once initialized, ideally,
transitioning between any of the states in OHMeGA is
a matter of knowing whether there is any motion in the
image plane of a frontal facing camera and the direc-
tion of motion. Ideal in the sense that frame rate goes
to infinity, there is no noise in camera sensors, and all
motions detected by optical flow in the image plane are
only due to head movements.

2.1 Noise and Other Practical Matters

In the real world, however, we have limited frame
rates, there are noise due to camera vibrations, and mo-
tions detected by optical flow can be anything from
movements in the background to body parts other than
the head (i.e when moving hands to rub one’s eyes as
shown in Fig. 3b). While background noise can be mit-
igated by using techniques like face detection to only
consider optical flow vectors in the head region and by
using experimentally determined threshold on what is
considered motion, noise in head motion due to occlud-
ing objects is an open-ended problem and will be further
studied in future works.

Assuming optical flow vectors are computed only in
the face region and thus represent true head motion, it is
important to note that there is a correspondence between
direction of flow vector and region of face for any given
head motion as shown in Fig. 3a,c. Such situations
arise due to rotational movements as oppose to in-plane
translational movements as occurring in the prediction
of driver behavior using foot gesture analysis [15]. One
solution is to carefully select interest point regions over
which to compute global flow vector.

Furthermore, out of plane head rotation induces cer-
tain amount of motion in both the horizontal and verti-
cal direction of the image plane (Fig. 3d). By observa-
tion we know that head motion in the yaw rotation angle
induces a strong horizontal motion in the image plane
and to some extent the same applies for head motion in
the pitch rotation angle with vertical motion in the im-
age plane. In our current implementation of OHMeGA,
we correspond horizontal and vertical motion in the im-
age plane to head motions in the yaw and pitch rotation
angles, respectively.

(a) (b) (c) (d)

Figure 3. Practical matters regarding optical flow
vectors: (a) & (c) show correspondence between di-
rection of flow vector and region of face for a given
head motion (b) shows false head motion due to
hand motion and (d) shows head motions in the pitch
inducing both horizontal and vertical motions in the
image plane.

Lastly, since motion vectors in the image plane can-
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Table 1. Horizontal and vertical head movements de-
tected by OHMeGA. Rows represent the predicted
states and columns represent the ground truth.

MR ML FxR FxL
MR 0.85 0.01 0.08 0.01
ML 0 0.85 0.01 0.08
FxR 0.02 0.10 0.88 0.09
FxL 0.13 0.04 0.03 0.83

Samples 994 982 355 320

MU MD FxU FxD
MU 0.90 0 0.06 0.02
MD 0 0.86 0 0.10
FxU 0.04 0.10 0.94 0
FxD 0.07 0.03 0 0.88

Samples 1229 1236 455 425

not directly correspond to the amount of spatial move-
ments in the real world, some ambiguity in the correct
fixation state may arise. For example, if a driver is
initially looking straight then turns his head rightward,
pauses for a bit, and then continues to turn rightward,
there is no ambiguity that the resulting state is fixation
right. If, however, the driver now turns leftward and
pauses, there is an uncertainty whether the driver is fix-
ated straight or fixated left. For such cases, OHMeGA
uses head pose estimation to remove any uncertainty.

2.2 Motion Analysis using Optical Flow

To estimate head motion used for state transitions,
optical flow vectors are computed over sparse interest
points in the image using the Lucas-Kanade algorithm
[6]. Interest points can be easily found using methods
like Harris corner detection and Fröstner corner detec-
tion. The global flow vector is then computed based
on majority vote from the computed optical flow vec-
tors. Lastly, the global flow vectors are averaged over
a few frames to mitigate sporadic noise. A sample at
the output of optical flow tracking as applied to a video
sequence containing head motions with selected image
frames are shown in Figure 4.

3. Experimental Evaluation

The data for the evaluation of our approach is taken
from a subset of the dataset used for the evaluation of
HyHOPE [9]. Evaluation is done on three subjects, who
performed various head movements in the pitch and
yaw rotation angles. Ground truth head pose, as col-
lected from a motion capture system, is used to derive

Table 2. Fixations, rate of motion and rate of change
in motion detected by OHMeGA.

Mean Var
Overlap in fixation duration 0.91 0.02
Error in rate of motion 0.003 0.036
Error in rate of change in motion 0.001 0.029

ground truth head motion in the pitch and yaw rotation
angle. As mentioned earlier, in our current implemen-
tation, we correspond horizontal and vertical motion in
the image plane to head motions in the yaw and pitch
rotation angles, respectively. Therefore, data with head
movements in the yaw (pitch) rotation angle is used to
evaluate the part of OHMeGA corresponding to hori-
zontal (vertical) motion. Furthermore, in our current
implementation, we use ground truth head pose to re-
lieve uncertainty in the spatial location of fixation.

As mentioned earlier, there is a concern for comput-
ing global flow vector due to correspondence between
direction of optical flow vector and region of face for a
given head motion. In our current implementation, we
manually annotate a generous region around the nose
and use that region for computing global flow vector. In
Fig. 4, the red bounding box on the images indicate typ-
ical regions used for computing said global flow vector.
The confusion matrix for the evaluation of OHMeGA
over horizontal and vertical head movements is given in
Table. 1. Note that, no accuracy is reported for Neu-
tral state because no fixation occurred exactly at neu-
tral in either direction. Specific details in implementing
OHMeGA, such as transitioning between states is simi-
lar to the simpler version of OHMeGA presented in [7].
In future studies, we will address the problem of accu-
rately representing head motions in the pitch rotation
angle using optical flow vectors in both the horizontal
and vertical motions in the image plane.

Apart from state level classification accuracy, we
also show that higher level semantic information such
as fixation time and rate of head motion can be derived
from elemental state sequences of a head gesture with
high level of accuracy in Table 2. For comparing fixa-
tion times, we first note that our approach detected 98%
of all continuous fixation time events with a duration
of at least 2 frames. The detected fixation durations
overlapped the corresponding ground truth fixation du-
rations on an average of 91%.

Regarding the other semantic information, rate of
head motion for predicted motion and ground truth mo-
tion was computed when both showed signs of motion
in the same direction and normalized with their respec-
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Figure 4. Annotation of how to interpret optical flow head tracking with sampled images.

tive maximum values. Rate of change in head motion
was similarly calculated and the results are given in Ta-
ble 2.

4. Concluding remarks
In this paper we have introduced a new, simplistic,

robust and accurate way to detect and analyze head ges-
tures. We presented our analysis in a controlled setting
where subjects were asked to perform head movements
in the pitch and yaw rotation angles. Experimental anal-
ysis shows promising results of an average of 88% ac-
curacy in fixation state and an average of 87% accuracy
in move state level classification. Future work will be
in the direction of optimizing global optical flow vector
calculation - currently optimal for in plane movements -
for out of plane rotations, using feature detection more
compliant with faces and applying OHMeGA to natu-
ralistic environments.
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