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Abstract

Optical flow provides a constraint on the motion of a deformable model. We derive and solve a dynamic
system incorporating flow as a hard constraint, producing a model-based least-squares optical flow solution.
Our solution also ensures the constraint remains satisfied when combined with edge information, which helps
combat tracking error accumulation. Constraint enforcement can be relaxed using a Kalman filter, which per-
mits controlled constraint violations based on the noise present in the optical flow information, and enables
optical flow and edge information to be combined more robustly and efficiently. We apply this framework to
the estimation of face shape and motion using a 3D deformable face model. This model uses a small number
of parameters to describe a rich variety of face shapes and facial expressions. We present experiments in ex-
tracting the shape and motion of a face from image sequences which validate the accuracy of the method. They
also demonstrate that our treatment of optical flow as a hard constraint, as well as our use of a Kalman filter to
reconcile these constraints with the uncertainty in the optical flow, are vital for improving the performance of
our system.

1 Introduction

The apparent motion of brightness in an image—the optical flow—constrains but does not necessarily determine

the three-dimensional motion of an observed object. In reconstructing three-dimensional motion using optical

flow and other ambiguous cues, combining separate solutions derived from different cues can only compromise

among limited guesses. In contrast, adding optical flow constraints to disambiguate a problem of motion esti-

mation can derive a good guess consistent with all the data. This paper describes such a constraint approach to

optical flow within a deformable model framework [33, 38, 48] for shape and motion estimation. We show that

this approach can greatly improve the ability to maintain accurate track of a moving object. For the applications

here, we will be specifically investigating the tracking of human faces.

Image cues provide constraints which the estimated model should satisfy as much as possible. Typically, con-

straints from multiple cues are reconciled by statistically combining constraint solutions, so as to weight each

source of information according to its reliability. This formulation treats data constraints as soft, in that the for-

mulation biases the system towards satisfying the constraint, but does not enforce the constraint after combination.

One of the distinguishingfeatures of our approach is that we treat optical flow as a hard constraint on the extracted
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motion of the model, which guarantees enforcement. By placing constraints from one cue onto the model during

estimation, we limit the choices of parameter combinations available for solutions using other cues (which are

included as soft constraints), thereby eliminating a portion of the search space. We claim that this simplifies the

estimation process and leads to improved robustness by not only producing a lower dimensional estimation prob-

lem, but also by avoiding local minima.

The optical flow constraints are based on noisy data, which can lead to problems when using hard constraints

(since the desired portion of the search space could be discarded due to noise). Previous approaches which used

soft constraints did not encounter this problem, since a noisy constraint would simply be violated (and hence ig-

nored) when combined with other information. But it is precisely this property which prevents soft constraints

from limiting the search space in the first place (and hence loses the benefits of efficiency and robustness). In-

stead, we use an iterated extended Kalman filter to relax the optical flow constraint to allow for constraint viola-

tions which increase as uncertainty in the flow increases. In Section 4, we will be more precise by what is meant

by relaxing hard constraints, as well as how the constraint relaxation takes place. Basically, the Kalman filter finds

a middle-ground between the hard and soft constraint solutions that is in harmony with the level of uncertainty in

the hard constraint. This retains the beneficial property of limiting the search space while being robust to noisy

constraints.

Our approach can be summarized as follows. Within a deformable model framework, we start with a model-

based version of the optical flow constraint equation, which constrains the velocities of the motion parameters of

the model. In the theory of dynamic systems [41], velocity constraints such as these are called non-holonomic.

The velocities of the motion parameters are already accounted for as resulting from the application of edge-based

forces; finding the equilibrium resulting from these forces amounts to a straightforward optimization problem.

With the addition of the optical flow constraints, a constrained optimization problem results, which is solved us-

ing Lagrange multipliers. The constrained solution contains two kinds of forces. One provides the standard linear

least-squares model-based solution to the optical flow [28]. The second is a constraint enforcement term which

ensures the optical flow constraint remains satisfied when combined with edge forces. The presence of the con-

straint enforcement term yields a profitable combination of the optical flow solution with the edge forces. We

use a Kalman filter to realize this combination in a way that accounts for the uncertainty in the flow. Problems

with tracking error accumulation are alleviated using the edge forces, which now keep the model aligned with the

image without a statistically relevant violation of the optical flow constraint.

The applications we address here concentrate on the problem of estimating the shape and motion of a human

face. This problem has been widely addressed in recent research, having applications in human-machine interac-

tion. Face tracking is a particularly natural testbed for our research for two reasons. The actual shape and motion

of faces makes edge and optical flow information easy to use and advantageous to combine; and the abundance

of data describing human face shape [16] facilitates the development of three-dimensional models of faces.

We have constructed a model of the human face which captures the relevant aspects concerning their shape,

motion and appearance. By using data from face anthropometry studies [16], the range of shapes produced cap-

ture the variabilities seen in the shape and appearance of faces across the human population. The design of the

facial motion model employs aspects of the Facial Action Coding System (FACS) [13], which is a manual coding

method for describing facial movements in terms of “action units”. Our model separately encodes information
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regarding an individual’s appearance from their facial motions and expression. Shape parameters describe un-

changing features of an observed object and capture variations in shape across objects in a target class. Motion

parameters describe how an observed object changes during a tracking session. This separation produces an easier

tracking problem by requiring a smaller description of object state to be estimated in each frame. It also allows

information to be applied more precisely, since optical flow information only registers changes in motion param-

eters, while edge information figures in both shape and motion parameter estimation.

1.1 Outline

After a review of related work, in Section 3 we present some preliminaries on our deformable model framework.

Then, Section 4 describes how the optical flow is treated as a hard constraint in this framework, and how a Kalman

filter is used to relax this constraint to account for uncertainty. We then present a series of experiments designed to

assess the generality of our approach and its quantitativevalidity in Section 5. These experiments extract the shape

of the face, and track its motion—even in the presence of large rotations and self-occlusion. They demonstrate

that our treatment of optical flow as a hard constraint, as well as our use of a Kalman filter to reconcile these

constraints with the uncertainty in the optical flow, are vital for improving the performance of our system.

2 Related Work

There is a wide variety of work that relates to what is presented here concerning both the underlying techniques

used, and the application of tracking a human face. Virtually all work on face tracking takes advantage of the con-

strained situation: instead of using a generic tracking framework which views the observed face as an arbitrarily

deforming object, a model-based approach is favored, which incorporates knowledge about facial deformations,

motions and appearance. This facial model is used in concert with a number of model-based techniques.

Model-based edges and features: A prevalent model-based approach for tracking and shape estimation uses

features and edges in a sequence of images to track an object [27, 29, 33, 48, 50]. This requires aligning the model

features with the data, and is typically formulated as an optimization problem where the parameter combination

is sought which yields the best alignment. The alignment can be performed using either a 2D appearance model

[48, 50] or on 2D features computed from a 3D model [29, 33, 47]. This optimization problem tends to be quite

difficult, however, especially as the deviation between the model and data becomes large.

Model-based optical flow: Instead of computing an unconstrained flow field (a grid of arrows), a model-based

approach explains the optical flow information in terms of motion parameters of the model [1, 5, 9, 23, 28, 35,

36]. While the problem is non-linear, these frameworks can use either a single step linear least-squares solution

[9, 28, 36], or an iterative least-squares solution [1, 5, 23, 35]. The motion model can be a 2D model of image

motion [5, 6] or a 3D model (rigid or non-rigid) of object motion [5, 9, 28] (along with a camera model to relate

to the images).

It is also possible to compute an unconstrained optical flow field using standard techniques, and fit a parametric

motion model to the resulting field [4, 14]. The primary downside to this approach would be that with the compu-

tation of an unconstrained flow field comes the artifacts resulting from smoothness assumptions and the problem
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of finding motion discontinuities. The model-based methods above take this information from the model (instead

of assuming it).

Preventing tracking drift: In this paper, we advocate the use of both optical flow and edges for face tracking.

Face tracking methods using only optical flow [4, 6, 14] will suffer from tracking drift, since error will accumulate

when only velocity information is used. As a result, long sequences are not tracked successfully. However, in the

context of facial expression recognition (where the sequences are quite short), this might not be a serious problem.

In previous work [11], we presented a framework for combining optical flow and edge information to avoid

the problems with tracking drift. Aside from this, [28] is the other notable exception of a framework which uses

model-based optical flow yet avoids drift. In this work, a render-feedback loop was used to prevent drift by locally

searching for the best set of parameters which aligns the rendered model with the image.

Model-based constraints and Kalman filtering: The treatment of optical flow as a hard constraint on the

motion of the model in [11] not only helps prevent tracking drift, but also makes the system more robust and

efficient when coupled with a Kalman filter to handle uncertainty in the constraint.

Before [11], hard constraints were used in estimation only as a modeling tool where an articulated object was

modeled as a set of rigid pieces held together by geometric constraints (which model the joints) [21, 33, 42]. A

method known as constraint fusion [21, 42] combines constraints with measurement data to account for the fact

that the joint configurations might not be known in advance. This fusion was performed using a Kalman filter

in [21], and ends up being closely related to the physics-based constraint method in [33] which adds constraint

forces to data forces. More efficient means for dealing with such constraints has also been investigated [17, 33].

The use of soft constraints is much more common for fusing information. In [18], stereo and shading informa-

tion are combined using a soft constraint (weighted terms from each source are added into the system energy). A

physics-based sensor fusion method combining range and intensity data was presented in [51]. Using a Kalman

filter [2, 26] or Bayesian methods [12] for fusion combines solutions in a similar way. Aside from this, Kalman

filtering has become a standard tool for estimation in dealing with noisy data [3, 19, 30, 32, 37].

Face tracking: There is a vast body of work on tracking the human face, with applications ranging from motion

capture to human-computer interaction. Among them, there are a number which bare similarity in some respect

to the work presented in this paper.

Several 2D face models based on splines or deformable templates [27, 34, 50] have been developed which track

the contours of a face in an image sequence. In addition to motion, these methods provide rough 2D information

about the observed individual’s appearance. In [6], the optical flow field is parameterized based on the motion of

the face (under projection) using a set of locally defined 2D motion regions. The extracted parameters are used

for expression recognition.

In [14, 47], a physics-based 3D face model (with many degrees of freedom) is used, where motion is measured

in terms of muscle activations. Edge forces from snakes are used in [47], while in [14], activations are determined

from an optical flow field which are later used for expression recognition. In [4], a rigid ellipsoid model of the

head is used to estimate motion parameters from a flow field.

Addressing the problem of image coding, [9, 28] estimate face motion using a simple 3D model and a model-

based least-squares solution to the optical flow constraint equation. [28] improves performance using motion pre-

diction, and avoids tracking drift using a render-feedback loop.
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Our system, first presented in [11], uses a combination of model-based optical flow and model-based edge track-

ing to estimate the shape and motion of a face. The flow and edges are combined by treating the flow as a hard

constraint on the motion of the model. This combination prevents tracking error accumulation, as with the render-

feedback loop in [28], although our use of a hard constraint produces a much more robust solution by making the

model-based edge tracking problem easier to solve.

In addition to this, none of the previous work makes a serious attempt in extracting a detailed 3D shape de-

scription of the face from an image sequence. At best, only a rough shape description is derived. Furthermore,

most all of these approaches fail under large head rotations due to the use of a 2D model or the inability to handle

self-occlusion.

3 Deformable model dynamics

Deformable models [33, 38, 48] are parameterized shapes that deform due to forces according to physical laws.

For vision applications, physics provides a useful analogy for treating shape estimation [33], where forces are

determined from visual cues such as edges in an image. The deformations that result produce a shape that agrees

with the data. The use of physics also makes available additional mathematical tools; for example, constraint

techniques from physics will be used in Section 4 to incorporate the optical flow information. In this section, we

review deformable models as presented in [33] and briefly describe our face model.

A three-dimensional deformable model x maps a domain Ω (of surface coordinates) to a set of points in R3

which form the model’s surface. It is parameterized by a vector of values q, meaning that changes in q register

as geometric deformations of the surface. A particular point on the surface is written as x(q;u) with u∈Ω being

used to identify a specific surface location. (Note that the dependency of x on q is often omitted, for reasons of

conciseness.) The goal of a shape and motion estimation process is to recover the value of q for each image in

a sequence of frames. We now present our deformable face model; following this, the remaining discussion will

refer to this face model, although the development of the techniques will apply generally.

3.1 A deformable face model

Across the human population, the faces of individuals exhibit a great deal of variation in their appearance, but they

all still have a good deal of structure in common. A similar statement can be made about facial motion—while it

is complex and non-rigid, the motions are still fairly constrained. We take advantage of this commonality in the

construction of our model of the human face. Here, we briefly describe the face model used in the experiments in

this paper.

Our deformable face model is a 3D polygon mesh, shown smoothly shaded in Figure 1(a) and wireframe in

(b) in its default configuration. The model is realized using a set of parameterized deformations (which depend

on q) applied to this polygon mesh. The parameterization of this face model was constructed by hand; details

concerning its construction are in Appendix B. Appendix C describes a system of anthropometric measurements

of the face; we use data from published tables of these measurements to help bias the model away from producing

unlikely faces during estimation. Our model does have limitations in its coverage, however. There are no means
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for representing large amounts of facial hair (such as a beard or mustache) or eyeglasses. Furthermore, there are

many facial motions that cannot be expressed accurately, such as many of the lip deformations produced during

speech. Effects of these limitations on system performance are discussed in Section 5.6. Better and easier methods

of data acquisition are becoming available, and are making it possible to build a model constructed from examples

[10, 25]. It’s likely that more automatic methods of model construction (using examples) will become the favored

approach, as it is rather difficult to obtain a fully developed model of the face by hand.

(a) (b)

Figure 1: The deformable face model (in rest position)

3.2 Separation of shape and motion

In some applications (including face tracking), to distinguish the processes of shape estimation and motion track-

ing, the parameters in q are rearranged and separated into qb—a static quantity—which describes the basic shape

of the object, and into qm—a dynamic quantity—which describes its motion (both rigid and non-rigid), so that

q = (q>b ,q
>
m)>. Regarding human faces, qb describes the unchanging features of an observed face and captures

variations in appearance across the human population, while qm describes how an observed face changes during

a tracking session (head position, as well as facial displays and expressions). This separation produces an easier

tracking problem by requiring a smaller description of object state to be estimated in each frame. This division is

often built into face models [6, 28, 34, 47] to simplify model construction or estimation, while Reynard, et al. [40]

use this separation to permit learning the variability of motions for a class of objects. Note that there is no guar-

antee that the shape and motion of some class of objects is separable; this is a simplifying assumption that we

make. For human faces, this separation is quite reasonable, and results in the changes in qb tending to zero as the

shape of the observed object is established. Once this occurs, fitting need only continue for qm. This suggests that

including as many parameters as possible in qb makes long-term estimation more efficient.

The model x is realized by applying deformation functions to an underlying shape s. For this paper, s is the

polygon mesh in Figure 1, and Ω is an index set used to refer to its vertices (when applications require it, we

add additional structure to Ω to allow references to any point on its surface, instead of just the vertices). In other

deformable model work [33], s is a solid primitive such as an ellipsoid given by its explicit parametric equation

with its domain Ω being an appropriate rectangle in R2.

As with the parameters, the deformations applied to s are split into two separate deformation functions—one for

shape (Tb) and one for motion (Tm)—as demonstrated in Figure 2. These deformation functions (which depend
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motion
only

shape
only

both

Tm(qm) Tb(qb)

Figure 2: Example parameterized deformations of the face model (with separate shape and motion parameters)

on the parameters q) map R3 to R3. For faces, the shape deformation Tb is applied to the underlying polygon

mesh first (since facial motion can be seen as deviations away from a particular individual’s face), so that:

x(q;u) = Tm (qm; Tb (qb; s(u))) (1)

The shape deformation Tb uses the parameters qb to deform the underlying shape s. For faces, applying this de-

formation alone will produce a particular individual’s face in rest position. On top of this is the motion deforma-

tion Tm with parameters qm, which includes a rigid translation and rotation, as well as non-rigid deformations

(such as raising eyebrows, frowning, smiling, and opening the mouth, as shown on the left of Figure 2). Each

of these deformations can be defined using a series of composed functions, allowing a more modular design (see

Appendix A).

3.3 Kinematics

The kinematics of the model can be determined in terms of the parameter velocities q̇. As the shape changes, the

velocity at a point u on the model is given by:

ẋ(u) = L(q;u)q̇ (2)

where L = ∂x/∂q is the model Jacobian [33]. For cases where x is defined using a sequence of deformation func-

tions, the Jacobian can be computed using the chain rule as in Appendix A. We also partition the Jacobian (as we

did with the parameters) into blocks corresponding to qb and qm as L = [Lb Lm]. A geometric interpretation for

L(u) comes from viewing each column of L as corresponding to a particular parameter in q. Each column is a

three-dimensional vector which “points” in the direction that x(u) moves as that parameter is increased. When

considered over the entire model (over Ω), they form vector fields, which are shown in Figure 3 for particular

motion parameters of our face model.
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forward translation right translation turning head right opening the mouth

(a) (b) (c) (d)

Figure 3: Sample vector fields for various motion parameters

3.4 Perspective projection of the model

When modeling an object viewed in images, x needs to include a camera projection, resulting in a two-dimensional

model (called xp), which is projected flat from the original three-dimensional model. Under perspective projection

(with a camera having focal length f ), the point x(u) = (x,y,z)> projects to the image point xp(u) = f
z (x,y)>.

The velocities of model points projected onto the image plane, ẋp, can be found in terms of ẋ. The Jacobian

Lp = ∂xp/∂q is given by:

ẋp(u) =
∂xp

∂x
ẋ(u) =

(
∂xp

∂x
L(q;u)

)
q̇ = Lp(q;u)q̇ (3)

where

∂xp

∂x
=

[
f/z 0 − f x/z2

0 f/z − f y/z2

]
(4)

The matrix in (4) projects the columns of L (which are three-dimensional vectors) onto the image plane. As with

L, we partition Lp as
[
Lb p Lmp

]
. In fact, the vector fields in Figure 3 are just renderings of Lmp.

3.5 Estimation using dynamics

The models defined earlier are useful for applications such as shape and motion estimation when used in a physics-

based framework [33]. These techniques are a form of optimization whereby the deviation between the model

and the data is minimized. The optimization is performed by integrating differential equations derived from the

Euler-Lagrange equations of motion. In a typical vision application, the equations of motion are simplified to

omit the mass term, which produces a model free of inertia. From an optimization point of view, this has the

desirable property that the model state no longer changes once all forces vanish or equilibrate. In addition to this,

the damping matrix is set to be the identity and the stiffness term is omitted, resulting in the following simplified
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dynamic equations of motion:

q̇ = fq (5)

where the applied forces fq are computed from three-dimensional forces f3D and two-dimensional image forces

fimage as:

fq = ∑
j

(
L(u j)>f3D(u j)+Lp(u j)>fimage(u j)

)
(6)

The distribution of forces on the model is based in part on forces computed from the edges of an input image.

We compute the image forces fimage(u j) using the intensity gradient, as in [33, 48]. Using this method, the image

force applied to model point u j (which corresponds by projection to pixel j) is the product of the intensity gradient

and a weighting function (with range [0,1]) which is a “probability” that the current model configuration would

produce an edge visible nearby pixel j. As in [48], we use a thresholded version of this weighting function—

details on how potentially visible edges are determined for our face model are provided in Appendix D. Note

that these image forces depend on q not only through L, but also in the determination of likely visible edges (the

weighting function). Given an adequate model initialization, these forces will align features on the model with

image features, thereby determining the object parameters. Using L and Lp, the applied forces are converted to

forces which act on q and are integrated over the model to find the total parameter force fq. The dynamic system

in (5) is solved by integrating over time, using standard (explicit) differential equation integration techniques (we

use an Euler step):

q(t +1) = q(t)+ q̇(t)∆t (7)

The process used to initialize the system to determine the value of q(0) is described in Section 5. The next section

describes how this framework is augmented to accommodate optical flow information.

4 Optical flow constraints

In the following, the use of hard optical flow constraints on deformable models is presented. The optical flow

constraint equation, which expresses a constraint on the optical flow velocities, is reformulated as a system of

dynamic constraints that constrain q̇, the velocity of the deformable model. The resulting information will be

combined with the data forces fq while leaving the constraint satisfied. The optical flow constraint equation is used

at a number of select locations in the image to constrain the motion of the model, instead of explicitly computing

an unconstrained optical flow field on the entire image. We will see below how the use of this constraint is related

to model-based optical flow methods (which are also known as “direct methods” since they also do not explicitly

compute a flow field). The use of optical flow information greatly improves the estimation of qm, the motion

parameters of the deformable model.

In deformable model frameworks, estimation is accomplished through an energy optimizationprocess via equa-
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tions of motion. Hard constraints impose a global requirement on this dynamic system whose solution is enforced

at each iteration (either exactly or, if the system is overconstrained, in a least-squares sense), while soft constraints

(such as spring forces) only bias the behavior of the system toward a certain goal (often involving the system en-

ergy). We will discuss how hard constraints provide a means for results obtained from one data source to guide the

computation of the solution to another, potentially more difficult problem. This decreases the cost of this further

computation and increases the likelihood that its solution will closely reflect the true state of the observed object.

Constraints which depend only on q are called holonomic constraints, and constrain the model to a set of al-

lowable positions. They have been used in a deformable model formulation, for instance, to add point-to-point

attachment constraints between the parts of an articulated object [21, 33, 42]. A holonomic constraint C has the

general form

C(q, t) = 0 (8)

Non-holonomic constraints additionally depend on the velocity of the parameters, q̇, and constrain the motion of

the model. A non-holonomic constraint C has the general form

C(q̇,q, t) = 0 (9)

In the following, we show how the optical flow constraints take this form and can be incorporated into the dynamic

system using Lagrange multipliers. This results in hard constraints, since the constraints will be enforced exactly

(or in a least-squares way). Following this, we will describe how this constrained system is solved, and how a

Kalman filter is used to relax these hard constraints.

4.1 Optical flow constraints

Given the assumption of brightness constancy of small regions in an image, the optical flow constraint equation

[22] at a pixel i in the image I takes the form:

∇Ii

[
ui

vi

]
+ Iti = 0 (10)

where ∇I = [Ix Iy] are the spatial derivatives and It is the temporal derivative of the image intensity. ui and vi are

the components of the optical flow velocities.

For a model under perspective projection, there exists a unique point ui on the model that corresponds to the

pixel i (provided it is not on an occluding boundary). The optical flow constraint equation can now be rewritten

in terms of q with this in mind. This rewriting uses an identification of the image velocity (ui,vi) at pixel i with

its corresponding model velocity ẋp(ui) from (3):[
ui

vi

]
= ẋp(ui) = Lm p(ui)q̇m (11)
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Direct use of the optical flow information only provides motion information, and as a result, only qm is affected.

To clarify this: any observed motion is caused by dynamic changes in the true value of qm. The true value of qb

is a static quantity—the meaning of q̇b comes from the analogy of physics, where the value of qb improves over

the course of fitting (over time) as more data becomes available.

The non-holonomic constraint equation for the optical flow at a pixel i in the image can be found by rewriting

the optical flow constraint equation (10) using (11):

∇Ii Lm p(ui)q̇m + Iti = 0 (12)

Instead of using this constraint at every pixel in the image, n pixels are selected from the input image (where

n� dimqm). Appendix E describes the criterion used to choose these particular points, and also describes how

some of the known difficulties in the computation of the optical flow are avoided in this model-based approach.

For the n chosen pixels in the image, the system of equations based on (12) becomes:
∇I1Lm p(u1)

...

∇InLm p(un)

 q̇m +


It1
...

Itn

= 0 (13)

which can be written compactly as

Bq̇m + It = 0 (14)

This equation is simply a model-based version of the optical flow constraint equation [1, 5, 9, 23, 28, 35, 36].

Instead of solving it on its own, however, it is used as a hard constraint on the motion of the model.

4.2 Solving the dynamic system

Constraining the equations of motion with the model-based flow equation results in the constrained system:

q̇ = fq subject to Bq̇m + It = 0 (15)

This is solved using the method of Lagrange multipliers [41, 45]. The Lagrange multiplier technique adds addi-

tional degrees of freedom (one for each degree of constraint), to form a larger, unconstrained system (with the

constraints “built in”). The initial dynamic equation of motion (5), now split into two parts corresponding to qb

and qm, is modified by adding the constraint force fc to q̇m:

q̇b = fqb , q̇m = fqm + fc (16)
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Adding a particular value of fc will ensure the constraint equation is satisfied, in part by cancelling the components

of fqm that violate the constraint. This constraint force is determined using the Lagrange multiplier λλλ as:

fc =−B>λλλ (17)

We can combine equations (14), (16) and (17) to form:

BB>λλλ = Bfqm + It (18)

and can now determine the constraint force (by multiplying (18) on the left by B+, the pseudo-inverse [45] of B):

fc =−B+(Bfqm + It) =−B+It−B+Bfqm (19)

which results in the unconstrained dynamic system (which is solved iteratively since fq is highly non-linear):

q̇b = fqb , q̇m =−B+It +
[
1−B+B

]
fqm (20)

The first term of q̇m in (20), −B+It, is a model-based linear least-squares solution to the optical flow constraint

equation [28]. A model-based solution to the optical flow constraint equations attributes the flow in the image to

motion parameters in the model. This works as follows. A change to any motion parameter induces a character-

istic motion field in the image. Figure 3 illustrates these vector fields for particular motion parameters of our face

model. The linear combination of the fields Lmp(u) using the weights −B+It best satisfies (14) at the sampled

pixels in a least-squares sense. The pseudo-inverse of B is determined by computing its singular value decompo-

sition [39, 45]. Each motion parameter in q will have a corresponding singular value—a singular value near zero

is interpreted as a lack of motion in that particular parameter (although this could also be caused by the failure to

gather enough information from the images to sample the motion). In solving (20) iteratively, fq is re-evaluated

upon each iteration, while B is not. (We have empirically found that re-evaluating B does not change the perfor-

mance of our system when high frame-rate cameras are used. This is not surprising, as the dependency of B on q

is very small for the applications here, when given moderately sized changes in q.)

The second term in (20) contains the edge forces fqm scaled by the matrix [1−B+B]. This projection matrix

cancels the component of fqm that violates the constraint (14) on q̇m. Unlike the hard optical flow constraint,

the edge forces act as a soft constraint, but still prevent errors in qm from accumulating, since the uncancelled

component of the edge forces can further adjust the solution.

As it stands, however, this method will not be robust since B depends on noisy data. In [11], an ad hoc method

was used to relax the hard constraint by replacing the projection matrix in (20) with [1−B+WB] where W is a

diagonal matrix whose entries (in [0,1]) represent the certainty of information provided by a particular pixel. A

more principled approach to relaxing the constraint is described in the next section, where (20) is reformulated

using a Kalman filter. But first, it’s worth taking a closer look at what the hard constraint is actually doing, and

what is meant by relaxing the hard constraint.

12



4.3 Discussion

Consider the problem of combining together the two sources of information (edges and flow) to compute q̇m.

Independently, the edges and flow produce two different solutions: q̇m = fqm and q̇m =−B+It. In the following

discussion, we consider the different formulations that result depending on whether soft, hard, or relaxed hard

constraints are used to combine the solutions.1

Soft constraints are the typical means for combining these solutions. Statistical methods for combination weight

these together (using matrices Wflow and Wedge) according to their reliability:

q̇(soft)
m =−WflowB+It +Wedgefqm (21)

These weighting matrices are typically formed from the covariance matrices for the individual solutions [8, 12].

In non-linear situations, (21) is solved iteratively. This is also comparable to using a Kalman filter to combine

sources together (or an iterated extended Kalman filter in the non-linear case). In a deformable model framework,

this approach is achieved by adding together weighted combinations of forces [46, 48] or energies [18] derived

from data sources. The dynamic system produces a weighted least squares estimate similar to (21) as it converges.

With hard constraints, instead of combining solutions as above, we solve a constrained system: the equation

originally used to solve for flow, Bq̇m +It = 0, will be used as a hard constraint on the solution of q̇m = fqm . What

results is the following:

q̇(hard)
m =−WflowB+It +Wedge

[
1−B+B

]
fqm (22)

This solutiongives precedence to the flow solution in an interesting way. There is now a projection matrix [1−B+B]
which cancels the component of the edge solution which violates the constraint before the solutions are combined

together. This makes a substantial difference when (22) must be solved iteratively when the model-edge alignment

problem (fqm ) is non-linear. When solved alone, it is significantly more computationally expensive than solving

for the flow. In this case, however, the projection matrix cancels out a portion of the search space for the model-

edge alignment that the constraint makes impossible. This results in a lower dimensional problem in solving the

model-edge alignment, and can improve efficiency, as well as decrease the chances of reaching a local minimum.

Alternatively, the edge solution could be used as a hard constraint on the flow; but this would lose the efficiency

benefits, as the edge solution is much more expensive to solve, so that its projection matrix would not be available

in time to efficiently guide the flow solution.

In practice, the hard constraint depends on noisy data, in which case it is overly restrictive to fully cancel any

component of the edge forces. Furthermore, during complex motions, it is not unreasonable for the flow solution

to be non-degenerate, so that the projection matrix is zero (so that it cancels everything). One way of dealing with

this is to relax the hard constraint: to permit small violations of the hard constraint where it is noisy while still

1To keep this discussion informal, equations (21)-(23) are merely suggestive of the process involved in statistical combination. As
we shall see in the next section, the combination process can be formalized most perspicuously by recasting the entire solution process to
take into account the statistical information from both solutions. Unfortunately, this presentation distracts from the high level differences
between methods.
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projecting away much of the edge forces which violate it.

The ad hoc method that accomplished this in [11] (mentioned earlier) was to replace the projection matrix in

(22) with [1−B+WconstraintB], using the diagonal matrix Wconstraint. This results in:

q̇(relaxed)
m =−WflowB+It +Wedge

[
1−B+WconstraintB

]
fqm (23)

The best illustration of what this relaxed solution is doing comes from the special case when Wconstraint has equal

entries on its diagonal, so that Wconstraint = α1 with α ∈ [0,1]. Then the relaxed solution is simply a convex com-

bination of the soft and hard constraint solutions:

q̇(relaxed)
m = αq̇(hard)

m +(1−α)q̇(soft)
m (24)

The hard constraint is enforced when α is 1, with a linear compression in the constraint’s null space direction that

decreases until α is 0, which is the soft constraint solution. This special case of the method in [11] represents

one of the simplest means of relaxing a hard constraint. The next section describes a more principled approach to

relaxing the hard constraint using a Kalman filter.

4.4 Kalman filtering and hard constraints

The optical flow constraint on q̇m is imperfect due to noise and estimation errors. It is therefore desirable to have

only a partial cancellation of fqm ; one way this can be accomplished is through the use of a Kalman filter. This

section describes how the computation from Section 4.2 is reformulated using an iterated extended Kalman filter.

Kalman filtering [3, 19, 30] has become a popular tool in computer vision, and the formulation here is, on the

whole, similar to other applications [2, 7, 26, 32, 37]: there is a measurement equation which models the noise

inherent in the data gathering process, and there is a process model, which predicts the behavior of the system

based on the current state. The initialization and tuning of the filter is accomplished using standard techniques.

The significant difference here, is that there is not only the edge data equation (5), which has been previously

used as a filtering measurement equation [33], but there is also a data-based constraint equation (14). The first

part of this section describes one reasonable way of using this constraint in the measurement equation. Alternative

formulations are possible; ours corresponds to one which involves the solution of a hard constraint. The remainder

of the section describes an iterated extended Kalman filter based in part on this measurement equation. First, we

will describe our formulation of the filter. Following this, we will explain why this treatment allows for relaxed

hard constraints.

By assuming a Gaussian noise model for both the measurements and state, a Kalman filter can maintain an

estimate of the state y and the state covariance P. While the assumption of Gaussian noise might not be particularly

accurate in describing the actual noise in the system, it permits a much simpler solution while still capturing a large

amount of the uncertainty.

The measurement equation for the filter relates the measurements z to the state y using the measurement ma-

trix H. Terms vfq and vIt are added to represent the assumed zero-mean Gaussian noise in fq and It; they have
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covariances Rfq and RIt respectively:

z(t) = H(t)y(t)+

(
vfq(t)
vIt(t)

)
(25)

where the construction of H, y and z in (25) comes from (14), (16) and (17).

H =

1 0 0

0 1 B>

0 B 0

 , y =

 q̇b

q̇m

λλλ

=

(
q̇

λλλ

)
, z =

 fqb

fqm

−It

=

(
fq

−It

)
=

(
∑ j Lp(u j)>f(u j)

−It

)
(26)

The state y consists of the parameter velocities q̇; together with the Lagrange multipliers λλλ used in the optical flow

solution. This inclusion is for presentation only, because, as will be seen later, λλλ is effectively not part of the state.

The discrete update equation for the state is given by (7).

z consists of the parameter forces fq and the temporal image derivatives It. Note that the spatial image deriva-

tives are not included in the measurements (even though they are used in the formation of B); doing so would

greatly complicate the measurement equations. Similar simplifications can be found in image-based optical flow

techniques [44] where the noise in the spatial image derivatives are ignored to provide a Gaussian solution. Rea-

sonably accurate estimates of the spatial image derivatives are usually available (especially away from occlusion

boundaries), making this a fairly safe assumption.

Note that H depends on the state y, so that the measurement equation is non-linear, and its solution requires the

use of an extended Kalman filter. We also choose to iterate the solution, due to serious non-linearities in fq. Recall

from the previous section that while both B and fq depend on q, we only re-evaluate fq, and not B. This iterated

extended Kalman filter is implemented in the standard way [19, 31], paying heed to the usual caveats concerning

linearized filter convergence.

A more standard implementation would use the Kalman filter for data integration [2, 26] (a soft constraint ap-

proach) to fuse the flow and edge solutions. This solution simply lacks the Lagrange multipliers:

Hsoft =

1 0

0 1

0 B

 , ysoft =

(
q̇b

q̇m

)
= q̇, zsoft =

 fqb

fqm

−It

=

(
fq

−It

)
(27)

However, it is the solution that contains λλλ that produces a hard constraint solution. Comparing the pseudo-inverses

of these two measurement matrices shows that H+ results in (20):

H+ =

1 0 0

0 1−B+B B+

0 (B+)> −(B+)>B+


Hsoft+ =

[
1 0 0

0 (B>B+1)−1 (B>B+1)−1B>

] (28)
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The inclusion of λλλ in (26) thus ensures the system reduces to the original unfiltered solution (in the presence of

no a priori state information). The presence of λλλ is a result of the constraints on the dynamic system. However,

it should not be considered part of the state. In fact, the Lagrange multipliers are not something that really needs

to be estimated; but we must include it to effect a hard constraint solution. This decision comes with some com-

plications. Each λ j in λλλ is associated with a particular pixel from the optical flow computation. However, there

is not necessarily any correspondence between the pixels (and hence the λ j) across iterations. Even worse, the

number of pixels used (the dimension of λλλ) varies across iterations. This means a subset of the state parameters

are only present at one iteration, and their predicted values at time t are not based on any previously estimated

values. An alternative interpretation would be to view these parameters λλλ as having infinite observation noise, or

perhaps that the “observability” of λλλ is changing.

The discrete process equation for the Kalman filter gives an expression for the prediction of the state y(t +
1) given the previous estimate y(t). In this case, this equation states that the predicted motion of the observed

subject is the same as in the previous iteration, along with the added noise w (assumed to be independent zero-

mean Gaussian noise with covariance Q) to form the primarily data-driven system:

y(t +1) = y(t)+w(t) p(w)∼ N(0,Q) (29)

The prior estimates of y and P used in the computation of the estimated state and covariance at time t are denoted

ỹ and P̃. Since λλλ is treated as a distinct value at each iteration, only the portions of ỹ(t− 1) and P̃(t− 1) that

correspond to q̇ are retained, resulting in:

ỹ(t) =

(
q̇(t−1)

0

)
,

P̃(t) = P(t−1)+Q(t−1)

=

 Pq̇(t−1)
0

0

0 0 0

+

0 0 0

0 Qq̇m (t−1) 0

0 0 Qλλλ(t−1)


(30)

(where Pq̇ is the block of P(t−1) corresponding to q̇).

Q is the covariance of the process noise, and represents the uncertainty in the process model. As estimation

of qb is static, its corresponding block in Q is zero (in practice, a small amount of stabilizing noise is needed).

Qq̇m models the uncertainty of the actions of the observed subject. This way, the estimation of the static quantity

qb will eventually cease as the estimated covariance of these parameters converges, while qm is interpreted as a

dynamic quantity by the filter. Qλλλ is used to relax the hard constraints; this will be explained below.

Computing the estimated mean and covariance of y involves forming the Kalman gain matrix, which is used

to combine the solution using the current measurements with the solution from the previous iteration. In the fol-

lowing filtering equations, all quantities are taken at time t, but this dependence is omitted to improve readability.
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The Kalman gain matrix [3, 19, 30] is computed as:

K = P̃H>
(

HP̃H>+R
)−1

(31)

The covariance matrix R is the sum of terms resulting from the noise in fq and It:

R =

[
Rfq 0

0 RIt

]
(32)

The relative scale between Rfq and RIt provides a control for tuning how much trust goes into the optical flow

information relative to the edge information.

The estimated mean is computed as a sum of the current solution Kz and the weighted prior mean estimate ỹ,

or as the sum of the prior estimate ỹ and the innovation (z−Hỹ) weighted by K:

y = Kz+(1−KH) ỹ = ỹ +K(z−Hỹ) (33)

The estimated covariance [3, 19, 30] is computed from the prior covariance P̃ as:

P = (1−KH) P̃ (34)

4.4.1 Relaxing hard constraints

In understanding why this formulation relaxes the hard constraints, it is much clearer to consider the following

alternative (and algebraically equivalent) formulation [30] of (31)-(34):

y = PH>R−1z+PP̃−1ỹ

P =
(

H>R−1H+ P̃−1
)−1 (35)

When written this way, it is clear how the solution of the measurement equation is being combined with the a

priori information, based on their corresponding covariances.

Consider the case when R = 1, P(t−1) = 0, Qq̇m(t−1) = 0 and Qλλλ(t−1) = 1
α 1, with α > 0 (using P̃+ for

P̃−1 in the absence of prior information). The result simplifies to:

y =

H>H+

0 0 0

0 0 0

0 0 α1



−1

H>z (36)

Without the addition of α1, this would be the hard constraint solution in (20). The addition of α1 relaxes the hard

constraint, with more constraint violation as α increases. This is because the Lagrange multipliers that were used

to enforce the constraint are gradually driven towards zero as α increases, since they are increasingly combined

with the a priori value of λλλ in ỹ (which is zero). In fact, when α is sufficiently large, this solution approaches that
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of a soft constraint solution (i.e. one without Lagrange multipliers), since:

lim
α→∞

H>H+

0 0 0

0 0 0

0 0 α1



−1

=

1 0 0

0 (B>B+1)−1 0

0 0 0

 (37)

which, when right multiplied by H>, produces Hsoft+ (with additional rows of zeros).

In the general case, P(t−1) and Qλλλ(t−1) will also cause constraint violation, but not in any controlled way.

Rather, their presence causes the solution to be a balance between the measurement equation solution and the

prediction in a way that doesn’t respect the constraint. In other words, the Kalman filter can put more trust in the

prediction (which can violate the constraint) at times when the estimate of q̇m is noisy. In practice, the form of

Qλλλ(t−1) is still 1
α 1, with α determined during filter tuning (the determined value cancelled on average 97% of the

component of the edge forces which violated the constraint, on each iteration of the extended Kalman filter). Keep

in mind that the only distinctionbetween this solution, and an ordinary use of a Kalman filter, is the inclusionof the

Lagrange multipliers in the state variable, and their process update in (30). Neither of these betray the assumptions

made in the derivation of the iterated extended Kalman filter [31], and as a result, the solution here has the same

stability properties as an ordinary solution.

The Kalman filter solution presented here has a number of advantages over the direct solution from (20), and

the commonplace use of a Kalman filter for data fusion. It makes the framework more robust to noise and small

estimation errors. More importantly, it provides a valuable means for combining the edge forces and optical flow

information; the optical flow constraint is now relaxed to a degree based on the error in the optical flow information

in a way that makes the system more efficient and robust. Next, experiments will be presented which show that

the use of a Kalman filter (in addition to treating optical flow as a hard constraint) was an important addition to

the system.

5 Experiments and discussion

This section contains the results from a series of face shape and motion estimation experiments. The first three

experiments exhibit the generality of our system on a variety of subjects, while the next four experiments use a

common observed subject, and provide a quantitative validation of the shape and motion estimation. The last of

the validation experiments compares a number of related frameworks mentioned in this paper.

5.1 Initialization

The entire estimation process is automatic, except for the initialization, which requires the manual specification

of several landmark features in the first frame of the sequence (the eyebrow centers, eye corners, nose tip, and

mouth corners). The subject must also be at rest, and (approximately) facing forward, as in Figure 4(a). In all the

experiments, except for those used for motion validation, the shape of the face is estimated only from the images.

Using these marked features, forces are applied to the initial face model that deform the corresponding points
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on the face toward the desired locations in the image. Experience has shown that the initializationprocess is robust

to small displacements (i.e. several pixels) in the selected landmark points. The rotation and translation, as well

as course-scale face shape parameters (such as those which determine the positions and sizes of the face parts) are

fitted using this information, the result of which is shown in Figure 4(b). Once roughly in place, both edge and

anthropometry forces are applied that pull the face into the correct shape as in Figure 4(c). The distance from the

initial face to the camera is determined given the assumption that the subject’s face is the same size as the model.

(a) (b) (c)

Figure 4: Model initialization

The problem of automatically locating the face and its various features has been addressed elsewhere [49, 50],

and could be used to make this process automatic. No markers or make-up are used on the subject (markers are

used for the validation of the method, however, as described below).

5.2 Tracking experiments

The original image sequences are 8 bit gray images at NTSC resolution (480 vertical lines). In each of the se-

quences, the width of the face in the image averages 200 pixels, and the range of motion of features across the

image sequence is typically 80 to 100 pixels. For each of the tracking examples, several frames from the image

sequence are displayed, cropped appropriately. Below each, the same sequence is shown with the estimated face

superimposed. In each case, a model initialization is performed as described above. The initializationprocess usu-

ally takes about 2 minutes of computation. Afterwards, processing each frame (using the extended Kalman filter

formulation) takes an average of 1.4 seconds each (all computation times are measured on a 175 MHz R10000

SGI O2).

The sequence shown in Figure 5 was taken on an IndyCam at 5 fps. Figure 5 shows a subject turning her head

in (a) through (d) and opening her mouth from (d) to (f). Based on the good alignment of the face model with the

image, it appears the face model is able to capture the shape of her face, as well as the head rotation and mouth

motion. The next two sequences were taken on a higher quality camera at 30 fps. Both Figure 6 and Figure 7

show a subject smiling and moving forward in (b) and (c), opening their mouth while turning their head in (e) and

(f), and turning back, closing their mouth slightly in (g). All of these motions appear to be correctly tracked based

on the observed motion. These three experiments involve different subjects, having very different appearances.

This suggests the verification of the face model shape parameterization (described in Appendix B) was successful.

The extracted face shape is quite individualized to the subject, but not to the point that would be useful for certain

applications in computer graphics. These extracted models for the three subjects here in Figures 5, 6 and 7 are on
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the right side of Figure 2 (the upper-right, lower-left and lower-right, respectively).

5.3 Shape estimation validation

This experiment provides a validation of the shape estimation accuracy of our system. The extracted shape (spec-

ified by qb) is validated by comparing with a Cyberware range scan of the subject, shown in Figure 8(a).

The shape estimation validation experiment in Figure 9 shows the subject performing small head motions in

(a) through (f) while smiling in (c) and (d), and finishing with a significant head rotation in (g). At each frame,

Figure 10 shows the extracted shape results as compared against the range scan of the subject. Note that for this

comparison, all motion parameters are ignored, so that only the shape is compared. The RMS error is computed

using the nodes of the model, and also includes a uniform scaling of the model so that the two faces are the same

scale (this eliminates the depth ambiguity—in this case, the estimated model was compared at 96% scale). The

rigid alignment (translation and rotation) as well as this uniform scaling were computed using a semi-automatic

alignment method (the chosen alignment had the smallest RMS error).

The RMS error, which starts at around 2 cm after initialization, shows a gradual reduction over the course of

the experiment, ending around 1 cm, with the large reduction in error around frame 50 corresponding to when the

subject turned his head significantly to the side in Figure 9(f) and (g), where the profile view contained good edge

information to fit the face shape.

5.4 Motion estimation validation

The next three experiments use markers to allow for the validation of the motion tracking of our technique. Eleven

small circular markers were placed on the face of a subject. Analysis of the accuracy of the motion estimation in

qm is performed using these markers on the subject, which allow for alignment verification in the image plane

(ground truth motion in 3D is not available).

For these three experiments, no shape estimation is performed. Instead, the face shape is provided by an off-

line fitting of the face model to the range scan in Figure 8(a)—this way, any deviation can be attributed primarily

to motion error, not shape error. In addition, the fixed locations of the markers on the model are determined using

some additional images taken of the subject, shown in Figure 8(b). The markers are fixed into particular locations

of the polygon mesh (they have fixed coordinates in Ω). The model resulting from this fitting and marker place-

ment is shown in Figure 8(c), with the marker locations shown as dark circles. The RMS error of the extracted

model (comparing the extracted model with the range scan) is 0.26 cm.

First, the image locations of each of the markers from the image sequence is obtained using a semi-automatic

tracking system. The rough location of the markers is tracked using the KLT2 package (which is based on [43]),

and was fine tuned using a deformable ellipse template. Simple calibration tests suggest this tracking technique

has a variance of 0.35 pixels in measuring the center of a marker (which are usually about 8 pixels across) in the

image.

2Stan Birchfield’s KLT package is available at http://vision.stanford.edu/˜birch
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(a) (b) (c) (d) (e) (f)

Figure 5: Motion and expression tracking example 1

(a) (b) (c) (d) (e) (f) (g)

Figure 6: Motion and expression tracking example 2

(a) (b) (c) (d) (e) (f) (g)

Figure 7: Motion and expression tracking example 3
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(a) (b) (c)

Figure 8: (a) Shaded range scan of subject, (b) Marker calibration images, (c) Resulting marked model

Care was taken so that the presence of the markers did not significantly affect the motion estimation, since these

markers could provide useful information for tracking. The pixel selection method for the optical flow information

was modified so that no points were selected that were within 3 pixels (the radius of the spatial derivative filters)

of any point on a marker. In addition, any edges used to produce edge forces were similarly limited to be distant

from markers. Given that the markers were not placed directly on top of important facial features, it is unlikely

that the presence of the markers detrimentally affected the experiment results.

In each of the following three motion validation experiments, there is an accompanying graph showing the dis-

placement error for each frame. This displacement error of a marker is the Euclidean distance (in pixels) between

the image location of the marker (if visible), and the predicted image location of the marker given the model (which

is the projected image location of the model marker). The dark line on the graph shows the mean displacement

error of all visible markers (one standard deviation is indicated by the gray region surrounding it). The dotted

lines indicate the minimum and maximum displacement error.

The first two sequences were taken using an IndyCam at 5 fps. The final sequence was taken on a high quality

camera (Pulnix TM-9701; grayscale, progressive scan) at 30 fps. Also note that this final sequence was taken at a

different time than the first two—the markers were re-applied to the subject, and their locations were determined

again, as in Figure 8(b) and (c). Their new locations were roughly the same as in the earlier validation experiments

(at most 1.5 cm difference).

The sequence in Figure 11 shows predominantly non-rigid motion (facial expressions). The subject moves

forward and frowns his eyebrows in (b), moves back and produces a surprise expression in (d), followed by a smile

in (f). The average error shown in Figure 12 is between 2 and 4 pixels, which given the face is approximately 200

pixels across in the image, amounts to less than 2%. The maximum error of around 7 pixels corresponds to around

3.5% (roughly 0.5 cm). The largest error is produced during the smile expression; possible reasons for this are

discussed in the next section.

The second sequence in Figure 13 is a combination of rigid and non-rigid motions. The subject turns his head

from (a) through (d) while smiling, returning to rest position in (f). The displacement error shown in Figure 14

averages from 2 to 4 pixels (but being closer to 4 for a longer period), reaching a maximum of just over 7 pixels.

The largest error is produced when the smile is viewed from the side, and is concentrated in the mouth area.

The last sequence in Figure 15 is primarily a rigid-motion sequence that is significantly longer than the other ex-

periments (760 frames). It includes head rotations in a variety of directions, as well as some large head translation

(side-to-side and away from the camera). Eyebrow raises and a smile are also present. This sequence demonstrates
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the ability of the system to maintain track over a long sequence, without experiencing failure due to tracking drift.

In this sequence, the face is approximately 140 pixels across in the image (somewhat smaller than in the previous

experiments). The average pixel deviations shown in Figure 16, range between 1.5 and 2.8 pixels, with a maxi-

mum error at 4.6 pixels, corresponding to about the same absolute distance error as with the previous experiments

(roughly 0.5 cm). Hence, the apparently lower pixel deviations for this sequence amount to approximately the

same error in actual distance. During the sequence, some of the motions were very close to the maximum limits

of tracking speed (pixel velocities were about the same size as the derivative filter width). In particular, the turn-

ing motion at frames 250–320 is the most serious, with other occurrences at frames 430–450 and 610–620. These

motions manifest themselves in Figure 16 as larger displacement errors. However, during the successive motions

(which are well below this maximum velocity), the system recovers from these errors, and improves the fit using

edge information, returning to the baseline deviation amount of around 2 pixels. This baseline corresponds to the

maximum accuracy of model-edge alignment, and the limited precision of the marked model in Figure 8(c).

(a) Frame 1 (b) Frame 11 (c) Frame 18 (d) Frame 24 (e) Frame 35 (f) Frame 46 (g) Frame 57

Figure 9: Shape validation experiment
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Figure 10: Results of shape validation experiment

5.5 Discussion

The successful tracking performed by this framework is primarily due to the use of optical flow as a constraint.

This is empirically verified by disabling key components of our tracking system, and observing the resulting per-
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(a) Frame 1 (b) Frame 11 (c) Frame 16 (d) Frame 18 (e) Frame 24 (f) Frame 29 (g) Frame 40

Figure 11: Motion validation experiment 1 (no shape estimation performed)
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Figure 12: Results of motion validation experiment 1
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(a) Frame 1 (b) Frame 16 (c) Frame 18 (d) Frame 27 (e) Frame 39 (f) Frame 43

Figure 13: Motion validation experiment 2 (no shape estimation performed)
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Figure 14: Results of motion validation experiment 2
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Frame 1 Frame 30 Frame 110 Frame 130

Frame 180 Frame 210 Frame 260 Frame 280

Frame 320 Frame 350 Frame 390 Frame 540

Frame 600 Frame 680 Frame 710 Frame 760

Figure 15: Motion validation experiment 3 (no shape estimation performed)
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Figure 16: Results of motion validation experiment 3
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Figure 17: Tracking performance of various frameworks

Framework Average time for entire frame Average iterations within a frame
with constraint 1.4 seconds 2.9
CVPR 96 (constraint; no KF) 1.3 seconds 5.5
without constraint 6.5 seconds 17.7
flow only 0.34 seconds 1 (not iterative)
edges only 15 seconds 36.1

Figure 18: Timing of various frameworks (175 MHz R10000 SGI O2)

formance decrease (in the form of tracking failures3). The results of running the experiments in Figure 15 on the

various frameworks is shown in Figure 17. The timings shown in Figure 18 include the average execution time

for a single frame (for all iterations) on a 175 MHz R10000 SGI O2, along with the average number of iterations

required within a frame.

The results from the constraint-based Kalman filtering framework for the third experiment are shown in Fig-

ure 16 (and also in Figure 17 as the line marked “with constraint”). The framework which uses both optical flow

and edges, but uses the measurement equation in (27) which does not incorporate optical flow as a hard constraint,

is shown as “without constraint” in Figure 17. This system can experience tracking failure (as in frame 370) when

it encounters a difficult model-edge alignment problem (when the deviation is large, or many parameters require

adjustment). It is worth noting that a constraint-based Kalman filtering method without the relaxation (a frame-

work like “with constraint” but with Qλλλ = 0) had tracking performance that was virtually the same as the “without

constraint” method (although was just as fast as the method “with constraint”).

The framework in [11] (labeled “CVPR 96”) used an ad hoc filtering method (to soften the constraint) instead

of a Kalman filter. In other words, this system used flow as a hard constraint, but did not use a Kalman filter. While

each iteration took less time, more iterations were required, resulting in roughly the same timing as the method

which uses a Kalman filter. However, this method is not as robust, losing track around frame 290.

3Tracking failure is simply defined as reaching a 10 pixel deviation–at this point the deviation typically increases, with tracking being
re-gained only by luck.
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It is also worthwhile to test each data source separately (but still using a Kalman filter). When edges are not

used, leaving only the model-based optical flow solution, errors in the estimation of q̇m accumulate (since this

solution is integrating a velocity), causing the model to lose track quite quickly. This method is marked as “flow

only” in Figure 17. While a non-linear iterative solution [5] would improve the accuracy, it would still not prevent

tracking drift.

The method using only edge information (marked “edges only” in Figure 17) often finds local minimum solu-

tions (such as around frame 80 and frame 130), some of which can lead to tracking failure (near frame 280). As the

model-image displacement increases, the model-edge alignment problem becomes quite difficult and expensive

to solve. Tracking failure occurs in situations not unlike those that caused problems for the framework marked

“without constraint”.

While the framework using hard constraints performed well in this sequence, we can add noise to the system

to determine at what point the system fails. This tracking experiment was run again (a number of times) to exper-

imentally determine the minimum sustained deviation that causes tracking failure. After each iteration, Gaussian

noise was added (of increasing variance until tracking failed) to the rigid motion parameters in qm at the start of

each iteration. Tracking failure became common as average displacement errors went above 4.6 pixels (the in-

cidence of failure went from non-existent below 4.5, to prevalent by 4.7). Alternatively, adding Gaussian noise

directly to the images (of increasing variance until tracking failed) produced a similar value (average displacement

errors of 4.4 pixels, with a corresponding image noise variance of 15.5% of intensity). Incidences of tracking fail-

ures for the other systems (when noise was added) became noticeably worse during these tests. This suggests that

our system using relaxed hard constraints has a comfortable margin of safety from tracking failure.

Considering all the experiments, the error in the tracking results can have other (non-noisy) sources, besides

motion estimation error. One possibility is that it can be caused by poorly extracted marker locations (although

this distance is less than a pixel). Another source can be the discrepancy between the face shape used and the shape

of the observed subject. The RMS error between the face shape and the range scan for only the marker points is

much lower than that from the whole model; it is 0.1 cm, which will cause at most 1 pixel of deviation in marker

locations. Violation of the assumption of perspective projection is also a possible contributor to error, although in

this case is minimal, given the small depth range of the face compared to the distance of the face to the camera.

From this, it can be concluded that a significant portion of the errors present here are from motion estimation.

Upon closer examination, it can be seen that the larger errors which are present during non-rigid motions (in

particular, smiling), are caused by the smile produced by the model not matching the smile on the subject. In

particular, the subject’s smile is more curved than the one produced by the model. Also, the smile produced by

the model does not move the mouth back (into the face) far enough, which explains the fact that the most error

is present when the smile is viewed from the side. These errors result from the inability to estimate the scaling

constants used in (46). Attempting to estimate these constants for each individual using only edge forces does not

produce reliable results.
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5.6 Limitations

The many experiments in this section show the capabilities of the shape estimation and tracking systems described

in this paper. On the other hand, they also say a lot about what the limitations of the system are.

First, some of the limitations of the system come directly from the assumptions made during design. Most

obvious is the assumption of brightness constancy during optical flow computation. Major lighting changes can

cause tracking failure. Specularities also cause small problems, but tend not to affect the entire model, since they

tend to be fairly localized. In some cases, poor lighting will also lead to tracking failure. Typically, these occur

in situations where edges are washed out (opening the aperture too wide on a camera will do this).

Second, is to simply exceed the maximum tracking speed (determined by the derivative filter width). This

problem can be addressed by using multi-scale optical flow methods. On a related note, the motions and edges

can also become too small to be estimated accurately. When the face in the image is smaller than about 40 pixels

across, there is not enough edge information to maintain track reliably.

Third, are deviations from the model—where the images go past the coverage limits of the model. Attempting

to track motions that are not represented produces relatively unpredictable effects. For example, lip puckering is

not modeled: tracking this facial motion produces the best fit using the existing motion parameters (and can often

be quite far off). This causes poor model-image alignment, which can lead to tracking failure if the unmodeled

motion is very large. Note that during speech, however, the system retains good track of the head and brows, while

the motion parameters affecting the mouth region are garbled. This is not surprising, as these unmodeled motions

are attributed to other parameters in the same region (in a least squares way). Large occlusions produce similar

problems (such as a hand passing in front of the face). And of course, since a “mask” face model is used, our

framework will lose track during head motions where the mask visibility becomes too small. There is hope for

detecting these problems automatically—many of these difficulties first appear as large increases in the constraint

residual (localized to the region of model deviation).

Finally, are the problems associated with the tracking of multiple, simultaneous motions. In the validation ex-

periments, situations where head rotation was accompanied by a non-rigid expression deformation often produced

higher pixel deviations. On occasion, this deviation can be serious enough to cause tracking failure. This is caused

by the linearization in the model-based optical flow solution, which could perhaps be alleviated by using an iter-

ative least-squares solution [5]. There can also be situations where motions can be confused (given a particu-

lar model configuration, two parameterized motions may appear nearly identical). The problem arises when the

model state changes to make the current motion estimate inconsistent. Multiple hypothesis estimation methods

might provide a solution here, although it’s likely the most robust solution (for some applications) would be simply

to detect and recover from such a situation.

6 Conclusions

We have presented a method for treating optical flow information as a hard constraint on the motion of a de-

formable model. We have argued, as well as empirically demonstrated, that it was the treatment as a hard con-

straint which resulted in the benefits in efficiency and robustness. Furthermore, we showed how a hard constraint
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based on noisy data can be softened using a Kalman filter while preserving these beneficial aspects. Finally, hard

constraints provided a means for combining information sources which allowed edge information to be used along

with optical flow in order to combat error accumulation in tracking.

Our use of a detailed three-dimensional model also helped a great deal. By accounting for the self-occlusion

of the face, large amounts of head rotation can successfully be tracked. Our detailed shape model allowed for

accurate descriptions of facial shape to be extracted, the parameterization for which would not have been possible

to implement without the use of face anthropometry data to control model coverage. Finally, by designing the

model with a separable shape and motion parameterization, we can separate the problem of estimating the shape

of an individual’s face from estimating their motion, resulting in a much smaller dynamic estimation problem.

The current system does have a number of limitations, however. The most significant of which is the ide-

alization of the optical flow constraint equation. For instance, the problems of photometric variation and self-

shadowing, which violate the optical flow constraintequation, are not addressed. The presence of a three-dimensional

model could prove to be useful when addressing these problems. Another limitation is in tracking large motions;

at the moment, motions larger than the width of the derivative filters will not be tracked correctly. Multi-scale

model-based optical flow techniques [5] can be applied here to address this.

Looking to the future, investigation of the recognition of faces using the shape parameterization, or of facial

expressions using the motion description is worth pursuing. Simplistic approaches that depend on a particular

parameterization (such as directly using the “smile” parameter with a threshold) would not be robust. Also, having

a more detailed motion parameterization will allow for the tracking of more complex facial motions. Methods for

generating motion models from example data, which are becoming more commonplace as data gathering methods

improve, would be particularly effective in building such a complex model.
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A Modularization of global deformations

The shape model x is defined through the repeated application of n global deformations Tk : R3 → R3, where

k ∈ 1 . . .n, to the underlying shape s (which has parameters qs in general deformable model frameworks) as:

x(q;u) = Tn(qTn ; . . .T1(qT1
;s(qs;u))) (38)
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where qTk are the parameters used by Tk. The parameters used by all of the global deformations are accumulated

into the vector qT as in:

qT = (q>T1
, . . . ,q>Tn

)> (39)

so that q can now be grouped as:

q = (q>s ,q
>
T)> (40)

For a particular set of deformation functions, closed form expressions for the resulting shape can be derived. From

these complex expressions, the Jacobian matrix can be derived (see [33] for an example), although this method is

tedious and not modular.

Instead of this, a single expression for the resulting shape is not derived, but rather each deformation is applied

separately given the definition in (38). The Jacobian matrix can be calculated in a similar way using the chain

rule. First, define the deformation τk as the composition of the first k deformation functions T1 through Tk:

τk(qT;p) = Tk(qTk ; . . .T1(qT1 ;p)) p ∈ R3, k ∈ 1 . . .n (41)

with τ0 defined to be the identity. Given this definition of τk, it follows how to compute Jx, the Jacobian of x with

respect to q, using the following recurrence:

Jτ0 = Js =
∂s

∂qs

Jτk =
[

∂Tk(p)
∂p

Jτk−1

∂Tk

∂qTk

]
k ∈ 1 . . .n

(42)

so that Jx = Jτn . The left block in (42) uses the chain rule, so that the matrix ∂Tk(p)/∂p “deforms” the individual

columns of the Jacobian matrix Jτk−1 . The right block in (42) contains the derivatives of the outermost deformation

Tk with respect to its parameters.

A naive technique for computing Jx using this recurrence from the bottom-up (which starts with Js), is partic-

ularly expensive in terms of both time and space complexity. This is particularly a problem since the Jacobian

needs to be re-evaluated at each iteration, over many points on the model. Instead, the quantity J>f is computed,

given an applied force f such as in (6). The quantity J>f can be computed efficiently in a top-down fashion as:

fn = f , fk−1 =
(

∂Tk(p)
∂p

)>
fk k ∈ 1 . . .n (43)

J>s f =
(

∂s
∂qs

)>
f0 , J>Tk

f =
(

∂Tk

∂qTk

)>
fk k ∈ 1 . . .n (44)

If the actual columns of Jx are required, as is the case for the optical flow computation (12), they can be found by
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three applications of the above technique using the unit vectors î, ĵ, and k̂ in the x, y and z directions, respectively,

as:

J>x = (J>x î)î>+(J>x ĵ)ĵ>+(J>x k̂)k̂> (45)

since îî>+ ĵĵ>+ k̂k̂> = 1. For the optical flow computation, this construction is only required for the motion

parameters in qm.

Besides global deformations, it is also useful to include rigid motions (translations and rotations) and even

camera projections. For the case of camera projections, however, the mapping becomes T : R3→ R2, and (45)

uses only î and ĵ, since the image forces are two-dimensional. The formulation of the projected Jacobians in (3)

and (4) is simply an instance of the left block of (42).

This modular technique for computing the Jacobian matrix allows for significantly easier implementation at

little computational expense. It is also a more modular approach, since the choice of which deformations used

can be made on the fly.

B Face model deformations

In order to capture the variations seen in the shape and motion of human faces, a mixture of scaling, bending, and

rigid deformations are used in the construction of the face model. This section provides details on these defor-

mations. The model designer carefully combines the deformations to produce a parameterized face model. The

result of this construction is an underlying model (the polygon mesh) which has a series of deformations func-

tions applied to it, each having a small number of parameters, and each is applied to a particular set of face parts,

ranging from a single part to the entire face.

Rigid transformations such as translation and rotation are used for the placement of parts on the face. Scaling

and bending deformations, shown in Figure 19, allow for the representation of a variety of face shapes. Each

of these deformations is defined with respect to particular landmark locations in the face mesh. By fixing the

deformations into the mesh, the desired effect of any particular deformation is not lost due to the presence of other

deformations (since the landmark points are deformed along with the rest of the mesh). Although varying degrees

of continuity can be attained for these deformations, each of the following deformations are C1 continuous.

A shape (before any deformation is applied) which contains the landmark points p0, p1 and c is shown in Fig-

ure 19(a). Figure 19(b) shows the effect of scaling this shape along the displayed axis. The center point c is a

fixed point of the deformation, while the region between p0 and p1 is scaled to have length d (the parameter of

the scaling deformation). Portions of the shape outside this region are rigidly translated.

Bending is applied in Figure 19(c), and shows the effect of bending the shape in (a) in a downward direction.

The bending is applied to the area between p0 and p1, where c is the center of the bending. Outside this area, the

shape is rotated rigidly. Each plane perpendicular to the bending axis is rotated by an angle determined by the

distance of this plane to the center point c. The amount of bending is specified by the parameters θ0 and θ1, which

specify the rotation angle at p0 and p1, respectively.

In addition, the spatial extent of each of these deformations can be localized, as shown in Figure 19(d). The
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Figure 19: Scaling and bending deformations

influence of the scaling deformation varies in directions perpendicular to the axis, producing a tapering effect.

Near the top of the shape, the object is fully scaled to be the length d, while the bottom of the object is unaffected

by the deformation. The ability to restrict the effect of a deformation is vital in specifying the variations of shape

seen in the face. We will now see how these deformations can be used to create the model.

B.1 Face shape

The underlying shape s, which is the polygon mesh shown in Figure 1, can take the shape of a variety of faces

through the application of a number of spatial deformations. This parameterization of the model is specified by the

model designer. The job of the designer is made easier by separating the face into parts, allowing each face model

component to be treated separately. Instead of describing the entire model (which would be extremely lengthy

and not particularly enlightening), a short description is provided which illustrates the concepts necessary for its

construction.

Deformations are defined over a particular set of face model parts, although most deformations affect only one

part. Example deformations that parameterize multiple parts include those affecting the lower face, which deform

the chin and both cheeks. All of the deformations are specified in a particular order, and are applied in sequence

to the underlying shape (see Appendix A). All of the parameters to describe the shape of the face at rest (there

are approximately 80) are collected together into qb. The shape deformations are collected together into a single

deformation function Tb. Most of the parameters are independent due to spatial locality, which keeps the problem

of estimation using this model fairly tractable.

Figure 20 shows some of the scaling deformations defined for the nose. Each arrow indicates a particular scaling

parameter (in the vertical or horizontal direction), that affects the space between the enclosing lines. The results

of applying some of the deformations to the nose are shown in Figure 21. Figure 21(a) and (d) show two views

of the default nose. Figure 21(b) shows a nose deformed using vertical scaling, while the pulled-up nose in (c) is

produced using a localized bending deformation. Figure 21(e) and (f) show localized scaling affecting the width

of the nose in different places. Different faces produces using many deformations are shown on the right side of

Figure 2.

Verification of the face parameterization produced by the model designer can be accomplished by fitting the
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Figure 20: Scaling deformations of the nose

(a) (b) (c) (d) (e) (f)

Figure 21: Example deformations affecting the nose

model to a series of randomly generated sets of facial measurements. This is effectively a Monte Carlo method of

sampling the space of face measurements. The fitting is easily accomplished, given a set of measurements, using

the anthropometric forces described in Appendix C. The model designer can alter the model parameterization

when a particular set of face measurements cannot be satisfied by the model. We obtained a face model capable

of representing a wide variety of faces after only a few design iterations.

B.2 Face motion

The deformations corresponding to motions (such as facial expressions) are modeled using the same techniques

employed for face shape. However, there is no available motion data that corresponds to anthropometric data for

shape (although technology for gathering such data is becoming available [20]). The motion deformations are

applied to the face in rest position—after the shape deformations, as in (1). Examples of modeled expressions are

displayed on the left side of Figure 2. The model is capable of frowning or raising each eyebrow (top-left, top-

right), smiling (bottom-left) or opening the mouth (bottom-right). This results in a total of 6 expression parameters

(2 brow frowning, 2 brow raising, 1 smiling, 1 mouth opening), each corresponding to a particular FACS action

unit [13]. In addition to this are the six parameters for rigid head motion (translation and rotation), resulting in a

total of 12 parameters in qm. These deformations can be applied to any face (different qb), such as those on the

bottom of Figure 2.

The construction of expressions is simplified by decomposing each face motion into several component defor-

mations. For example, the mouth opening deformation is decomposed into chin/cheek bending, lip scaling and

lip translation. To facilitate tracking of these expressions by reducing the number of motion parameters, there is a

single control parameter for each expression which uniquely determines all of its component parameters. Given

a particular face motion which is constructed using a series of deformations with parameters bi, the control pa-
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rameter e determines the value bi based on the formula:

bi = sie (46)

where si is the scaling parameter used to form the linear relationship between bi and e. These scaling parameters

are the expression-shape parameters included in qb (there are about 20 in total). For situations where these pa-

rameters are not estimated, these parameters are treated as constants, average values for which are determined by

the designer during construction of the model.

The set of face motion parameters qm consists of the control parameters for each of the expressions (which

are initially all zero), and the rigid translation and rotation specifying the head position. The parameters bi are

not estimated, but are determined directly by (46) using the estimated value of e. The motion deformations are

collected together into the deformation Tm.

C Anthropometry

Anthropometry is the biological science of human body measurement. Anthropometric data is used in a variety of

applications that require knowledge of the distribution of measurements across human populations. For example,

in medicine, quantitative comparison of anthropometric data with patients’ measurements before and after surgery

furthers planning and assessment of plastic and reconstructive surgery [16]. This paper proposes a similar use of

anthropometry, in the construction of a face model for computer vision.

In order to develop useful statistics from anthropometric measurements, the measurements are made in a strictly

defined way [24]. Particular locations on a subject, called landmark points, are defined in terms of visible or palpa-

ble features. A series of measurements between these landmarks is then taken using carefully specified procedures

and measuring instruments (such as calipers, levels and measuring tape). A canonical coordinate system for the

head and face is also defined in terms of landmarks, and provides a set of axes from which some measurements

are taken. As a result, repeated measurements of the same individual (taken a few days apart) are very reliable,

and measurements of different individuals can be successfully compared.

Farkas [16] describes a widely used set of measurements for describing the human face. A large amount of

anthropometric data using this system is available [15, 16]. The system uses a total of 47 landmark points to

describe the face, and includes the following five types of facial measurements:

• the shortest distance between two landmarks (such as the separation of the eyes)

• the axial distance between two landmarks—the distance measured along an axis (such as the vertical height

of the nose)

• the tangential distance between two landmarks—the distance measured along a prescribed path on the sur-

face of the face (such as the arc length of the upper lip boundary)

• the angle of inclination between two landmarks with respect to an axis (such as the slope of the nose bridge)

• the angle between locations (such as the angle formed at the tip of the nose)
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Farkas describes a total of 132 measurements on the face and head.

Systematic collection of anthropometric measurements has made possible a variety of statistical investigations

of groups of subjects. Subjects have been grouped on the basis of gender, race and age. Means and variances

for the measurements within a group, tabulated in [16], effectively provide a set of measurements which captures

virtually all of the variation that can occur within the group.

In addition to statistics on measurements, statistics on the proportions between measurements have also been

used. Anthropometrists have found that proportions give useful information about the correlations between fea-

tures, and can serve as more reliable indicators of group membership than can simple measurements [15]. These

proportions are averaged over a particular population group, and means and variances are provided in [15].

C.1 Use of anthropometry data

Our face model includes representation of the anthropometric measurements described above. Given the measure-

ment descriptions in [16], they are realized using a straightforward set of geometric operations performed using

the face model: given a value of qb, a set of measurements can be taken from the model.

Use of this data limits the coverage of a hand-crafted model to the space of faces made likely by a distribution

of anthropometric measurements. Forces arising from this data are comparable to internal stiffness forces used

in other deformable model work [48]. In that work, stiffness forces were used to determine a smooth surface

in situations where the data was sparse or noisy. Here, anthropometric forces maintain a believable face shape,

avoiding the parameter combinations that result in unlikely or impossible faces.

For a particular set of model points x1 . . .xn, a measurement M j is written as:

M j
(
x1, . . . ,xn

)
j ∈ 1..M (47)

where M is the number of measurements in Farkas’ inventory. As an example, a shortest distance measurement

is simply the following:

Mdist
(
x1,x2

)
= ‖x1−x2‖ (48)

where x1 and x2 are model points corresponding to the two landmarks used by the measurement. Note that these

points depend on the shape parameters qb, but not on the motion parameters qm (which is effectively zeroed when

any anthropometric measurements are taken on the model—since this reflects the same “expressionless” condi-

tions under which the data was originally gathered).

The statistical characterization of measurements and proportions can be built into the model in two ways. First,

by using an average set of measurements, a set of parameters specifying the initial model is determined. This initial

model is an anthropometrically “average” model, and is shown in Figure 1. Second, this characterization provides

a means of biasing the face model shape parameters (qb) toward more likely occurring individuals.

Given a particular set of population groups, average measurement values and variances are obtained from [16]
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as:

(µ j,σ2
j) j ∈ 1..M (49)

The biasing of the parameters is performed using three-dimensional spring-like forces (a soft constraint) that are

applied to the polygonal face model that softly enforce a measurement on the model. First, an energy is associated

with each measurement:

E j =
1
2

(
M j(x1, . . . ,xn

)
−µ j

)2
(50)

Then, the force resulting from the energy E j, which is applied to model domain point ui (which corresponds to

the point xi on the model surface), is obtained as:

fEj (ui) =−∂E j

∂xi
=−

(
M j(x1, . . . ,xn

)
−µ j

) ∂M j

∂xi
(51)

The total anthropometric force applied to model domain point ui is computed as the weighted sum of all mea-

surement forces at ui:

fant(ui) = ∑
j∈1..M

(
1− e−Ej/σ2

j

√
2πσ

)ρ

fEj (ui) (52)

Each force is weighted by a quantity which is a power (ρ) of how improbable the current measurement is (assum-

ing a Gaussian distribution on the anthropometric measurements [16]). This weighting prevents the model from

actually attaining the average set of measurements, but instead is simply biased towards them. For values of ρ
around 10, forces on measurements within one standard deviation of the mean for that measurement are effec-

tively ignored, making it used primarily as a prior on qb.

For proportions, the energy would involve two measurements as:

E jk =
1
2

(
M j(x1, . . . ,xn

)
−p jk ·Mk(x′1, . . . ,x

′
n′
))2 (53)

where p jk is the mean proportion between measurements µ j and µk. As with the above for measurements, a force

distribution for proportion data is obtained using this energy.

D Face feature and edge determination

The edge-based force field methods in [33, 48] require knowing which locations of the face model are likely to

produce edges in an image. On the face, certain features are likely to produce edges in the image. The particular

features chosen are the boundary of the lips and eyes, and the top boundary of the eyebrows. Edges in the polygon

mesh which correspond to these features were manually marked during the model construction, and are shown in

Figure 22(a).
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(a) (b) (c)

Figure 22: Likely face features in an image

Other likely candidates for producing edges are the regions on the model of high curvature. The base of the

nose and indentation on the chin are examples of high curvature edges, and can be seen in Figure 22(b). Occluding

boundaries on the model also produce edges in the image, and can be determined using the three-dimensional

model. The location of occlusion boundaries on the model will be useful when determining the quality of selected

points for the measurement of optical flow.

Of course, for an edge to be produced in the image, the corresponding region on the face must be visible to the

camera. This visibility determination is performed using the model and camera transformation. The model depth

information can be used to determine the parts of the model that are visible to the camera (the frontmost regions

of the model). Figure 22(b) shows visible locations of the model (features, high curvature and occluding edges)

that are likely to produce edges, given the model in (c).

Once the locations on the model are known which are likely to produce image edges, we can weight the intensity

gradient accordingly when forming the two-dimensional edge-based forces [33, 48] that are applied to the model.

These forces contribute to the value of fq (affecting parameters in both qb and qm) based on (6). Over the course

of fitting, these edge forces “pull” the model so that the model edges become aligned with their corresponding

image edges.

E Optical flow point selection

The construction of the optical flow constraint on q̇m required the selection of a set of image pixels from which to

measure optical flow information. While it would be possible to use all pixels on the observed object, this would

have two problems. Most obviously, it would be more expensive to solve the system—it is especially wasteful

since it is likely that most pixels do not provide a significant amount of useful information. And second, particular

points actually provide harmful information—such as those near occlusion boundaries. This section describes our

method for the selection of pixels in the construction of (13).

Tomasi and Shi [43] define good features for tracking by using the following criterion. The outer product of

the image gradients at pixel i is summed over a small window around that pixel:

∑
window(i)

∇Ii ∇I>i (54)
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A feature is selected when the smaller eigenvalue of this 2× 2 matrix is greater than a threshold value. These

features possess significant image gradients in two orthogonal directions, which makes them reliable tracking

features, as well as good sources of optical flow information. Features with one very large eigenvalue are also

useful in our application, as these image points also provide good optical flow information.

However, not all pixels with significant gradient magnitude should be chosen. In particular, pixels on occlusion

boundaries must be avoided, as they violate the optical flow constraint equation. The use of model-based tech-

niques here provides a straightforward solution—assuming the model is at least roughly aligned with the image,

pixels anywhere nearby the predicted occlusion boundaries of the model are simply not chosen. A detailed model,

such as our face model, coupled with a method which computes occlusion boundaries (as in Appendix D), can be

used to avoid these problems.

Traditional techniques for solving the optical flow constraint equation (10), often impose smoothness condi-

tions on the flow field [22] to determine a solution. Smoothing is complicated by the fact that occlusion boundaries

violate (10) and must be located to determine where to relax the smoothness conditions. The presence of a model

entirely avoids the need for smoothing, as connectivity and discontinuity information is provided by the model.

In addition to this, model-based optical flow techniques are more immune to the aperture problem [22], since in-

formation is combined over much larger image regions.

Besides providing the most accurate information possible, the set of chosen points must also adequately sample

the motion information present in the image. The accurate measurement of a parameter in qm requires a sufficient

number of pixels in the image corresponding to model points where the Jacobian of that parameter does not vanish.

Note that some motion deformations may affect only a particular region of the face.

Using too few pixels in the computation results in a loss of accuracy, and can reach the point where the system

loses track of the subject. Including too many pixels forces the pixel selection method to include pixels containing

little useful information (such as having a small gradient magnitude). It has been determined by experimentation

that 10 to 20 pixels per parameter provide sufficient accuracy and robustness for the application of face tracking

(at which point the results change negligibly when more pixels are used). Since there can be considerable overlap

between the sets of pixels used to measure each parameter, the total number of pixels used can be fairly small.

For each of the experiments here, n is approximately 120 pixels.

References

[1] G. Adiv. Determining 3-d motion and structure from optical flow generated by several moving objects. IEEE
Pattern Analysis and Machine Intelligence, 7(4):384–401, July 1985.

[2] N.J. Ayache and O.D. Faugeras. Building, registering, and fusing noisy visual maps. IJRR, 7(6):45–65,
1988.

[3] Y. Bar-Shalom and T. Fortmann. Tracking and data association. Academic Press, 1988.

[4] S. Basu, I. Essa, and A. Pentland. Motion regularization for model-based head tracking. In Proceedings
ICPR ’96, page C8A.3, 1996.

[5] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based motion estimation. In Pro-
ceedings ECCV ’92, pages 237–252, 1992.

39



[6] M. Black and Y. Yacoob. Tracking and recognizing rigid and non-rigid facial motions using local parametric
models of image motion. In Proceedings ICCV ’95, pages 374–381, 1995.

[7] T.J. Broida and R. Chellappa. Estimation of object motion parameters from noisy images. IEEE Pattern
Analysis and Machine Intelligence, 8(1):90–99, January 1986.

[8] A. Bryson and Y. Ho. Applied Optimal Control. Halsted Press, 1975.

[9] C. Choi, K. Aizawa, H. Harashima, and T. Takebe. Analysis and synthesis of facial image sequences in
model-based image coding. IEEE Circuits and Systems for Video Technology, 4(3):257–275, 1994.

[10] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. In ECCV98, pages II:484–498, 1998.

[11] D. DeCarlo and D. Metaxas. The integration of optical flow and deformable models with applications to
human face shape and motion estimation. In Proceedings CVPR ’96, pages 231–238, 1996.

[12] H.F. Durrant-Whyte. Consistent integration and propagation of disparate sensor observations. IJRR, 6(3):3–
24, 1987.

[13] P. Ekman and W. Friesen. The Facial Action Coding System. Consulting Psychologist Press, Inc., 1978.

[14] I.A. Essa and A.P. Pentland. Coding, analysis, interpretation, and recognition of facial expressions. IEEE
Pattern Analysis and Machine Intelligence, 19(7):757–763, July 1997.

[15] L. Farkas. Anthropometric Facial Proportions in Medicine. Thomas Books, 1987.

[16] L. Farkas. Anthropometry of the Head and Face. Raven Press, 1994.

[17] P. Fua and C. Brechbuhler. Imposing hard constraints on deformable models through optimization in orthog-
onal subspaces. Computer Vision and Image Understanding, 65(2):148–162, February 1997.

[18] P. Fua and Y.G. Leclerc. Object-centered surface reconstruction: Combining multi-image stereo and shad-
ing. International Journal of Computer Vision, 16(1):35–56, September 1995.

[19] A. Gelb. Applied Optimal Estimation. MIT Press, 1974.

[20] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin. Making faces. In Proceedings SIGGRAPH ’98,
pages 55–66, July 1998.

[21] Y. Hel-Or and M. Werman. Constraint fusion for recognition and localization of articulated objects. Inter-
national Journal of Computer Vision, 19(1):5–28, July 1996.

[22] B. Horn. Robot Vision. McGraw-Hill, 1986.

[23] B. Horn and E. Weldon. Direct methods for recovering motion. International Journal of Computer Vision,
2(1):51–76, June 1988.

[24] A. Hrdlicka. Practical anthropometry. AMS Press, 1972.

[25] R. Kaucic and A. Blake. Accurate, real-time, unadorned lip tracking. In ICCV98, pages 370–375, 1998.

[26] D.J. Kriegman, E. Triendl, and T.O. Binford. Stereo vision and navigation in buildings for mobile robots.
RA, 5(6):792–803, December 1989.

40



[27] A. Lanitis, C.J. Taylor, and T.F. Cootes. Automatic interpretation and coding of face images using flexible
models. IEEE Pattern Analysis and Machine Intelligence, 19(7):743–756, July 1997.

[28] H. Li, P. Roivainen, and R. Forchheimer. 3-D motion estimation in model-based facial image coding. IEEE
Pattern Analysis and Machine Intelligence, 15(6):545–555, June 1993.

[29] D.G. Lowe. Fitting parameterized three-dimensional models to images. IEEE Pattern Analysis and Machine
Intelligence, 13(5):441–450, May 1991.

[30] P. Maybeck. Stochastic Models, Estimation and Control, Volume 1. Academic Press, 1979.

[31] P. Maybeck. Stochastic Models, Estimation and Control, Volume 2. Academic Press, 1982.

[32] D. Metaxas. Physics-Based Deformable Models : Applications to Computer Vision, Graphics, and Medical
Imaging. Kluwer Academic Publishers, 1996.

[33] D. Metaxas and D. Terzopoulos. Shape and nonrigid motion estimation through physics-based synthesis.
IEEE Pattern Analysis and Machine Intelligence, 15(6):580–591, June 1993.

[34] Y. Moses, D. Reynard, and A. Blake. Robust real time tracking and classificiation of facial expressions. In
Proceedings ICCV ’95, pages 296–301, 1995.

[35] S. Negahdaripour and B. Horn. Direct passive navigation. IEEE Pattern Analysis and Machine Intelligence,
9(1):168–176, January 1987.

[36] A. Netravali and J. Salz. Algorithms for estimation of three-dimensional motion. AT&T Technical Journal,
64:335–346, 1985.

[37] A. Pentland and B. Horowitz. Recovery of nonrigid motion and structure. IEEE Pattern Analysis and Ma-
chine Intelligence, 13(7):730–742, July 1991.

[38] A. Pentland and S. Sclaroff. Closed-form solutions for physically based shape modeling and recognition.
IEEE Pattern Analysis and Machine Intelligence, 13(7):715–729, 1991.

[39] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The Art of Scientific Com-
puting. Cambridge University Press, 1992.

[40] D. Reynard, A. Wildenberg, A. Blake, and J. Marchant. Learning dynamics of complex motions from image
sequences. In Proceedings ECCV ’96, pages I:357–368, 1996.

[41] A. Shabana. Dynamics of Multibody Systems. Wiley, 1989.

[42] R. Sharma, Y. Azoz, and L. Devi. Reliable tracking of human arm dynamics by multiple cue integration and
constraint fusion. In Proceedings CVPR ’98, 1998.

[43] J. Shi and C. Tomasi. Good features to track. In Proceedings CVPR ’94, pages 593–600, 1994.

[44] E. Simoncelli, E. Adelson, and D. Heeger. Probability distributions of optical flow. In Proceedings CVPR
’91, pages 310–315, 1991.

[45] G. Strang. Linear algebra and its applications. Harcourt, Brace, Jovanovich, 1988.

[46] D. Terzopoulos. Physically-based fusion of visual data over space, time and scale. In J. Aggarwal, editor,
Multisensor Fusion for Computer Vision, pages 63–69. Springer-Verlag, 1993.

41



[47] D. Terzopoulos and K. Waters. Analysis and synthesis of facial image sequences using physical and anatom-
ical models. IEEE Pattern Analysis and Machine Intelligence, 15(6):569–579, 1993.

[48] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: Recovering 3D shape and
nonrigid motion. Artificial Intelligence, 36(1):91–123, 1988.

[49] Y. Yacoob and L.S. Davis. Computing spatio-temporal representations of human faces. In Proceedings
CVPR ’94, pages 70–75, 1994.

[50] A.L. Yuille, D.S. Cohen, and P. Halliman. Feature extraction from faces using deformable templates. Inter-
national Journal of Computer Vision, 8:104–109, 1992.

[51] G.H. Zhang and A. Wallace. Physical modeling and combination of range and intensity edge data. Computer
Vision, Graphics, and Image Processing, 58(2):191–220, September 1993.

42


	Optical Flow Constraints on Deformable Models With Applications to Face Tracking
	Recommended Citation

	Optical Flow Constraints on Deformable Models With Applications to Face Tracking
	Abstract
	Comments

	fj.dvi

