
 

 

 

Abstract 
 

In this paper, we propose a new region-based method for 

accurate motion estimation using discrete optimization. In 
particular, the input image is represented as a tree of 

over-segmented regions and the optical flow is estimated by 

optimizing an energy function defined on such a region-tree 
using dynamic programming. To accommodate the 

sampling-inefficiency problem intrinsic to discrete 
optimization compared to the continuous optimization 

based methods, both spatial and solution domain 

coarse-to-fine (C2F) strategies are used. That is, multiple 
region-trees are built using different over-segmentation 

granularities. Starting from a global displacement label 

discretization, optical flow estimation on the coarser level 
region-tree is used for defining region-wise finer 

displacement samplings for finer level region-trees. 

Furthermore, cross-checking based occlusion detection 
and correction and continuous optimization are also used 

to improve accuracy. Extensive experiments using the 

Middlebury benchmark datasets have shown that our 
proposed method can produce top-ranking results. 

1. Introduction 

As an active research topic for many years, the goal of 

optical flow estimation is to recover a dense 2D vector field 

encoding scene object motion or camera motion as 

displacements between corresponding pixels in consecutive 

images.  For a more extensive review, the reader can refer 

to some previous surveys such as [19, 20]. 

Following the seminal work of Horn and Schunck [2], 

most state-of-the-art algorithms formulate the optical flow 

estimation as an energy minimization problem [3-15], for 

which the variational-calculus based computation 

framework has been the top-performing method and gained 

much popularity in the research community [3-6]. 

However, such optimization schemes based on continuous 

mathematics often suffer the problems of over-smoothing 

due to their restricted convex flow smoothness 

regularizations. Also due to their gradient-descent based 

minimum searching, the optimization could be trapped by 

local minima, which result in poor performance for sharp 

motion discontinuities and for large motion displacements 

[10].  

On the other hand, a similar energy-minimization 

computational framework as above also dominates in the 

top-ranking disparity/depth estimation algorithms. 

However, in contrast, discrete optimization schemes such 

as graph-cuts, belief propagation and dynamic 

programming have gained more popularity over the 

continuous counterparts due to their better ability in 

optimizing non-convex energy functions. 

Then naturally it leads one to wonder if such discrete 

optimization schemes are also applicable to optical flow 

estimation which bears commonalities with the stereo 

matching problem. To this end, considerable efforts [7-11] 

have been devoted recently in enabling discrete 

optimization schemes for optical flow estimation and 

promising results have been reported using the Middlebury 

quantitative evaluation and benchmarking datasets [1]. 

Moreover, compared to pixel-based stereo matching 

approaches, region based ones have demonstrated their 

superior capability in handling texture-less regions and 

occlusions, which are also problematic issues in optical 

flow estimation. Surprisingly, there are only very few 

works that have incorporated color segmentation 

information for better optical flow estimation. So in this 

paper, we propose a new coarse-to-fine region tree based 

optical flow estimation method which combines the proven 

advantages of discrete optimization and region based image 

representation. In the following, we first review some 

previous related work in Section 2. Then in Sections 3 and 

4, we give an overview first and then, elaborate our 

proposed approach. In Section 5, we show that the 

proposed approach can achieve superior performance based 

on the Middlebury optical flow evaluation.  Finally, we 

conclude our paper in Section 6. 

2. Related work 

Several previous attempts have applied discrete 

optimization schemes in optical flow estimation. In 

general, the original optical flow problem is mapped into a 

labeling problem through discretization and then a 

well-known discrete optimization scheme such as 

graph-cuts [7] or belief-propagation [8] is adapted to 
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finding the best label assignment for all the labeling targets 

(matching primitives) such as pixels, regions or layers, 

from which the final optical flow field is induced by 

mapping the labels back to displacement vectors.  

Based on whether or not discretization is directly done in 

the flow solution space, we can roughly classify such 

methods as direct [7-9, 12]  and indirect [10-11, 15] 

discretization based methods. In direct discretization based 

methods, the labels are a direct discrete sampling of the 

final 2D displacement search space. That is, each label 

corresponds to a sampled 2D displacement vector. While in 

indirect discretization based methods, no displacement 

discrete sampling is done.  

Many recently proposed methods with very promising 

performance also adapt the discrete optimization schemes 

[10-12].  Specifically, in the fusion-flow method [10], the 

pixel-wise label sets are locally created from a set of 

candidate solutions obtained by running different 

continuous flow algorithms or the same algorithm using 

different parameter settings. Then graph-cuts optimization 

is used to find the best label assignment for fusing 

candidate solutions. A similar fusion idea has also been 

investigated in [11]. The original minimization problem is 

formulated as a series of binary sub-problems, each of 

which can be solved iteratively via the extended discrete 

graph-cuts with alpha-expansion method that facilitates 

large energy minimization moves. Similar to [10], the set of 

candidate displacement vectors to be fused have to be 

provided by standard continuous optical flow algorithms. 

Thus the success of both methods is largely dependent on 

the quality of the initial solution. Another piece of related 

work is presented in [12], in which a framework based on a 

dynamic, discrete MRF is proposed for morphing images 

using a grid of control points. Discrete MRF optimization is 

used to iteratively and accumulatively optimize the 

displacement vectors at the control points from which the 

dense optical flow field is derived based on the influence 

functions. 

The promising performance as demonstrated using the 

Middlebury benchmark database of all of the above 

mentioned recent attempts suggests that discrete 

optimization has great potential in optical flow estimation. 

However, in addition to the optimization framework, the 

image representation can also play an important role in the 

performance. In particular, region based representation has 

shown unique advantages over pixel based representation 

in stereo matching [17, 18]. So it is intuitive to expect 

similar applicability and advantages of region based 

representation in optical flow estimation.  

 Some efforts [13-16] have also been made in this regard. 

In particular, in [14], a method is proposed that can jointly 

segment consecutive frames into small regions of 

consistent size and compute the optical flow based on 

statistical modeling of an image pair using constraints 

based on appearance and motion. Bidirectional motion is 

estimated using spatial coherence and color similarity 

between segmented regions under the translational motion 

model.  In [15], image segmentation and graph-cuts 

optimization are incorporated to tackle the optical flow 

problem using a layered model. Each region is first 

assigned with an affine motion model from sparse 

correspondences. Motion layers are extracted by grouping 

regions with similar rigid motions and by identifying the 

dominant ones. Then as an indirect discretization based 

method, an energy function measuring the quality of label 

assignments of regions and pixels to layers is minimized 

via graph-cuts. Although very promising results have been 

obtained, the assumption on the existence of dominant rigid 

motion layers limits its applications. Different from [14, 

15], [16] uses the segmented color regions as soft 

constraints in the affine motion model in the classic 

variational optical flow framework as regularization 

instead of as matching primitives. To avoid 

over-regularization on non-rigid motions, a confidence 

map encoding the fitness of the affine region motion model 

is used.  

 Despite their differences, all of the above efforts of 

incorporating segmentation information for optical flow 

estimation have commonly observed significant 

performance improvements in handling texture-less regions 

and in preserving sharp motion discontinuities.  

Our work is closely related to [18], in which stereo 

matching is done by optimizing an energy function defined 

on a minimum spinning tree of over-segmented image 

regions using dynamic programming. The advantage of 

using such a region-tree based representation over using the 

region graph as in [14, 17] is that under the assumption that 

depth discontinuities coincide with intensity 

discontinuities, the number of edges that cross depth 

discontinuities, i.e., violate the smoothness constraint, can 

be minimized. This can result in “smarter” smoothness 

enforcement [22,23] in subsequent optimization. 

Furthermore, the cycle-less region tree structure also 

enables us to use simpler or more efficient optimization 

methods such as dynamic programming. In this paper, by 

taking advantage of commonalities between optical flow 

estimation and stereo matching, we extend [18] and 

propose a new coarse-to-fine region-tree framework for 

optical flow estimation.  

3. Propose algorithm 

3.1. Problem formulation and notations 

Our paper is direct discretization based and formulates 

the optical flow estimation as a discrete energy 

minimization problem. In particular,  two  consecutive 

input images ��  and ����  are represented by a spatial 

structure � of a set of matching primitives  � spanning the 

whole image. Then the optical flow field �	
 ��  from 

image ��  to ���� is recovered through finding an optimal 
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labeling ��� which assigns each primitive � � ��� a label 

� � �� , where �	
 ��  denote the horizontal and vertical 

components of the displacement vector field, respectively. 

Such an ��� is found by minimizing an energy function ������ with  the general form of  ������� � ���������� � � � ������������      (1) 

where  ����� represents the data term and �������  the 

smoothness term. 

Similar to many previous works, the data term �������� 
measures the brightness matching error between two 

images correlated by a warping induced from the optical 

flow �	
 �� corresponding to . And the smoothness term ��������� enforces the piecewise smoothness regularity 

of the optical flow by penalizing spatial variance in the flow 

field �	
 �� . The positive constant �  gives the relative 

weight of the smoothness penalty.   

Each primitive � � ��� maintains its own displacement 

look-up-table (LUT)  ! which defines a bijection mapping 

of each label � � �� to the corresponding 2D displacement 

vector��"�
 #��. By looking-up  !, the energy terms of the 

candidate label can be evaluated during optimization and 

the optical flow field �	
 �� is induced from the resultant 

labeling  . 

3.2. Overview 

Our proposed method is a region-based one and uses a 

new coarse-to-fine (C2F) paradigm. That is, as illustrated in 

Figure 1, multiple-level coarse-to-fine over-segmentations �$%&'( � )
* 
+, are done to the input images. For each 

segmentation level l, the over-segmented regions -& form 

the corresponding primitive set �&  on which a spanning 

region-tree .& is built as �&.  
Then starting from the coarsest segmentation level to the 

finest one, the corresponding labeling problem is solved 

through minimizing the energy function (1) defined on the 

region-tree .&   using dynamic programming (DP).  The 

results of the coarser level region-tree are used by the finer 

level to refine the search range of motion displacements. 

Finally the resulting optical flow of the finest level is 

further smoothed using local continuous optimization. Also 

cross-checking based inconsistency detection can be 

optionally done to correct errors due to occlusions by 

similarly recovered optical flow �	/
 �/� from ���� to �� .  
 For better clarity, our proposed algorithm is summarized 

as follows.   

 

 
Step 1: Build image pyramids and use downsized images to probe 

the initial displacement search ranges (Section 4.3) 

Step 2: At each image pyramid level, over-segment image �� 
using +  different granularity constraints and build the 

corresponding + region-trees  (Section 4.1) 

Step 3: Iterate from segmentation level l = 0 to + 

Step 4: In each iteration:  

(a) Setup the label-to-displacement LUT  01for each region 2& 
in the current region-tree .& (Section 4.2 and 4.3) 

(b) Evaluate “label space images” for all the hypothesized 

labels � � �. GPU is used for better efficiency in fast image 

interpolation (Section 4.4) 

(c) Run DP to optimize the corresponding energy function (7) 

and induce the optical flow field �	
��& �from the resultant 

optimal labelling �.(�  (Section 4.4) 

Step 5: Goto Step 3 if  ( 3 +, otherwise obtain the optical flow �	
���from �� to����at the current pyramid level 
 

Step 5: (Optional) Recover the optical flow �	/
�/��from ���� to ��  and perform cross-checking based correction (Section 

4.5-a ) 

Step 6: Perform continuous optimization for smoothing ( Section 

4.5-b ) 

Step 7: Goto Step 2 if there is a finer scale image pyramid level 

 

List 1:  Workflow of our proposed algorithm 

 

Please note that throughout this paper, we use the same 

scheme as that specified in the Middlebury Optical Flow 

site to color the optical flow as shown in Figure 1. 

Figure 1: Two-Level coarse-2-fine over-segmentations of the dateset “Schefflera” and its optical flow recovery procedure. 

(a) Coarse level  

(b) Fine level 

For example, regions B, C and D in 

a fine level are merged into their 

“container region” A in a coarse 

level 

A 

B 
C 

D 

Region merging 

Over-Segmentations Optical flows 

C2F optical 

flow estimation 

& refinement 

Optical flow 

coloring 

scheme
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4. Implementation details 

4.1. Coarse-to-fine region trees 

So far, two image representations are most often used in 

motion estimation -- the traditional pixel grid and the 

motion layer representations. The former one is simple but 

suffers from higher ambiguous matching possibility, while 

the main challenge of using the latter one is in difficulties of 

correct layer segmentation and layer motion 

parameterization without prior knowledge.  

As a trade-off between enabling matching primitives to 

contain enough information with a large support area and 

reducing the risk of violating the parameterization 

assumption with a small support area, representations using 

over-segmented regions have shown great potentials in [14, 

17, 18]. Such representations can reduce the computational 

complexity compared to pixel-based representations due to 

much fewer numbers of regions. Also given the smaller size 

of the regions, the chance that color segmentation errors 

propagate into the matching process is reduced compared to 

layer based representation.  

These advantages motivate our new C2F region-tree 

based image representation. In particular, similar to [18], 

we apply mean-shift filtering [24] to the source image first 

and then a fusion process is iteratively performed to fuse 

most similar adjacent regions (pixels in the first iteration) 

into larger regions. By controlling the lower bound of the 

minimal region size, different granularity of image 

over-segmentations can be obtained. Such merging based 

process makes it possible to obtain efficiently multiple 

level over-segmentations in one single pass and guarantees 

that each larger region in the coarser level consists of 

exactly the same smaller regions that are in the larger 

region in its corresponding finer level segmentation. That 

is, each region 2 � -& in a coarser level l is composed of a 

group of adjacent regions � -4 of finer segmentation level 5 6 (, for each of which region 2 is its “container” region.  

Then for each segmentation level, a region adjacency 

graph is first constructed with the edge weights indicating 

the dissimilarity between two adjacent regions. From it, a 

minimal spanning tree is extracted so that the sum of the 

remaining edge weights is minimized.  Please refer to [18] 

for more details on building a region-tree for each 

segmentation level.  

In this way, in the coarse level, larger regions make 

finding roughly correct matches easier and more robust so 

that the region-dependent search range of interest can be 

located quickly, while in the finer level, small-size regions 

are better at recovering subtle details via local range 

refinements. Just using large-size regions will make it 

difficult to capture small motion in an optical flow field, for 

which small-size regions or pixels are preferred. However, 

if the region size is too small, the disadvantages similar to 

using single pixels may prevail. Therefore this 

coarse-to-fine region-tree representation provides a 

tradeoff to get the best of pixel and layer based 

representations. 

4.2. Displacement discretization 

Using discrete optimization to recover essentially 

continuous optical flow requires discretization. As a direct 

discretization based method, the continuous 2D 

displacement solution space has to be quantized and 

mapped to a discrete set of labels. However, brute-force 

discretization usually suffers from the so-called 

“discretization bottleneck” problem, which means that the 

number of labels required for sampling the search ranges 

with fine enough precision could be too large for efficient 

optimization. 

This problem is addressed using the above proposed 

coarse-to-fine region-tree representation. Specifically, at 

each level l, the displacement LUT  01 for each region�2& �-&   is built by uniformly sampling the corresponding 

displacement search ranges �7"�8901 
 "��:01 ;  and 

�7#�8901 
 #��:01 ;�in both the horizontal and vertical directions 

with a sampling interval <& . At the coarsest level, the 

displacement search ranges of �all regions are initialized 

globally with  

�"��:01 � #��:01 � ="�8901 � =#�8901 � > � ?@A�B
 C�  (2) 

wherein w and h are the width and height of the input 

images, respectively, and > is a positive constant. That is, 

we assume that the horizontal and vertical displacements 

each have upper bounds related to the image dimension. 

Then with the result of the last coarser l level known, the 

search range of a region�24 � -4 at the finer level 5 6 ( is 

setup based on its  container region �2& � -&�at level l. That 

is, suppose that the recovered displacement vector for 

region 2&�is ��"01 
 #01�, the displacement search ranges for 

region �24 � -4 will be defined in a neighborhood around ��D"01 
 #01E�  as 7"01 = F4 
 "01 � F4;� and 7#01 = F4 
 #01 �F4; , each of which is sampled with <4  to setup the 

corresponding displacement LUT  0G for region�24 � -4.  

By decreasing F4  and <4  level by level, an incremental 

displacement refinement can be achieved.  

By using region-dependent displacement search ranges 

and incrementally refining each region’s displacement 

search ranges level by level, just using a small number of 

labels can achieve similar quality of sampling to continuous 

methods, resulting in better efficiency. 

4.3. Initial search range probation 

As mentioned in section 4.2, we use an image dimension 

related upper bound (2) to initialize the displacement search 

range at the coarsest segmentation level. Since the optical 

flow directions and magnitude in an image can be arbitrary, 

we have to use a reasonably large >� value to safely capture 
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the full range. However, due to the limitation of memory 

and efficiency considerations, an affordable number of 

labels have to be limited. Therefore for large size images, 

the sampling interval may not be small enough for accurate 

matching in the coarsest segmentation level. Then the 

corresponding errors will be propagated to the next level 

and cannot be recovered.  

 To address this issue, we further take advantage of the 

image pyramid based multiple scale strategy often used in 

many continuous optical flow methods. In particular, for 

large images, we first apply our proposed method w.r.t. 

their half-size version and recover the displacement ranges 

�7"/�89
 "/��:;�  and �7#/�89
 #/��:; . Since for smaller 

search ranges, using the same number of labels enables 

using a small sampling interval, the result usually contains 

less errors. Then we apply our proposed method again w.r.t. 

the original images using �7H"/�89
 H"/��:;� and 

�7H#/�89
 H#/��:;  as initial search ranges. If necessary, 

more  pyramid levels can be used. In this paper, we find that 

a 2- level pyramid is sufficient for our work. 

4.4. Energy formulation and optimization  

As explained above, our algorithm estimates the optical 

flow by repeatedly performing discrete energy 

minimization on multiple-level region trees in a 

coarse-to-fine way. 

Suppose at segmentation level l, the region-tree .&  in 

question is defined on region node set -& with edge set �I&. 
Each edge �J�8
K� � I&  corresponds to a link between two 

adjacent regions 28 � -&  and 2K � -& . Each region 28 �has 

L0M �pixels �N
 O� � 28 and is assigned with a label �28� ��� after optimization, which corresponds to a 2D 

displacement vector�D"�0M�
 #�0M�E. 
Then the data term and smoothness term in (1) are 

formulated w.r.t. the region-tree labelling �.&�  in a 

discrete form of  

 �����D�.&�E = P Q�0M�-1 D�28�E           (3) 

and  

 �������D�.&�E = P R�S�M
T��I1 U�28�
 D2KEV             (4) 

where Q is the matching penalty function evaluating how 

well the corresponding region �28 � -& is matched between 

two images ��  and ����   according to the displacement 

vector �D"�0M�
 #�0M�E corresponding to label �28� and R�is 

the smoothness penalty function evaluating the penalty of 

assigning two linked regions 28  and 2K �with displacement 

vectors �D"�0M�
 #�0M�E and �U"D0TE
 #D0TEV, respectively. 

There are many possible definitions for Q and R. In this 

paper, we define Q based on the well-known zero-mean 

normalized cross-correlation measure �W [25]. In particular, 

we define 

Q��28� �
P X�YZ[\����:
]�
��^_U:�`DaME
]�bDaMEVc��d
e��aM

LaM   (5) 

and  

R U�28�
D2KEV � f"�0M� = "D0TEf � f#�0M� = #D0TEf       (6)  

That is, the energy function to optimize w.r.t. the region 

tree .& at segmentation level l is  

�D�.&�E 
��� �P Q�0M�-1 ��28�� + � � P R U�28�
D2KEV�S�M
T��I1        (7) 

The tree structure enables the use of efficient DP to 

optimize (7). In a recursive way, the region tree is 

bottom-up (leaves-to-root) traversed for label assignment 

hypothesis evaluation first and then top-down 

(root-to-leaves) traversed for decision making. For more 

details, the reader is referred to [18].  

Please note that when evaluating a hypothesized label, 

special attention must be paid in generating the 

corresponding “label space image” (as a generalization of 

the so-called “disparity space image” [21] used in stereo 

matching) since we are using region-dependent label to 

displacement mapping and the same label might 

correspond to different displacement vectors for different 

regions. Furthermore, for sub-pixel displacements, bilinear 

image interpolation is performed.  

4.5. Post-processing  

(a) Occlusion detection via cross-checking 

   The symmetric cross-checking technique is used for 

correcting optical flow errors due to occlusions.  In 

particular, two optical flows are estimated for images �� 
and ���� . Then occlusion reasoning is done by 

symmetrically cross-checking for consistency violations at 

the pixel level between these two optical flow fields.  

Specifically for each pixel �N
 O� � ��  with recovered 

optical flow vector �"
 #� , if its correspondence �N �"
 O � #� � �����has optical flow vector of �"/
 #/� and  the 

consistency measure '" � "/' �� '# � #/'�is greater than a 

preset threshold g, then pixel �N
 O� will be flagged as an 

inconsistent pixel. Then for each region in the finest 

segmentation level, if over half of its pixels are flagged as 

inconsistent, the region will be flagged as occluded.  

After all the occluded regions are flagged, a new DP 

optimization pass is done without the data and smoothness 

penalties applied to links involving an occluded region so 

that a larger motion change is made possible.  During the 

bottom-top DP evaluation traversal, an occluded region 

node will behave as a “pass-through” node, while during 

the top-bottom DP decision making traversal, an occluded 

region node will be assigned with its parent node label.  

This is similar to using neighbor information as done in 

traditional hole-filling approaches. But the difference is 

that the chosen neighbor is not found in the spatial domain, 

but in the region-tree domain in which the parent-child link 
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is assumed to connect regions with similar attributes based 

on the region-tree construction procedure. Of course, we 

have to point out that since our region-tree spans over the 

whole image, at some points some edges must cross 

discontinuities, violating such an assumption.  Despite its 

simplicity, this simple approach has shown to give very 

good performance in all of our experiments. 

(b) Continuous optimization based smoothing 

   Our method can recover very smooth optical flow results 

by using small region size constraint at the finest 

segmentation level. However, compared to methods using 

pixel based representations, there are still noticeable 

“graininess” in some areas since we assume all of the pixels 

in each region have the same displacement. For better 

quality, a final local continuous optimization as done in 

[10] is performed at the pixel level. Since the results from 

discrete optimization are usually very close to the true 

displacements, such local optimization mainly acts as a 

refinement and smoothing step.   

5. Experimental results and evaluation 

We use the 2-frame color version of the Middlebury 

optical flow benchmarking datasets [1] to quantitatively 

evaluate our proposed method. In particular, 12 image 

sequences from hidden fluorescent texture, realistic 

synthetic, stereo and real video categories are tested. In all 

of the experiments, we used the same set of parameters, 

which were not explicitly optimized for performance 

tuning. In particular, we use + � H  level image 

over-segmentations as it is observed to be enough to 

provide good performance. The constant > � )Y)h is used 

to initialize the global search range and F � )Yi is used for 

the local search range refinement. In discrete optimization, HiAHi and 11Ajj labels are used for the coarse level and 

fine level, respectively. The sampling interval <�  is 

correspondingly determined based on the ranges being 

sampled at each level. As for over-segmentation, the 

granularity in the coarse level is determined by limiting the 

region number to be around 3000, while for the fine level, 

the minimum region size is fixed at 5 pixels.  The threshold g is set as 1.0 and the normalized cross-correlation window 

size is 5x5 for the fine level and 3x3 for the coarse level. As 

for the smoothness penalty relative weight � , it is 

adaptively calculated in the same way as in [18] based on 

the region-based Kullback-Leiber divergence klmmmm. That is, � � >klmmmm  with > � )Yni . All these parameters are 

empirically set and could be further optimized. 

  In Table 1, we show the average angular error (AAE) and 

average end-point error (AEPE) of the top four algorithms 

at the time of submission. Our results of 8 datasets for 

quantitative evaluation are shown in Figures 2-5. It can be 

seen that the overall ranking of our method is pretty high 

(both 4th  for AAE and AEPE). In particular, the lowest 

AAE is obtained for the “Teddy” datasets and the lowest 

AEPE is obtained for the “Shcefflera” and “Teddy” and 

“Grove” datasets. One possible reason for relatively 

inferior AAE performance on other datasets may be due to 

our current method of discretization. That is, uniformly 

sampling in the horizontal and vertical displacement search 

range results in non-uniformity in angular sampling. 

Moreover, the average performance of our method on the 

Yosemite sequence also negatively impacts the overall 

ranking. This could be due to its small image dimension 

which makes the finest granularity regions still not fine 

enough to capture subtle motion details. We have found 

that using different parameters specific to this dataset could 

improve its performance to some extent. On the other hand, 

our method obtained superior evaluations around motion 

discontinuities in most datasets, showing our region-based 

representation has advantage in preserving motion 

boundaries.  Furthermore, using continuous optimization 

gives slightly better statistics than the one without using it 

and boosts the overall ranking by approximately one 

position. As shown in Figure 4, we compare the 

performance difference between using multiple level 

coarse-to-fine region trees and the traditional single-level 

one as in [18]. Specifically, optical flow result is also 

obtained as shown in the second column by using only the 

finer level regions. However, coarse-to-fine displacement 

refinement is still performed. As we can see, more errors 

are incurred along motion boundaries compared to the 

result using two-level region-trees as shown in the third 

column. For reference, the result from the state-of-art 

Figure 2: Cross-checking based inconsistency detection helps

correct errors due occlusions for the “Wooden” dataset, resulting

in sharp motion discontinuities.  

(a) Without cross-checking (b) With cross-checking 

Figure 3: Initialized with optical flow result from discrete

optimization, local continuous optimization at the pixel level can

smooth out the “graininess” due to the use of translational region

motion model. For the “Army” dataset from [1], the final result

becomes smoother while the average displacement magnitude

change is around 0.05 pixels, which means that results obtained

by only using discrete optimization could be quite accurate. 

(a) Without continuous optimization (b) With continuous optimization
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continuous optimization based method [3] is also included.  

By comparison, we can see using over-segmented regions 

instead of pixels does have unique advantage in handling 

sharp motion discontinuities. 

 As for the computation efficiency, take the Urban dataset 

[1] (image size 640x480 and max displacement is more 

than 40 pixels) as an example, our un-optimized 

implementation takes a total running time of about 261 

seconds on a PC with a dual-core AMD 2.2GHz CPU. 

6. Conclusion and discussion 

 In this paper, we have presented a new C2F region-tree 

based method for accurate optical flow estimation using 

dynamic programming optimization.  By using C2F 

region-tree based image representation and incremental 

displacement search range refinement, good trade-off 

between enabling matching primitive to contain enough 

information through larger support area and reducing the 

risk of violating the region motion parameterization 

assumption is achieved. The proposed method can produce 

sharp motion discontinuities through coarser segmentation 

while it is also capable of recovering subtle details through 

finer segmentation.  The promising results on the 

Middlebury benchmarking datasets show the effectiveness 

of our method.       

As for future work, we plan to investigate the use of 

polar coordinates based parameterization in displacement 

discretization. 
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Figure 5: Example results (2nd and 4th columns) on the Middlebury datasets along with ground truths (1st and 3rd columns)
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