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ABSTRACT
Gradient-based optical flow estimation methods such as Lucas-
Kanade method work well for scenes with small displacements
but fail when objects move with large displacements. Hierarchical
matching-based methods do not suffer from large displacements
but are less accurate. By utilizing the high speed imaging capa-
bility of CMOS image sensors, the frame rate can be increased to
obtain more accurate optical flow with wide range of scene ve-
locities in real time. Further, by integrating the memory and pro-
cessing with the sensor on the same chip, optical flow estimation
using high frame rate sequences can be performed without unduly
increasing the off-chip data rate. The paper describes a method for
obtaining high accuracy optical flow at a standard frame rate using
high frame rate sequences. The Lucas-Kanade method is used to
obtain optical flow estimates at high frame rate, which are then ac-
cumulated and refined to obtain optical flow estimates at a standard
frame rate. The method is tested on video sequences synthetically
generated by perspective warping. Results demonstrate significant
improvements in optical flow estimation accuracy with moderate
memory and computational power requirements.

1. INTRODUCTION

A key problem in the processing of video sequences is the mea-
surement of optical flow. Once estimated, optical flow can be used
in performing a wide variety of tasks ranging from video compres-
sion to 3D surface structure estimation and active exploration. Op-
tical flow estimation based on standard frame rate video sequences
has been extensively researched [1, 2]. The developed methods
can be classified into several categories including gradient-based,
region-based matching, energy-based, Bayesian, and phase-based
methods. These methods require storing many frames and per-
forming large numbers of operations per pixel to achieve accept-
able estimation accuracy. Moreover, in certain applications more
accurate and dense velocity measurements of optical flow than can
be achieved by these methods are needed.

Recent advances in CMOS image sensor technology enable
high speed digital image capture up to several thousand frames
per second [3, 4]. This high frame rate imaging capability en-
ables more efficient implementations of existing applications such
as motion estimation and of new applications such as multiple cap-
ture for enhancing dynamic range [5, 6, 7]. It would be too costly,
if not infeasible, however, to operate a digital camera system at a
high frame rate due to the high inter-chip data rate requirements
between the sensor, the memory and the processing chips. Inte-
grating the memory and processing with the sensor on the same
chip solves the high data rate problem and provides an econom-
ical way to exploit the high speed capability of a CMOS image

sensor [8]. The basic idea is to (i) operate the sensor at a much
higher frame rate than the standard frame rate, (ii) exploit the high
on-chip bandwidth between the sensor, the memory and the pro-
cessors to process the high frame rate data, and (iii) only output
the images with any application specific data at the standard frame
rate [5, 8].

Handoko et al. applied this idea to motion vector estimation
that is commonly used in video compression standards such as M-
PEG [5]. Their paper proposed an iterative block matching algo-
rithm utilizing high frame rate sequence to generate motion vec-
tors at 30 frames/s. The main focus was to reduce computational
complexity and hence reduce power consumption. The reduction
in computational complexity was achieved by utilizing the small-
er motion vectors that can be obtained from high frame rate se-
quences to effectively shrink the search area.

In this paper, we apply the same idea to optical flow estima-
tion, but with the goal of improving accuracy instead of merely
reducing computational complexity. High accuracy optical flow is
needed for a wide variety of video applications such as structure
from motion, superresolution, motion-based segmentation and im-
age registration. We describe a method for obtaining high accu-
racy optical flow at a standard frame rate using a high frame rate
sequence. Gradient-based optical flow methods such as Lucas-
Kanade’s [1, 9] achieve high accuracy for scenes with small dis-
placements (� � � � pixels/frame) but fail when the displace-
ments are large. Hierarchical matching-based methods [1, 10, 11]
can handle large displacements but are not as accurate. Our method
achieves high accuracy for scenes that have large displacements
with modest storage and computational complexity, especially when
implemented in a single chip digital imaging system [8].

The rest of the paper is organized as follows. In the following
section we present our optical flow estimation method. In Sec-
tion 3 we describe the image sensor model used in the generation
of the synthetic sequences. We use these sequences to test our op-
tical flow estimation method. The simulation results demonstrate
the significant accuracy improvements that can be attained using
our method with high frame rate video sequences.

2. OPTICAL FLOW ESTIMATION

In this section we describe our optical flow estimation method
which uses high frame rate sequences. It is based on the well
known Lucas-Kanade’s gradient-based method, which is among
the most accurate and computationally efficient methods for opti-
cal flow estimation [1, 9]. The Lucas-Kanade method is particu-
larly attractive when applied to high frame rate sequences for the
following reasons.



� The assumption of brightness constancy, which states that
the rate of change in intensity � along the motion trajectory
is zero, i.e.,
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becomes more valid as frame rate increases.

� Motion (temporal) aliasing, which adversely affects optical
flow estimation, also becomes less significant as frame rate
increases [12, 13].

� Temporal derivatives are better estimated [12, 13].

� Smaller kernel sizes for smoothing and computing gradi-
ents can be used, which lowers the memory and computa-
tional requirements.

The block diagram of Lucas-Kanade optical flow estimation
method is shown in Figure 1. Each frame is first smoothed using a
spatio-temporal filter to diminish aliasing and systematic error in
the gradient estimates. The gradients ��� ��, and �� are typically
computed using a 5-tap filter. The velocity vector is then computed
for each pixel by solving the � � � linear equation
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Here 
��� �� is a window function that assigns higher weight to
the center of neighborhood and the sums are typically over � � �
pixels.
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Fig. 1. The block diagram of Lucas-Kanade method.
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Fig. 2. The block diagram of the proposed method.

The block diagram of our proposed method is shown in Fig-
ure 2. We first obtain high accuracy optical flow estimates between
two consecutive high speed frames (intermediate frames) using the
Lucas-Kanade method. We then use the estimates to construct the
final estimate of the optical flow between two consecutive standard
frame rate images (output frames). We tried three different meth-
ods for constructing the standard frame rate optical flow estimates.

The first was to accumulate along motion trajectories. Although
this method performed better than optical flow estimation using a
standard frame rate sequence, it suffered from error accumulation.
The second method we tried was to make a simple prediction of
optical flow by scaling the optical flow obtained in the latest iter-
ation, then warp accordingly and refine. The performance of this
method, however, was too sensitive to the initial estimates. The
third method, which we shall describe in this paper, combines ele-
ments from the first two methods and achieves the highest accura-
cy.

The detailed description of our algorithm is as follows. We
assume a high frame rate sequence, whose rate is �� times the
standard frame rate (�� is the oversampling ratio), and define
��� to be the estimated optical flow (displacement) from frame �
to frame �.

frame � frame � frame �� �
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Fig. 3. Our algorithm.

For � � �� � � � � �� � �:

1. Find �����, the displacement from frame � to frame �� �,
using the Lucas-Kanade method.

2. Add the displacement ����� to ��� along the motion tra-
jectory to obtain 	�����.

3. Using the Lucas-Kanade method, find 
�����, the dis-
placement between frame � � � and the frame obtained by
warping frame � according to 	�����.

4. Set ����� � 	����� �
�����.

���� is the final estimate of the optical flow at standard frame
rate. Note that iterative method was chosen to keep the storage
requirements minimal and constant independent of the frame rate.
The warp and refine step prevents error accumulation. In the actual
implementation, the gradients were warped instead of the frame
itself to reduce computational complexity.

Note here that the maximum value of optical flow estimates
can be used to change the frame rate adaptively. If the maximum
displacement is high, we can sample the scene at a higher frame
rate to obtain smaller displacements between intermediate frames.
On the other hand, if the maximum displacement is low, we can
sample at a lower frame rate to save power and computations. This
feedback loop can be used to ensure good quality of optical flow
estimation at low power and computational complexity.



3. SIMULATION AND RESULTS

In this section we describe the simulations we performed to test our
optical flow estimation method. Instead of using natural video se-
quences, we synthetically generated video sequences using image
warping. Using synthetically generated sequences, the amount of
displacement between consecutive frames can be controlled, and
the true optical flow can be easily calculated from the warping pa-
rameters.

In the following subsection we describe the process of gen-
erating the synthetic sequences. It is not customary to consider
the motion blur and noise present in natural video sequences in
the generation of synthetic video sequences. Since these effects,
however, can vary significantly with frame rate, and thus affect the
performance of optical flow estimation, we use the realistic image
sensor model, described in the next subsection, to generate these
sequences. In Subsection 3.2, we present the simulation results,
and in Subsection 3.3, we discuss the memory and computation-
al requirements of our method. We demonstrate the feasibility of
performing our method in a single chip digital imaging system.

3.1. Synthetic Sequence Generation

The image sensor used in a digital camera comprises a 2-D array
of pixels. During capture, each pixel converts incident photon flux
into photocurrent. Since the photocurrent density ���� �� �� A/cm�

is too small to measure directly, it is spatially and temporally in-
tegrated onto a capacitor in each pixel and the charge ������ is
read out at the end of exposure time � . Ignoring dark current, the
output charge from a pixel can be expressed as
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(1)

where �� and �� are the pixel dimensions, � and � are the pho-
todiode dimensions, ����� is the pixel index, and ������ is
the noise charge. The noise is the sum of two independent com-
ponents, shot noise and readout noise. The spatial and temporal
integration results in low pass filtering that can cause motion blur.
Note that the pixel intensity ������ commonly used in image pro-
cessing literature is directly proportional to the charge ������.

The sensor model described above is used to generate realistic
video sequences. The steps of generating a synthetic sequence are
as follows.

1. Warp a high resolution (���������) image using perspec-
tive warping to create a high resolution sequence.

2. Spatially and temporally integrate (according to Equation
(1)) and subsample the high resolution sequence to obtain
a low resolution sequence. In our example, we subsampled
by factors of � � � spatially and 10 temporally.

3. Add readout noise and shot noise according to the model.

4. Quantize the sequence.

High frame rate sequences have less motion blur but suffer
from lower SNR, which adversely affect the accuracy of optical
flow estimation. Sequences with different warping parameters and
frame rates were generated. One frame of a test sequence with the
true optical flow is shown in Figure 4.

(a) (b)

Fig. 4. (a) One frame of a test sequence and (b) true optical flow.

3.2. Simulation Results

Three different scenes derived from a natural image (see Figure 4)
were used to generate the synthetic sequences. For each scene, t-
wo sequences, (A) simulating a standard frame rate (30 frames/s)
sequence and (B) simulating a ��� frames/s (i.e., �� � �) se-
quence were generated as described in the previous subsection.
The maximum displacements were between � and � pixels/frame
at 30 frames/s. We performed optical flow estimation on the (A)
sequences using the standard Lucas-Kanade method as implement-
ed by Barron et al. [1] and on the (B) sequences using our method.
Both methods generate optical flow estimates at a standard frame
rate for each scene. Note that the standard Lucas-Kanade method
was implemented using 5-tap temporal filters for smoothing and
estimating temporal gradients versus 2-tap temporal filters for im-
plementing our method. The resulting average angular errors be-
tween the true and the estimated optical flows are given in Table 1.
As for the measure of accuracy, angular error was reported instead
of magnitude error because the average of the magnitude error was
found to be dominated by errors at areas with large displacements.
The densities of all estimated optical flows are close to 50%.

Lucas-Kanade method(A) Our method(B)
Scene

Angular error Density Angular error Density
� ����Æ ���� ����Æ ����
� ����Æ ���� ����Æ ����
� ����Æ ���� ����Æ ����

Table 1. Average angular error and density using Lucas-Kanade
method with (A) sequences vs. our method with (B) sequences.

The results demonstrate the higher accuracy that can be achiev-
ed using our method in conjunction with the high frame rate se-
quence. The difference in accuracy would be even greater for
scenes that do not satisfy the brightness constancy assumption (e.g.,
a scene where an object passes through a shade created by anoth-
er object). Note that the displacements were kept relatively small
to make comparison between the two methods more fair. As dis-
placements increase, the accuracy of the standard Lucas-Kanade
method deteriorates rapidly and hierarchical methods should be
used in the comparison instead.

To investigate the accuracy gain of our algorithm for large dis-
placements (at 30 frames/s), we applied the Lucas-Kanade method,
our method with �� � ��, and the hierarchical matching-based
method by Anandan [11] as implemented by Barron [1] to a syn-
thetic sequence. The maximum displacement was �� pixels/frame
at �� frames/s. The average angular errors of the estimated optical
flows are given in Table 2.



Angular error Density
Lucas-Kanade method ����Æ �����

Anandan’s method ����Æ ���
Our method (�� � ��) ����Æ �����

Table 2. Average angular error and density using Lucas-Kanade,
Anandan’s and our method.

We also investigated the effect of varying �� on accuracy.
Figure 5 plots the average angular error of the optical flow using
our method for �� between � and ��. The synthetic sequence
used had a uniform displacement of 5 pixels/frame at �� � �.
As �� was increased, motion aliasing and the error due to tempo-
ral gradient estimation decreased, which lead to higher accuracy.
The accuracy gain resulting from increasing �� , however, levels
off as �� is further increased. This was caused by the decrease in
sensor SNR due to the decrease in exposure time and the leveling
off of the reduction in motion aliasing. For this example sequence,
the minimum error is achieved at �� � �, where displacements
between consecutive high speed frames are approximately � pix-
el/frame.
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Fig. 5. Average angular error vs. oversampling factor(�� ).

3.3. Hardware Complexity

The memory and computational complexity of our optical flow es-
timation method are moderate. Since the algorithm is iterative, its
memory requirement is constant, independent of frame rate. Al-
so, since it uses 2-tap temporal filter for smoothing and estimating
temporal gradients, its memory requirement is less than that of the
Lucas-Kanade method which typically uses a 5-tap temporal filter.
Assuming an � � � image, our method requires approximately
������� operations per frame and ���� bytes of frame mem-
ory. By comparison the standard Lucas-Kanade method as imple-
mented by Barron et al. requires ����� operations per frame and
���� bytes of frame memory. As described in [8], our method
has the potential of being implemented in a single chip CMOS dig-
ital imaging system comprising image sensor, memory, and pro-
cessing elements.
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