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Optical forces and torques on realistic plasmonic
nanostructures: a surface integral approach
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We develop a novel formalism to calculate the optical forces and torques on complex and realistic nanostructures by
combining the surface integral equation (SIE) technique with Maxwell’s stress tensor. The optical force is calculated
directly on the scatterer surface from the currents obtained from the SIE, which does not require an additional sur-
face to evaluate Maxwell’s stress tensor; this is especially useful for intricate geometries such as plasmonic antennas.
SIE enables direct evaluation of forces from the surface currents very efficiently and accurately for complex systems.
As a proof of concept, we establish the accuracy of the model by comparing the results with the calculations from the
Mie theory. The flexibility of the method is demonstrated by simulating a realistic plasmonic system with intricate

geometry. © 2014 Optical Society of America
OCIS codes:

Plasmonics.
http://dx.doi.org/10.1364/0L.39.004699

Optical forces find numerous applications in various
areas of physical and life sciences [1-3]. Recently, the
utilization of complex optical landscapes, such as those
produced by nanostructures—in particular plasmonic
nanostructures—has opened new possibilities for trap-
ping and manipulating structures at the nanoscale using
near-field optical forces [4-10].

In the light of present and forthcoming opportunities to
exploit optical forces, there is a need for versatile
numerical techniques with the ability to simulate optical
forces and torques on complicated systems with intricate
geometries. Different approaches can be used to com-
pute optical forces, including interacting dipoles [11-14],
an analytical two spheres model [15], a generalized Mie
approach, [16], and numerical approaches using finite
difference time domain [17].

To analyze optical forces on realistically shaped
structures, we need to use numerical techniques since
no analytical methods are available for such general
calculations [18]. The Maxwell’s stress tensor is used
to calculate the forces on materials with a boundary S.
The conservation of momentum for the present case is
written as [19]:

ey

O(Pech + Prieta);
S mech - AR = el — 9§ ;m’jﬂjds,

where P, and Pgeq are the mechanical and electro-
magnetic momenta, respectively. The vector i is the
outward normal to the closed surface S, and o is the

Maxwell’s stress tensor with components given by:
1
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where ¢ and u are the relative permittivity and relative
permeability of the background, respectively. If the fields
have harmonic dependence (e~), the time average of
the stress tensor over a cycle can be written as
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The time average of Pgeq Over an entire period is a con-
stant. Hence, its derivative vanishes and the left hand
side of Eq. (1) reduces to the total force on the volume
enclosed by S. Thus the time averaged optical force
acting on the material is given by [20]:
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The commonly used method to calculate optical forces
from Eq. (4), illustrated in Fig. 1(a), is to choose a large
number of points on a surface enclosing the particle and
perform numerical integration of the Maxwell’s stress
tensor over these points. This method has a few draw-
backs. First, achieving sufficient numerical accuracy re-
quires the evaluation of fields at a large number of points
on the surface, which is computationally expensive. In
addition, it is not always easy to generate points over
a surface enclosing only the particle when the particle
is placed in lossy media or in the vicinity of some other
nanostructure [21].

To overcome these difficulties, we utilize the surface
integral equation (SIE) formulation for the light scatter-
ing simulations. SIE is related to boundary element
methods [22,23] and uses the Green’s tensor method
to simulate light interaction with matter accurately and
efficiently. The SIE code developed here can simulate
scattering from multiple nanostructures [24] as well as
periodic nanostructure arrays [25]. The outputs of SIE
simulations are electric and magnetic currents over
the triangular surface mesh elements. We evaluate the
Maxwell’s stress tensor and hence the force over the
surface mesh directly from these currents, as illustrated
in Fig. 1(b). There is no intermediate computation of
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electric and magnetic fields, thereby improving both the
accuracy and the speed of calculation. Furthermore, no
imaginary surface needs to be generated around the par-
ticle and the method is able to deal with particles placed
very close to each other as well. Since we have discre-
tized our surface into triangles, the total optical force act-
ing on the object will be

(F;) = ;/;(Uij)ndeT, ®)

where T is the triangles on the surface of the object. SIE
defines the electric and magnetic surface currents as

J=nxH, (6)
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The parallel components of the fields (E; and H;)) can be
expressed directly in terms of surface currents:

We can use Maxwell's equations to derive the
perpendicular components of the fields (E;, and H ) from
the surface currents:

i .
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Combining these results, we obtain the surface fields
entirely in terms of the surface currents:

E=-"(V-DA+axM,
we

12)

(a)

Fig. 1. (a) Traditional approach used to calculate forces on
nanostructures requires integrating Maxwell’s stress tensor
as a function of electric (E) and magnetic (H) fields over a ficti-
tious surface (e.g., a sphere) surrounding the structure; (b) in
this Letter, we show that Maxwell’s stress tensor can be ob-
tained as a function of surface electric (J) and magnetic (M)
currents directly over the surface mesh elements.

H=-"(V-M)i+Jxh. (13)
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Substituting the forms for the surface fields Eq. (12)
and Eq. (13), in Eq. (56), we obtain the surface integral
equation for the optical force as:
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Equation (14) is the main result of this Letter. The SIE
expands the surface currents over each triangle in terms
of RWG basis functions [26], and the surface currents
have the following forms

J=ri(r-11) +72(r-r) +73(r-rs), (15)
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where r; is the vertices of the triangle, and y; and §; are
the coefficients associated with each vertex. After substi-
tuting Eq. (15) and Eq. (16) in Eq. (14), the integrals can
be calculated analytically. The integral of the tensor over
each triangle can be expressed in terms of just the poly-
nomial powers of position over the triangle, and can thus
be computed in O(1) time. Hence, once the currents are
known, the force calculation takes O(N) time only,
where N is the number of triangles the surface is discre-
tized into. In comparison, had we created an imaginary
surface surrounding the structure and evaluated fields
on K points on it, the field evaluation step would have
had a time complexity of O(NK). Note that there is also
a factor associated with the computation of Green’s ten-
sor in the latter case, which can become quite significant
if the background is complex and the Green’s tensor
evaluation is costly.

To demonstrate the validity of the technique, we com-
pare our numerical results with the exact solution given
by the Mie theory. The force on a silver sphere of a 30 nm
radius when illuminated by a linearly polarized plane
wave at 4 = 390 nm is computed. Since we obtain the
force on every mesh describing the surface of the object,
we can also compute the torque. This is done for the
same geometry, but the sphere is now illuminated with
a circularly polarized plane wave at the same wave-
length. The dielectric constant of the sphere is taken
from Johnson and Christy [27]. The variation of the error
with the discretization of the spherical surface is shown
in Fig. 2. It is evident from the results that the error can
be sufficiently minimized with suitable discretization of
the structure.

After having demonstrated the accuracy of the
method, we investigate a compound plasmonic system
consisting of two spheres separated by a distance d
[15,28,29]. For the simulation, we consider two silver
spheres of 30 nm radius separated by a center to center
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Fig. 2. Relative error in force (F) and torque (T) as a function
of the number of triangles the surface is discretized into for a
sphere of 30 nm radius illuminated at 4 = 390 nm.

distance of d =70 nm and 80 nm. The wavelength
dependence of the force for both separations is plotted
in Fig. 3. The force between the particles is attractive for
the entire wavelength range. We clearly see the signature
of plasmonic resonance in the present system. The res-
onance blue shifts as the gap between the spheres is in-
creased. The z component of the force F', shows similar
magnitudes at the plasmon resonances for both separa-
tions since z is the direction of the incident wave. Hence,
the force in the z direction is primarily the radiation force
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and is not affected significantly by the interaction with
the other sphere, Fig. 3(a). However, the x component
of the force is the internal force between the two spheres
arising from the electromagnetic interaction between
them. Therefore increasing the distance between the
spheres reduces the x component of the force F,, as
expected.

We now examine the effect of distance between the
spheres more thoroughly. Figure 4 shows the variation
of the force between the nanoparticles for a given inci-
dent wavelength 4 = 370 nm as the separation is varied
from 100 to 900 nm. The 2z component of the force F,
saturates to a constant value as the distance between
them is increased. As explained earlier, this is the ex-
pected behavior since this is the radiation force. On the
other hand, the x component of the force F',, oscillates in
magnitude. This can be understood as follows. The inci-
dent field induces dipole moments in both spheres which
are very similar in magnitude and phase. The force be-
tween two identical dipoles oscillates between attractive
and repulsive depending on the separation between
them because of retardation effects [30]. Moreover, the
forces on the two spheres are equal and opposite be-
cause of the symmetry of the system, which again con-
firms the numerical validity and accuracy of our
formalism, Fig. 4(b).

Finally, we extend our formalism to calculate the
torque on a realistic structure with a very complex sur-
face geometry shown in the inset of Fig. 5. The structure
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Fig. 3. Wavelength dependence of (a) 2z component, and (b) x component of optical force on one sphere of a two-sphere system
composed of two silver spheres of 30 nm radius separated by a center to center distance of d. The system is illuminated by a
plane wave incident along z and polarized along x, as illustrated in the inset of panel (a), and the force is computed for the sphere

on the left.
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Fig. 4. Distance dependence of (a) z component, and (b) x component of optical force on each sphere of a two-sphere system
composed of two silver spheres of 30 nm radius separated by a center to center distance of d. The illumination geometry is the same
as that in the inset of Fig. 3(a), and the wavelength of the incident light is A = 370 nm. Particle 1 is the sphere on the left.
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Fig. 5. Dependence of the y-component of torque (T,) on the
angle of incidence (0) for the realistic structure shown in the
inset for TM-polarized plane wave illumination at A = 500 nm.

has approximate dimensions of 50 nm x 30 nm x 30 nm,
and is illuminated by a TM-polarized plane wave in the xz
plane, incident at an angle # with the z axis. The y com-
ponent of torque is plotted as a function of the angle of
incidence in Fig. 5 and shows significant changes. When
the incident wave is normal to the principal axes of the
system, the torque is small in magnitude. The magnitude
increases for oblique incidence. Such torque calculation
as done here can be used for understanding the motion of
asymmetric particles in a optical tweezer.

To summarize, we have developed a novel formalism
for the calculation of optical forces and torques on real-
istically shaped scatterers including plasmonic struc-
tures using SIE formulation and Maxwell’s stress
tensor. The method is straightforward, flexible and by-
passes some numerical steps to give highly accurate re-
sults. In particular, the complete calculation including
optical forces and torques on an arbitrarily shaped object
only requires the discretization of the object surface.
(Note however that the associated SIE matrix is full.)
We have applied this formalism to some simple as well
as complicated systems to prove its validity and accuracy
by comparing it to existing calculations.
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