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Light-matter interactions have been explored for more than 40 years to achieve physical modulation of nanostructures or the
manipulation of nanoparticle/biomolecule. Silicon photonics is a mature technology with standard fabrication techniques to
fabricate micro- and nano-sized structures with a wide range of material properties (silicon oxides, silicon nitrides, p- and n-
doping, etc.), high dielectric properties, high integration compatibility, and high biocompatibilities. Owing to these superior
characteristics, silicon photonics is a promising approach to demonstrate optical force-based integrated devices and systems for
practical applications. In this paper, we provide an overview of optical force in silicon nanophotonic and optomechanical
systems and their latest technological development. First, we discuss various types of optical forces in light-matter interactions
from particles or nanostructures. We then present particle manipulation in silicon nanophotonics and highlight its applications
in biological and biomedical fields. Next, we discuss nanostructure mechanical modulation in silicon optomechanical devices,
presenting their applications in photonic network, quantum physics, phonon manipulation, physical sensors, etc. Finally, we
discuss the future perspective of optical force-based integrated silicon photonics.

1. Introduction

Over 40 years of discoveries and developments, optical forces
have been studied intensively and employed either for the
physical modulation of nanostructures or the manipulation
of nanoparticle/biomolecule, even marching into the atom
realm by the assist of the optical cooling technique [1, 2].
Optical forces thus find themselves huge potentials in physi-
cal, biomedical, and chemical sciences.

Conventionally, optical force is widely demonstrated in
far-field approaches using the fundamental optical mode
(normally Gaussian) for micro-sized particle [3–5] and cell
manipulation [6, 7]. However, such approaches are hindered
by diffraction limit of light and complexities in the configura-
tion of the large area of uniform optical fields. As a result, far-
field approaches might not be suitable for the manipulation
of nano-sized particles (such as deoxyribonucleic acids, virus
particles, and exosomes) or modulation of nanostructures.
Plasmonic approaches, on the other hand, take the advantage
of highly localized optical field generated by surface plasmon
resonances to trap nanoparticles rapidly [8, 9]. Unfortu-

nately, the huge heat generated by the localized optical field
and induced vector flow are two unavoidable severe prob-
lems associated with plasmonic approaches. This heating
effect could damage the structure of biological nanoparticles,
limiting the practical applications in biological and biomedi-
cal fields.

Silicon photonics is a mature technology with standard
fabrication techniques to fabricate micro- and nano-sized
structures, which include mechanical components such as
actuators, sensors, and optical components such as lens, mir-
rors, and lasers [10–12]. Its wide range of material properties
(silicon oxides, silicon nitrides, p- and n-doping, etc.), high
dielectric properties, high integration compatibility with
complementary metal-oxide semiconductor platform and
other materials, capability of mass production, and high bio-
compatibilities show that silicon photonics is a promising
approach to demonstrate optical force-based integrated
devices and systems for practical applications.

In this paper, we provide an overview of optical force in
silicon nanophotonic and optomechanical systems and their
latest technological development. We also present their
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applications in biosensing, biomedicine, quantum physics,
etc., and discuss future perspective of optical force-based
integrated silicon photonics.

2. Theoretical Principles of Optical Force

The general approaches to harness optical forces in silicon
nanophotonics are illustrated in Figure 1. The most intuitive
way is using an optical waveguide structure or a ring resona-
tor to confine light as shown in Figure 1(a). In this case, the
silicon micro-/nano-structure stores photons and interacts
with the particles. Light in the waveguide or ring resonator
exchanges momentum with the particle by the evanescence
wave, which attracts particle to the surface of the waveguide.
The particle can be pushed by the radiation pressure or
trapped inside potential wells depending on the configura-
tions of the waveguide. The optical gradient force, which
serves as the trapping force for a Rayleigh particle
(radius < <wavelength) being placed within the evanescence
wave above the nanostructure, can be expressed as [13, 14].
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where m = n1/n2, r is the radius of the particle, n1 and n2 are
the refractive index of the particle and the medium, respec-
tively, c is the speed of light in vacuum, and I is the light
intensity. The optical gradient force can be increased by min-
imizing the size of the optical hotspot, i.e., increasing the gra-
dient of the intensity change [15, 16]. The optical scattering
force and absorption force on a dielectric particle predicted
by the Rayleigh theory can be expressed as [13, 17].
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where λ is the wavelength of light. The combination of the
optical scattering and absorption forces is known as the opti-
cal extinction force, which acts to push or pull the particle.
The efficiency of the transport of the nanoparticles can be
improved by increasing the light intensity.

Optical forces can be enhanced by using resonant cavity
such as the ring resonator and photonic crystal, whereby light
is confined in subwavelength (< ½ λ) structures with strong
photon resonance via the whispering gallery mode [18],
Fabry–Pérot cavities [19], guided mode [20], Bloch mode
[21], etc. The intensity enhancement factors could be few
hundreds higher than the input laser intensity. Therefore,
the intensity gradient ∆T is hugely enhanced, as well as the
associated optical gradient force, which can be used for the
manipulation of nano-sized bioparticles, such as bacteria
[22], virus [23], and DNA [20].

A distinctive type of optical lateral force exists on a chiral
particle that is placed above a substrate (metallic or dielec-
tric), emerging from the coupling between the chiral particle
and the reflected light from the substrate surface [24]. The
chiral particle is pushed sideways (perpendicular to the light
propagation and in-plane with the substrate), and the direc-
tion depends on the chirality. This optical lateral force origi-
nates from the lateral radiation pressure and the optical spin
density force, coupling the chirality of the particle to the lat-
eral linear momentum and spin angular momentum. The lat-
eral force is larger when the particle is nearer to the substrate
due to the asymmetrical coupling between them. The optical
lateral force can also act on any particle (non-chiral, symmet-
ric) near a surface by using an incident circularly polarized
light through spin-orbit coupling (Figure 1(b)) [25]. With
circularly polarized light, an asymmetric and unidirectional
scattering is achieved, creating an equal and opposite
mechanical momentum. Particles can also foresee rotating
in an optical vortex emitters using angular gratings to extract
light confined in whispering gallery modes [26]. The rotation
relies on the transfer of orbital angular momentum from light
to the particles [27].

Besides light-particle interaction, optical forces also act
on suspended nanowaveguides through interactions between
them (Figure 1(c)), causing the suspended nanowaveguides
to be pulled by the substrate [28]. In this case, the optical
force origins from the coupling of light between two silicon
nanostructures. The optical forces acted on the two sus-
pended waveguides can be attractive or repulsive forces
between each other when they are closely coupled [28, 29].
The optical force emerges when one waveguide is placed in
the light field of another, which can be simulated from the
integration of stress tensors [30–32]. The Maxwell stress ten-
sor is expressed as [33].

T ij = ε0EiE j + μ0HiH j −
1

2
ε0E

2 + μ0H
2
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where ε0 and μ0 are the electric and magnetic constants,
respectively; Ei and E j are components of the electric field E

; Hi and H j are the components of magnetic induction H;
and δij is the Kronecker delta.

The Minkowski stress tensor is express as

T ij = EiDj +HiBj −
1

2
ED +HBð Þδij, ð5Þ

where D = εε0E and B = μμ0H. ε and μ are the permittivity
and permeability of the medium, respectively.

The optical force then can be expressed as [34].

Fh i =

þ

s

Th idS, ð6Þ

where the integration is performed over a closed surface near
the object, and hi represents the time average operation. In
the vacuum environment, the results calculated from Max-
well and Minkowski stress tensors are identical. However,
the Minkowski stress tensor is more widely used in liquids
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[34]. Similarly, the optical forces between two nanostructures
can be enhanced by resonant cavities.

In addition to optical gradient force, there also exists
optical force mediated by virtual photons, which is known
as the Casimir force [35–37], which has to be considered
especially in coupled nanostructures [38]. Although Casimir
force is reduced at least by a factor of three in silicon as com-
pared to metallic nanostructures, it is significant when the
gap between two nanostructures is less than 100 nm, in the
order of pN/μm. Table 1 summarized optical forces in silicon
nanophotonics and optomechanical systems.

3. Optical Force in Light-Particle Interactions

3.1. Silicon Nanophotonics for Particle Manipulation. Silicon
nanowaveguide is one of the structural designs widely used
to trap near-infrared light (e.g., 1,550 nm) and generate opti-
cal force through evanescence fields to manipulate nanopar-
ticles [45–48]. In addition to the widely used fundamental
transverse electric TE0 mode light in the nanowaveguide,
high-order TE and transverse magnetic (TM) modes can also

be employed for versatile particle manipulation. Pin et al.
designed a silicon waveguide with a cross-sectional dimen-
sion of 510 nm × 248 nm, maximizing the difference in the
effective refractive index between three guided modes, TE0,
TM0, and TE1 [44]. Three different trapping regimes result-
ing from the copropagation of different guided modes were
achieved by using different light coupling conditions
(Figure 2(a)), showing the stable trapping of large ensemble
of polystyrene microbeads and bacteria. With the increasing
demand on the trapping of nanoparticles down to the sub-
100 nm, Yang et al. designed a slot waveguide with a slot
less than 100nm to condense light to a high intensity level
(104mW/μm2) [49]. The slot waveguide could exert a
piconewton optical gradient force on the 70nm polysty-
rene nanoparticle for effective trapping with a trapping
stiffness of ~0.2 pN/(nm·W). In addition, a slot nanobeam
cavity was proposed to confine light in the deep subwave-
length scale by introducing nanocavities in the slot wave-
guide, which, theoretically, can trap a 2nm nanoparticle
in the cavity with an ultrahigh trapping stiffness of ~0.4
pN/(nm·mW) [50].

Fgrad

(a)

Flateral

Circular light

(b)

Fopto

Fopto

(c)

Figure 1: Optical forces in light-particle and light-nanostructure interactions. (a) Optical gradient force acted on a nanoparticle in vicinity to
the resonant nanowaveguide. (b) Optical lateral force acted on the particle in vicinity to a surface using circular polarized light. (c) Optical
force acted on resonant nanostructures in optomechanical devices, leading to mechanical vibrational resonance.

Table 1: Summary of the optical forces in silicon nanophotonics and optomechanics.

Mechanism Material
Optical

force/stiffness
Trapping quantity

(>50)
Ref

Light particle

Waveguide Polystyrene, 200 nm ~55 pN/W Yes [39]

Slot waveguide
DNA and polystyrene,

100 nm
~25 pN/W No [20]

Ring resonator Polystyrene, 1.1 μm ~0.15 nN/W No [18]

Photonic crystal (defect mode) Polystyrene, 100 nm ~700 pN/W Yes [40]

Photonic crystal (guided mode) Polystyrene, 520 nm ~ 5 nN/W Yes [41]

Silicon substrate (lateral force) Gold, 40 nm
~ 0.4 pN/(mW μm-

2)
— [24]

Light
nanostructure

Nanowaveguide and substrate Silicon, 500 nm (width) ~ 0.5 pN/(μmmW) — [28]

Ring resonator and substrate Silicon, 450 nm (width) ~ 50 nN/(μmmW) — [42]

Parallel ring resonators
Silicon nitride, 2.5μm

(width)
~ 20 nN/(μmmW) — [43]

Dual nanowaveguide (Casimir
force)

Silicon, 500 nm (width) ~ 1 pN/(μmmW) — [38]
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In addition to particle trapping, Lin et al. designed a
channel waveguide and a slot waveguide, forming an optical
splitter to sort nanoparticles from microparticles [51]. The
waveguides are separated by 200nm, generating two poten-
tial wells for nanoparticles, but a broad potential well for
the larger particles. As a result, nanoparticles were trans-
ferred to the slot waveguide with a structural perturbation
consisting of a stuck bead and microparticles that followed
the channel waveguide, which was associated with a deeper
potential well. Multilevel sorting of different sized nanoparti-
cles was also proposed on a multistep waveguide splitter [52]
or an array of nanowaveguide pairs (Figure 2(b)) [39].

Compared to a waveguide trapping configuration, light
oscillates in a high-quality factor ring resonator and results
in enhanced optical field and optical forces [53]. By tuning
the resonance to the whispering gallery mode, particles were
propelled around the ring at hundreds of micrometers per
second, producing periodic revolutions at a few hertz [18].
As the crosssectional area of the microring is normally the
same as the nanowaveguide, light enhancement of the ring
can be regarded as the enhancement of the nanowaveguide
multiplied by the ring enhancement factor. Slot waveguide
can also be used to design ring resonators [54]. The slot ring
resonator serves as an alternative method to trap and detect
small particle quantity in the clusters in ultra-low concentra-
tion (~fM) with several orders of magnitude better sensitivity
than single ring resonators.

An optical ring resonator switch consists of a bus wave-
guide being coupled to a ring resonator that was achieved
by tuning the wavelength of input light [55]. When the input
light is in resonant with the ring resonator, particles will be
transport from the bus waveguide to the ring resonator.
Alternatively, the resonance mode of the ring resonator can
also be tuned thermally through the integration of a micro-
heater. Various functions can be realized, including particle
sorting, storage, and mixing [56]. In addition, Xu et al. pro-
posed a cascaded ring-assisted Mach–Zehnder interferome-
ter for multilevel nanoparticle sorting [57]. By heating the
ring resonator locally, the optical power ratio between paral-
lel waveguides in the Mach-Zehnder interferometer is tuned,
leading to the change of the induced optical potential well

and resulting in different particle transferring thresholds for
different power ratios.

Photonic crystal structures inscribed in a slab waveguide
associates total internal reflection with the photonic band-
gap effect to achieve enhanced photon confinement, while
preserving a great potential for integration in complex pho-
tonic architectures [58]. An enhanced light confinement in
photonic crystals creates large field gradients of the electro-
magnetic field intensity. These strong field gradients coupled
with the resonant amplification of the optical field within the
resonator enable the stable trapping of particles ranging in
size from 50 to 500nm (Figure 2(c)) [40]. Optimizing struc-
tural designs of the photonic crystal waveguide cavity further
enhances the resonance and optical trap. For instance, pho-
tonic crystal waveguide with a waist structure lowers the
threshold power for stable trapping [59]; the slotted photonic
crystal cavity enables the trapping of 10nm nanoparticles
with enhanced trapping force in the order of nN/mW [60];
and a bow-tie-shaped photonic crystal nanobeam cavity can
theoretically trap nanoparticles as small as 3 nm with a max-
imum trapping force of 102 nN/mW [61]. Two-dimensional
photonic crystals were used for patterned optical trapping of
nanoparticles with a laser being loosely focused on the sur-
face of the photonic crystals, generating a patterned optical
diffraction field [62]. Templated, self-assembly of nanoparti-
cles (520 nm particles and 200nm gold particles) was also
demonstrated, whereby the resonantly enhanced near field
in the photonic crystals creates periodically spaced optical
traps [41, 63].

3.2. Light-Particle Interactions for Biomedical Applications.
Integrated silicon nanophotonic devices with microfluidic
technology are useful to trap cells such as red blood cells
and yeast cells [45, 64] and also characterize single cell non-
invasively [65]. Furthermore, trapped cell can be used as a
biomagnifier to magnify and image nanostructures a resolu-
tion of 100nm [66].

To trap smaller single bacterium, a nanowaveguide with
the 1D microcavity resonator and a Q-factor of 4,000 was
designed for biophysical characterization [22]. The trapped
bacterium on the microcavity resonator leads to the shift of
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Figure 2: Silicon nanophotonics for particle manipulation. (a) Three different trapping schemes in nanowaveguide using different coupling
conditions, reprinted with permission from ref. [44]. (b) Massive trapping and sorting of nanoparticles in a coupled optical potential well
array, reprinted with permission from ref. [39]. (c) Particle trapping in a photonic crystal waveguide, reprinted with permission from ref. [40].
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the resonant wavelength, which is correlated to the refractive
index of the bacterium. Therefore, by monitoring the spatial
and temporal variations of the transmission intensity, the
refractive index of a single bacterium can be determined.
Similar work using the 2D hollow photonic crystal cavity
was also demonstrated to trap [67] and differentiate gram-
positive and gram-negative bacteria [68]. The photonic crys-
tal cavity (diameter of lattice holes: 250 nm, lattice constant:
420 nm, diameter of defect hole: 700 nm) has a resonant
wavelength of 1,550 nm and a Q-factor of 4,500 in water.
The results showed that gram-negative bacteria exhibit larger
transmission increase, which is corresponding to larger reso-
nant wavelength shift and higher refractive index. However,
this measurement approach cannot differentiate specific bac-
teria strains due to the overlapped refractive index variation
of the bacteria. Conteduca et al. used the silicon photonic
crystal cavity with metal electrodes to trap single bacterium
for antimicrobial resistance studies [69]. In addition to opti-
cal properties (transmission and resonance shift), the imped-
ance of the surrounding medium is monitored, which is
correlated to the metabolic rate in response to antibiotics.
Parts of the photonic crystals are heavily doped to confine
the electrical current flow within the silicon slab, and the sil-
icon cavity used to trap single bacterium is undoped to allow
current flowing through the medium in the trapping region.
A detectable difference of 1.2 nA of the current variation
was measured between live and dead bacteria.

To manipulate multiple bacteria for high-throughput
studies, an array of nanowaveguide pairs was designed by
engineering the optical lattice pattern and associated optical
force field [71]. The 16 nanowaveguide pairs (350 nm width,
220nm height, 100μm long) are connected via 4-stage low-
loss beam splitters. The gap between two waveguides is
200nm, and the distance between adjacent waveguide pairs
is 1μm. Bacteria passing through the nanowaveguide array
were trapped by optical force and rotated by optical torque,
aligning themselves along the nanowaveguides. In situ viabil-
ity studies based on 20% ethanol solution treatment were
performed via viability fluorescence staining. In addition,
the similar platform was used for shape-selective sieving of
bacteria (Figure 3(a)) [70]. By optimizing the nanowaveguide
physical parameters, laser power, and microfluidic flow
velocity, the nanowaveguide pairs can separate spherical
Staphylococcus aureus (S. aureus, ~600nm diameter) and
rod-shaped Escherichia coli (E. coli, ~ 2μm long, ~500 nm
diameter). When a larger E. coli is temporarily trapped in
an optical hotspot, it is also under influence of the nearby
hotspot. The optical gradient force from nearby hotspot
attracts the E. coli, causing it to rotate with a torque and even-
tually escapes from the unstable optical trap. With a laser
power of 1mW and a flow velocity of ~6μm/s, more than
95% of S. aureus were trapped in the nanowaveguide array,
but only less than 3% of E. coli were trapped. The flow veloc-
ity can be further increased for the shaped-based sieving
using higher laser power, e.g., 2mW.

The optical force-based silicon nanophotonics is also
capable to manipulate smaller bioparticles and biomolecules
such as virus [23] and DNA molecules [20, 72]. Kang et al.
used a nanowaveguide resonant cavity to trap a single

H1N1 influenza virus and measure the stoichiometry of anti-
body binding interactions. A near-field light scattering tech-
nique was employed to analyze the change of Brownian
fluctuations of the trapped virus particle before and after
antibody binding. A stoichiometry result of 26 ± 4 anti-
influenza antibodies binding to an H1N1 influenza virus
was reported (Figure 3(b)), which is consistent with the one
reported using fluorescence immunolabeling observed under
total internal reflection microscopy [73]. To trap even
smaller biomolecules such as DNA, nanowaveguides with
smaller dimensions are needed to better confine light in the
waveguide, creating a higher optical force. A 60nm slot
nanowaveguide was successfully used to trap 48 kilobases
λ-DNAmolecules with a 250mW optical power [20]. Soltani
et al. also demonstrated the stretching of DNA molecules by
attaching the two ends of 10 kbp DNA molecules with
490 nm beads and trapping the beads on two separated nano-
waveguides [72]. By tuning the phase change via the thermo-
optic effect, nanometer resolution control of the bead posi-
tion was achieved. By displacing the distance between the
two beads, the DNA molecules was stretched, which is useful
for the studies of the structure, chemical bonding, and
mechanical properties of DNA molecules.

4. Optical Force in Light-
Nanostructure Interactions

4.1. Silicon Optomechanical Systems. Optical forces are not
only originated from the light-particle interactions and used
for nanoparticle manipulation but also exist for the interac-
tions between two nanostructures in silicon optomechanical
systems. The first experimental demonstration of optical
forces being acted on a suspended nanowaveguide was done
by Li et al. in 2008 [28]. They observed a pN optical attraction
force on the suspending nanowaveguide (8 pNμm-1mW-1

when the gap is 50nm), arising from the evanescent coupling
of the guided light to the dielectric silicon dioxide substrate.
An optical repulsive force was then discovered between two
suspending nanowaveguides by tuning the phase from the
symmetric to asymmetric modes [76, 77]. The optical repul-
sive force is further studied in the case, whereby the optome-
chanical device is immersed in the fluid media [78]. Based on
a slot-waveguide structure, the optical repulsive force
increases with increasing the fluid medium’s refractive index
under the condition of the same slot gap. These studies pro-
vide design guidelines for novel optomechanical systems
integrated with microfluidic functionalities, which are useful
for the lab-on-a-chip application.

Optomechanically coupled cavity resonances, such as
ring resonators, can give rise to strong and highly localized
optomechanical potential wells [79]. Optical attractive or
repulsive forces can be obtained by tuning the pump laser
towards the symmetric or asymmetric resonance mode
[43]. When the laser wavelength excites the WGM, the opti-
cal forces increases extraordinarily since more optical energy
under resonance is stored in the cavity. The ring resonator
enhances the optical gradient force, allowing nanostructure
manipulation at a relatively low light power. When two ring
resonators were aligned vertically with a nano-range gap, a
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static deformation of 20 nm was demonstrated using a con-
tinuous laser power of 3mW [43]. Ren et al. studied the non-
linear deformation of a ring resonator with a suspending arc

and its pull-back instability (Figure 4(a)) [42]. When the ring
arc is deflected by the optical force to an extreme position, a
mechanical force pulls the arc abruptly back to its original
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Figure 3: Light-particle interaction for biological applications. (a) The nanowaveguide array for shape-selective sieving of bacteria. S. aureus
was trapped in the nanowaveguide array, but E. coli flowed through the array, reprinted with permission from ref. [70]. (b) Rapping of single
influenza virus on the photonic crystal nanowaveguide and binding of antibody, reprinted with permission from ref. [23].
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position as the optical force no longer sustain the mechanical
deflection. At the point when the mechanical force becomes
dominant, the arc is pulled back. A maximum deformation
of 43.1 nm (2.8mW) was demonstrated before pull-back
occurred. Mechanical resonators can be excited into self-
oscillation through dispersive coupling by the enhanced
optical force in the ring resonator using blue-detuned light
[77, 80]. This self-oscillation can also be achieved through
periodic modulation or dissipative coupling between two
vertically off-set suspending nanowaveguides, extending the
working range from blue detuning to red detuning range
[81, 82]. Two distinct self-oscillating mechanical resonators
connected by a racetrack optical resonator can directly
manipulate phonon transfer using light modulation to com-
pensate the frequency mismatch between the two mechani-
cal resonators [83].

Optomechanical crystals, which both act as photonic
crystals in manipulating light and phononic crystals in
manipulating mechanical vibrations, greatly enhance the
light-matter interactions [84]. The optomechanical crystals
consist of a silicon nanobeam with rectangular holes formed
by thin crossbars, which strongly couple 200 teraherz
photons and 2 gigahertz phonon. Since silicon is opaque
below 1μm but silicon nitride is transparent over the visible

and near-infrared wavelengths, silicon nitride optomechani-
cal crystals were designed, which support TE optical modes
at 980nm and couple to 4GHz mechanical modes
(Figure 4(b)) [74, 85].

Optical torque in light-matter interactions is induced by
angular momentum of circularly or elliptically polarized
light. Optical torque was used to actuate rotational motion
in silicon optomechanical device through a birefringent
nanowaveguide (Figure 4(c)) [75, 86]. The silicon suspending
nanowaveguide was designed to support TE and TM modes
through geometric anisotropy. The optical torque on the
nanowaveguide can then be controlled by varying the
polarization parameters of the light, i.e., the mode ampli-
tude (ax, ay) and phase difference (φ) of the TE and TM

modes. The optical torque per unit length of the nanowave-
guide can be expressed as

τ zð Þ = η
∆n

c
2axay
� �

cos φ zð Þð Þ, ð7Þ

where η is a coefficient accounts for dipole and electrostric-
tive forces in dielectric materials, and ∆n = nx − ny is the

difference of effective mode index in x - and y-directions.
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Figure 4: Silicon optomechanical devices. (a) Nonlinear deformation of a ring resonator with a suspended arc with pull-back instability,
reprinted with permission from ref. [42]. (b) Optomechanical crystal: geometry, optical resonance, mechanical mode, and SEM image,
reprinted with permission from ref. [74]. (c) Torsional frequency mixing and sensing in optomechanical resonators, reprinted with
permission from ref. [75].
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Its sign and magnitude are determined by the photon
polarization states.

To measure Casimir force between nanostructures, sili-
con beams with nanoscale T-shaped protrusions were
designed and fabricated [87]. The gap between the two beams
was controlled by an integrated comb actuator, and the force
gradient was detected by an integrated force sensor consist-
ing of a vibrating silicon beam. Nonmonotonic Casimir force
with respect to displacement was observed from the T-
shaped protrusions on the beams. Understanding Casimir
force between nanostructures facilitates the design of com-
plex silicon optomechanical devices.

4.2. Physical Applications of Optomechanical Systems. Strong
light-matter interactions in optomechanical systems, which
are enhanced by high-quality resonant cavities, enable the
development of chip-scale pure photonic circuits for optical
signal processing [91, 92] and quantum communication [93].
Li et al. presented a broadband signal amplifier using a micro-
disk to induce an optical gradient force onto a cantilevered
nanowaveguide [94]. A control laser light is coupled into the
microdisk (Q-factor of 5 × 104) to induce resonance and mod-
ulated at the mechanical resonance frequency of the cantilev-
ered nanowaveguide (420 nmwidth × 220 nmheight × 22 μm
length).With the enhancement of both the optical andmechan-
ical resonances, signal amplification is achieved when a signal
light is injected into the cantilevered nanowaveguide and
detected at the output. A gain factor of three was achieved,
and a broadband of light can be applied except the resonant
wavelengths of the optical cavity. Potentially, higher gain factor
can be obtained with higher Q-factor cavity. The coherent
wavelength conversion of photons was demonstrated using an
optomechanical crystal resonator, which supports mechanical
resonance at 4GHz and two optical resonances in the S
(1,460nm) and C (1,545nm) bands [95]. A red-detuned pump
light couples one of the optical resonant modes to the mechan-
ical resonator, and then is converted back into an optical signal
at the resonant wavelength of the other optical resonant mode
over a 11.2 THz frequency span. The optomechanical crystal
nanobeam (600 nmwidth × 220 nmheight × 10 μm length)
has a periodic array of air holes with larger holes on both ends
of the nanobeam, forming a Bragg-like reflection and resulting a
strong confinement of optical andmechanical resonances at the
center of the nanobeam [96]. Optical circulation and photon
shuttling were also demonstrated in optomechanical resonators
[97, 98], providing means to control the transportation of pho-
tons in photonic circuits for signal processing and computa-
tional operations.

Optomechanical cooling [99, 100] refers to the reduced
thermal noise of the mechanical vibration of a system
through the enhanced interaction between the optical field
and the mechanical motion. Cooling the mechanical system
to its quantum ground state is critical for high precision mea-
surements and quantum information processing. Optome-
chanical cooling was experimentally demonstrated in a
silicon doubly clamped nanobeam with a mirror coated on
its surface, using as a back mirror of a single-ended Fabry-
Pérot cavity [101]. By detuning the optical frequency relative
to the cavity resonance, drastic cooling down to an effective

temperature of 10K was observed. A hybrid silicon optome-
chanical system with a suspended graphene membrane
acting as one end of a Fabry-Pérot cavity was also designed
to experimentally demonstrate optomechanical cooling
(Figure 5(a)) [88]. Graphene is a suitable material to be used
because it has high strength and Young’s modulus, as well as
high thermal conductivity and good optical absorption.

Silicon-based microelectromechanical components such as
actuators, interferometers, and tunable lasers, have been widely
presented. However, microelectromechanical components are
difficult to achieve nanoscale resolution and nano-sized dimen-
sions, suffered from high power consumption, long response
time, etc. Therefore, silicon nano-optomechanical components
are innovated to overcome these hindrances, paving ways for
nanoscale photonic devices. Nano-optomechanical actuator
driven by optical gradient force using a nanowaveguide
with the photonic crystal cavity was demonstrated [102].
The actuator consists of a suspended nanowaveguide
(310 nmwidth × 220 nmheight × 50 μm length), being coupled
to a parallel bus waveguide. When light is coupled into the
bus waveguide, an attractive optical gradient force produced
between the two waveguides, causing the actuator to move in
nanoscale displacement. With the integrated 1D photonic
crystal array along the waveguides, the optical force is
enhanced by sixfold. A maximum displacement of 67 nm
was achieved with an optical force of ~1 pN/μm/mW and a
response time of 94.5 ns. Nano-actuator with a mechanical
actuation arc controlled by varying the Q-factor of the
microring resonator was also shown [103]. The Q-factor of
the ring resonator was tuned using a p-i-n electro-optics
modulator. When current across the p-i-n junction is
increased, the Q-factor and optical gradient force are
reduced. A displacement up to 14nm with a resolution of
0.8 nm was demonstrated. Phase shifters often used in pho-
tonic networks such as the Mach Zehnder interferometer to
control the output intensity for signal modulation and
switching. An optomechanical phase shifter can be designed
using a nanowaveguide and a double-clamped suspended
beam placed in parallel [104]. Simulation showed that the
180° phase difference can be obtained, and higher optical
power is required for larger gap between the nanowaveguide
and the suspended beam or shorter length.

Ren et al. presented a tunable laser with an optomechani-
cal coupled ring reflector [105]. The optomechanical reflec-
tor consists of two ring resonators, a driving ring with a
suspended arc and a reference ring. The lasing wavelength
is selected when it matches with the resonance wavelength
of the ring resonators. When the lasing light coupled in the
driving ring resonator, the suspended arc is deflected by opti-
cal gradient force, changing the resonant wavelength and
providing an optical feedback. At a fixed optical power, a bal-
ance between the optical force and mechanical force in the
arc leads to a stable lasing wavelength. The silicon optome-
chanical tunable laser has a tuning range of 13.3 nm with a
tuning coefficient of 127GHz/nm. The ring resonator was
also used to enhance the optical gradient force acted on a
double-clamped silicon nanowire, inducing bistability that
represents the two memory states 0 and 1 (Figure 5(b))
[89]. Both states can be easily set and reset by modulating

8 Advanced Devices & Instrumentation



the input light that is less than 3mW with a response time
< 250 ns.

Silicon optomechanical systems are also developed for
sensing applications [106–108]. The photonic crystal split-
beam nanocavity made of two cantilever resonators was opti-
mized to detect nano-scale torque based on dissipative and
dispersive optomechanical coupling [109]. When the gap of
the split-beam nanocavity is mechanically modified, the
nanocavity length is effectively changed, leading to a disper-
sive coupling to the optical frequency. Consequently, the
nanocavity photon decay rate is also strongly depending on
the gap, leading to dissipative optomechanical coupling
[110]. Both couplings enable subpg torque sensing with a
sensitivity of 1:2 × 10−20 Nm (Hz-0.5) in ambient conditions,
allowing sensitive readout in nanomagnetic and mesoscopic
systems. The hybrid optomechanical torque sensor by inte-
grating the mesoscopic ferromagnetic needle onto an arced

torsional resonator was demonstrated for the studies of
nanomagnetism [111]. A torque is induced by applying an
external magnetic field perpendicular to the magnetic
moment of the needle. By designing a feedback loop using
the measured mechanical signal, the resonator motion can
be amplified to detect mechanical motion in damped envi-
ronment or dampened to enable faster measurements with-
out sacrificing sensitivity.

Optomechanical mass sensors normally use the change of
mechanical oscillating frequency of the optical resonator to
detect the mass of deposited molecules (Δm∝ Δωn). A non-
linear optical mass sensor was proposed using a toroidal
nanocavity to measure the mass of molecules such as human
chromosomes-1 [112]. For mass measurement, a strong
pump light and a weak signal light are applied to detect the
cavity vibrational frequency (ωn). The pump light frequency
matches with the cavity resonant frequency, and the weak
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Figure 5: Applications of silicon optomechanical devices. (a) Photothermal self-oscillation and laser cooling of graphene optomechanical
systems, reprinted with permission from ref. [88]. (b) Silicon nano-wire memory driven by gradient optical force enhanced by the ring
resonator. Two stable deformation positions represent two memory states (0 and 1), reprinted with permission from ref. [89]. (c)
Resonating optomechanical atomic force probe operated at a frequency of 117MHz, two decades above cantilevers, with a Brownian
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signal is applied to detect the nonlinear transmission spec-
trum. When the beat frequency between the two lights
approaching ωn, nonlinear Stokes scattering occurs, and the
transmission peak with respect to signal-cavity detuning
occurs at −ωn. The nonlinear mass sensing approach is supe-
rior to linear equivalent because it is less affected by detection
noise. Recently, the atomic force sensor using optomechani-
cal resonating probe was also demonstrated (Figure 5(c))
[90]. A ring resonator with a protruding apex was designed,
having an optical resonant wavelength of 1,552 nm and opti-
cal Q-factor of 7 × 104 and mechanical resonant frequency of
~117MHz and mechanical Q-factor of 103. The force gradi-
ent approaching a contact was measured by monitoring the
probe mechanical frequency variations. The fully optically
actuated and detected atomic force sensing probe achieves a
frequency 2 decades higher than commercially instruments
and a 4 order lower Brownian motion.

5. Discussion and Future Perspective

In this review, light-matter interactions from particles and
nanostructures in silicon nanophotonic and optomechani-
cal devices are discussed. Silicon nanofabrication technol-
ogy has advanced and revolutionized near-field optical
manipulation of nanoparticles and nanostructures with
highly localized light field by realizing versatile nanoscale
structures with high precision and repeatability. Silicon is
not only a great material for optomechanical system but it
is also compatible for hybrid device integration with other
elegant materials. Diamond thin film can be deposited on
silicon dioxide substrate to realize an efficient optomecha-
nical transduction via optical gradient forces [113]. Its high
Young’s modulus, superior thermal properties, and wide
electronic bandgap with broadband transparency make it
suitable for high-quality nanophotonic devices. Zhang
et al. used a phase change material of Ge2Sb2Te5 (GST) to
fabricate a nanowaveguide (800 nm width and 500 nm
height) on a silicon oxide wafer [47]. The GST material
can be switched between amorphous and crystalline states
through laser pulse heating. By switching between these
two states, they demonstrated that a continuous optical
pushing or pulling force with the same order of magnitude
acted on 50nm gold particles. Lin et al. also demonstrated a
hybrid plasmonic nano-taper coupled on top of a silicon
nitride waveguide [114]. In this design, the waveguide
mode excites two hybrid plasmonic modes at the base of
the nano-taper, transferring the optical energy from the
waveguide to the nano-taper. Subsequently, the optical
energy is condensed at the tip of the nano-taper, generating
a strong optical force for nanoparticle trapping. Stable trap-
ping of single 100nm polystyrene particle was achieved
with a low threshold input power of 3.57mW.

Many efforts from single nanowaveguide and waveguide
pairs to photonic crystals have been devoted to exploring
the trapping limit in size and efficiency. With over one-
decade development, the trapping size reaches 60nm poly-
styrene nanoparticles [40], DNA [20] and viruses [23], and
the trapping efficiency is near to 100% [70]. Hundreds of
bacteria and nanoparticles can also simultaneously be han-

dled in a single chip [70, 71]. Further development in the
design of a large scale and subwavelength hotspots on a
silicon device could also advance in the massive trapping
and sorting of tiny biomolecules, such as exosome and
protein, pushing the size limit to a smaller scale. The
design of silicon nanostructures enables a dynamic tuning
of hotspot, which could also endow us the ability to con-
trol the position and movement of biomolecules precisely
and demonstrate a wide range of applications in biomedi-
cal sciences.

Recently, other sophisticated phenomena using optical
forces emerge, including Casimir force [36], optical nanomo-
tors [13], particle rotation by spin and orbital angular
momentum of light [115], and metasurface-enhanced optical
force [116]. These explorations show intriguing features that
could be used to facilitate the optical trapping and sorting.
Newly emerged optical phenomena such as bound state in
the continuum, spin-orbit interactions can also be utilized
to empower versatile manipulations of biomolecules such as
viruses and exosome [117, 118] and synthesized particles
with different chiralities and shapes [119]. Some other forces
could also involve in the versatile manipulations with the
optical forces, including photopheric force [120], fluidic drag
force [15], and Brownian force [121].

With the synergy of microfluidic technology, rapid
manipulation of 50 nm gold nanoparticles in a high-speed
flow stream (e.g., 450μm/s) was explored [122], showing
the future potentials of optical force-based silicon nanopho-
tonics in handling biological particles for high-throughput
applications. Moreover, on-chip-integrated Laguerre-
Gaussian and Bessel beams [123, 124] or the interaction of
light with nonuniform fluids to realize tunable and reconfi-
gurable optical forces [125] offer new approaches in bioparti-
cle manipulation. Recently, Hu et al. integrated acoustic force
with optical force in a single optofluidic chip to achieve a pre-
cise and specific leukocyte separation, which uses acoustic
force to separate granulocytes based on size and optical force
to separate lymphocytes and monocytes based on refractive
index differences, showing a greater potential of hybrid sys-
tems in biomedical applications [126].

The optical forces in optomechanics, on the other hand,
help cool nanostructures towards quantum regime in the
room temperature [93] and also benefit various utilities in
the signal storage and processing [28], photon and phonon
manipulations [83], optical sensing [127], etc. Meanwhile,
more demonstrations on the photon and phonon manipula-
tions could also be done using the intriguing physics in opto-
mechanics such as superfluid [128], minimizing the quantum
devices for faster computing and information processing.
Last but not least, we could also expect more intriguing effect
using the optical forces in the silicon chip. For example, opti-
cal force triggered nanorobots for drug targeting and energy
conversion at nanoscale.
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