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Optical framed knots as information carriers
Hugo Larocque1,2✉, Alessio D’Errico1, Manuel F. Ferrer-Garcia1, Avishy Carmi3, Eliahu Cohen 4 &

Ebrahim Karimi 1✉

Modern beam shaping techniques have enabled the generation of optical fields displaying a

wealth of structural features, which include three-dimensional topologies such as Möbius,

ribbon strips and knots. However, unlike simpler types of structured light, the topological

properties of these optical fields have hitherto remained more of a fundamental curiosity as

opposed to a feature that can be applied in modern technologies. Due to their robustness

against external perturbations, topological invariants in physical systems are increasingly

being considered as a means to encode information. Hence, structured light with topological

properties could potentially be used for such purposes. Here, we introduce the experimental

realization of structures known as framed knots within optical polarization fields. We further

develop a protocol in which the topological properties of framed knots are used in con-

junction with prime factorization to encode information.
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S
tructured light—optical fields with shaped spatial and
temporal features1—provides a viable platform for the
realization of a variety of topological structures. The crea-

tion of such structures mostly draws from concepts related to
singular optics2,3, i.e., the study of discontinuities in optical
wavefields. Such discontinuities, which can be present in features
such as optical phase4 or polarization5, are known as optical
singularities and can be employed to produce optical beams of
varying complexity from those carrying a single singularity6 to
more exotic wavefields forming structures such as topological
bands and knots. The latter include Möbius strips7–10, multi-twist
ribbons11, knots within scalar optical fields12–14, knotted topol-
ogies within bichromatic fields15, and knots in polarization fields,
which include both knotted electromagnetic field lines16–20 and
knotted polarization singularities21. These structured optical
fields carrying topological features have found numerous appli-
cations in modern science. Most notably, optical beams with a
single singularity, which include orbital angular momentum
modes, have been extensively employed in high-dimensional
quantum information22 along with both classical23 and quantum
communications24. Knots, which are generally described as topo-
logically classified arrangements of some closed filament25, have
also emerged as a promising framework to enable new forms of
technologies. This promise is mostly attributed to knots having a
braid representation, which is a cornerstone of topological quan-
tum information26–30. However, in spite of their significant
potential, knots created within optical fields12–15,21 are mostly
investigated in experiments within the framework of information
theory in a similar way to simpler optical beams carrying a single
singularity31. They are more than often treated as two-dimensional
transverse optical modes, as opposed to a three-dimensional object
defined by prospectively more useful topological invariants. This
shortcoming arguably arises from a current lack of overlap between
the fields of topological quantum information and singular
optics—that is, optical topologies that can currently be realized in
the laboratory cannot be readily used as a platform for existing
topological information protocols and vice-versa.

In this article, we introduce and experimentally demonstrate
the generation and observation of structures in optical polariza-
tion wavefields forming framed knots. We then use the latter as
information carriers by means of a protocol devised to encode
topological information through the conjoined usage of prime
factorization and the knots’ own topological invariants.

Results
Framed C-lines. Knots ubiquitously describe how looped threads
are arranged in space. For this reason, when analyzed within a
physical framework, knots are typically found within fields
defined by regions that unambiguously form curves in three-
dimensional space. These knotted curves have been demonstrated
in systems such as the vortices of fluids32, the intensity nulls of
scalar optical fields12–14, and within the C-lines of optical
polarization fields21. C-lines specifically consist of curves of pure
circular polarization in monochromatic electromagnetic fields33.
One of their most distinguishing features relates to the structure
of the polarization field in their close proximity. Namely, they are
enclosed by polarization ellipses with a major axis that rotates by
integer multiples of π along a closed contour surrounding the C-
line. This trait is in display in Fig. 1a, b. For the case of paraxial
optical beams, polarization is confined within the plane transverse
to the beam’s propagation, e.g., the xy plane. As shown in Fig. 1a,
this restriction constrains the plane over which this polarization
axis rotation can be traced. Non-paraxial beams, however, can
feature polarization vectors whose normal is not perpendicular to
the beam’s propagation. As displayed in Fig. 1b, this normal

vector in turn dictates the plane in which the axis of the ellipse
completes a half rotation around the C-line. The presence of these
rotations consists of the key structural feature considered while
defining the framed knots reported in this work.

A framed knot in three-dimensional space is a knot, i.e., a looped
curve, equipped with a vector field called a framing. The framing is
nowhere tangent to the knot and is characterized by a number, the
framing integer, which is the linking number of the image of the
ribbon with the knot. In other words, it counts the number of times
the vector field twists (2π rotations) around the knot. Knotted
ribbons generalize framed knots to an odd number of half-twists,
e.g., knotted Möbius bands. Given the above definition, we define
the framing of a closed C-line by the axis of the adjacent
polarization ellipse whose axis is perpendicular to the C-line’s
tangent. This concept is illustrated in Fig. 1a, b, where we embolden
the color of the polarization ellipse surrounding the C-line whose
axis is perpendicular to its tangent, thereby defining its framing. In
the rare case where all axes are perpendicular at a certain point of
the C-line, the polarization vector defining the framing can be
interpreted as the one enforcing its continuity with the least amount
of twisting. This concept in turn defines the framing attributed to a
knotted C-line. As illustrated in Fig. 1c, the latter may be
constructed from a knotted field, Ek, defined by a circularly

polarized component, E k
� , with knotted phase singularities, and a

longitudinally polarized component, E k
z , ensuring that Ek satisfies

Maxwell’s equations34. By superposing Ek with a plane wave with

the opposite polarization helicity, E
p
þ , knotted C-lines arising from

the singular structure of Ek are created. As shown in Fig. 1d, e,

increasing the amplitude of E
p
þ with respect to that of E k

z molds the
resulting C-line into the knot formed by the phase singularities of

E k
� . Further discussions involving the dynamics of this process are

provided in Supplementary Note 1. Note that E k
z is negligible for

paraxial beams, which are the main experimental focus of this work.
Hence, for such beams, the C-line aligns with the aforementioned

knotted vortices regardless of the amplitude of E
p
þ
21.

Braid representation. In addition to their well-discernible three-
dimensional structures, knots can also be represented by math-
ematical objects called braids. Geometrically, braids consist of
intertwined arrangements of strands that do not turn back on
ground that is already covered. Due to Alexander’s theorem,
every knot can be expressed as a closed braid. For instance, the
trefoil knot shown in Fig. 2a can be expressed as the closure of the
braid shown in Fig. 2b. The concept illustrated in these diagrams
can be further extended to knots and braids formed in three-
dimensional space. For example, the trefoil knot embedded in the
torus shown in Fig. 2c can be obtained through a stereographic
projection of the braid enclosed in the cylinder shown in
Fig. 2d14,35. One way to perform this projection is to express this
braid as the zeros of a complex field. This field is explicitly written
as a function of the complex coordinates (u, v), which relate to the
spatial coordinates, (x, y, h), in which the braid is embedded
through u= x+ iy and v ¼ expðihÞ. This braided field can in
turn be transformed into its corresponding knot with a stereo-
graphic projection defined by

u ¼
ρ2 þ z2 � 1þ 2iz

ρ2 þ z2 þ 1
; v ¼

2ρeiφ

ρ2 þ z2 þ 1
; ð1Þ

where (ρ, φ, z) are the cylindrical coordinates of the three-
dimensional space in which the knot is now embedded. In
essence, this projection wraps the braid defined over (x, y, h) into
a knot in (ρ, φ, z) by connecting its two ends, thereby effectively
mapping the h coordinate to φ14. Further discussions on how the
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coordinates of each space map onto one another are provided in
“Methods.”

The above projection is heavily relied on when constructing
knotted optical fields. In particular, a scalar optical field can be
constructed by first matching its field along the z= 0 plane to that
of the complex knot resulting from the projection of a braid as
prescribed by Eq. (1). When this optical field is paraxial, then its
formulation at subsequent z planes can be obtained by means of
paraxial propagation methods14. This method can then be further
extended to describe paraxial-knotted C-lines21 and full vectorial
solutions to the optical wave equation34. For instance, the knotted

field E k
� in Fig. 1c is fundamentally constructed based on the

closure of a braid embedded within the zeros of a complex field34.
Because of its wide usage in obtaining knots from braids, we

have opted to use the projection defined in Eq. (1) to obtain
structures with properties that can more easily be related to the
braid representations of the optical-framed knots considered in
this work. Namely, we consider the torus T 2 obtained from the
projection of the cylinder C enclosing the three-dimensional
representation of the corresponding braid. Then, we scale the
dimensions of our knots such that their structure fits within the
proximity of T 2. We later apply the coordinate transformation
provided in “Methods” on those of a curve formed by a knotted

C-line. This transformation effectively cuts the knot along a given
azimuthal angle and unwraps it, thereby mapping the φ
coordinate of the knot to the h coordinate of the space where
the braid is defined. During this process, the orientation of the
knot’s frame is assured to be locally preserved. To illustrate this
procedure, we apply it on the framed optical trefoil knot shown in
Fig. 2e. The resulting unwrapped structure is displayed in Fig. 2f.
From this transformation, information such as the twisting angle
in the knots’ braid representations can be extracted. Here, the
twisting angle consists of the azimuthal orientation of the ribbon
in the frame where the normal is aligned to the unwrapped knot’s
tangent. For instance, the twisting angle in each strand of the
unwrapped knot shown in Fig. 2f can be found in Fig. 2g.

Prime encoding scheme. Given the ability to extract the twisting
angle of an optical-framed knot, we propose the following scheme
exploiting these structures as information carriers. The use of this
method relies on a pair of numbers (α, β) where α is a positive
integer, and β is a number both related to α and to the topological
structure of the framed knot. The latter is given by

β ¼
Y

fkjdk≠�1g

pk
αdk�Mð Þ; ð2Þ
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Fig. 1 Construction of framed knotted C-lines. Depiction of the polarization field in the proximity of a C-line when the normal of the polarization ellipse is

a and is not b parallel to the beam’s direction of propagation. Polarization ellipses with an axis perpendicular to the C-lines are displayed in bold colors and

determine the orientation of the line’s framing when it forms a closed loop. c Vector components of a framed optical knot, which include a circular

component with knotted intensity nulls, E k
�
, accompanied by a longitudinal field, E k

z , with nulls determined by the topology of E k
�
. These two components

form a nonuniform polarization field Ek which can be shaped into a framed knotted C-line by means of a perturbing plane wave E p
þ
. d Trajectory of the

resulting knotted C-lines (red) overlaid onto the trajectories formed by the intensity nulls of E k
�
(pink) and E k

z (orange) for various plane wave amplitudes.

e Framed knot structures arising from the superpositions shown in c where the knotted C-line is shown in red and its frame is shown in cyan.
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where k refers to a strand in a braid representation of the con-
sidered framed knot. dk is the number of half-twists along the kth
strand exhibiting half-twists, i.e., dk=−∞ for untwisted strands.
pk is a prime number assigned to the kth strand. Finally,M= ∑kdk
consists of the total number of half-twists in the knot’s frame.
Further discussions exploring how α and β relate to braiding and
twisting in framed braids are provided in Supplementary Notes 2
and 3. With these variables, we define the natural number

Nα;βðMÞ ¼
def

β αMð Þ ¼
Y

fkjdk≠�1g

pk
αdkð Þ; ð3Þ

whose prime factorization can be seen to be determined by the
considered braid representation. Further details regarding this
decomposition are provided in Supplementary Note 3.

The above representation of the framed knot and one of its
braids may therefore be exploited for encoding and decoding
topologically protected information as follows. Alice would like to
send Bob a message which is here obtained as an output of a
certain program running on some initial inputs, the set of
numbers, dk, k= 1, 2, …, n. Running the program with this set is
expected to yield Alice’s message.

Alice conceives her program and its inputs as a framed braid.
She identifies an operation with a sequence of crossings in the
braid’s planar diagram while the initial inputs are taken as the
number of half-twists per strand. Alice has her program
completely specified by the n-strand framed braid representation
of a knotted ribbon KA. To maintain some degree of privacy, she
would like to send Bob KA rather than the original framed braid.
As further discussed in Supplementary Note 3 and implied in
Fig. 3, she takes note of the fact that KA may be complicated such
as to conceal the original framed braid.

She then proceeds by performing the following steps. She first
chooses a positive integer α. She then determines the framed
braid representation of KA. Doing so involves allocating the
number of half-twists in KA to different strands of the braid, i.e.,
setting dk such that MA= ∑kdk. Following this step, she assigns
prime numbers pk to strands exhibiting half-twists. Finally, she
determines the number β according to Eq. (2). Once this
allocation is completed, Alice proceeds by sending Bob her
knotted ribbon KA and the pair of numbers (α, β) in real time.

Upon receiving these, Bob computes Nα,β(MA) whose prime
factorization unfolds dk. To prevent the latter from being
retrieved as an unordered set of integers, Alice and Bob rely on
a previously adopted convention clarifying how the extracted dk is
assigned to distinct strands of the encoded braid. Bob can now
recover the framed braid that was originally considered by Alice.
For illustrative purposes, we summarize this protocol in Fig. 3.

Experimental generation. Motivated by this encoding scheme,
we proceed with its application to paraxial-knotted C-lines gen-
erated in the following experiments. Such structures can be cre-
ated by means of the folded Sagnac interferometer used in ref. 21,
which is shown in Fig. 4a for convenience. This apparatus
separates a uniformly polarized light beam into two orthogonally
polarized components, each of which modulated by a spatial light
modulator (SLM). The latter displays holograms in which both
the intensity and the phase of the target optical field is encryp-
ted36. One component is modulated to produce a beam featuring

knotted optical vortices14, such as E k
� shown in Fig. 1c in the limit

where non-paraxial effects are negligible. The other is modulated
to form a large Gaussian beam that uniformly covers the entirety
of the knotted component, thereby effectively taking the role of

the plane wave E
p
þ in Fig. 1c. Upon exiting the interferometer, the

two beams are coherently added, thereby converting the knotted

phase vortices of E k
� into paraxial-knotted C-lines21. The knot

and its frame can then be reconstructed with polarization
tomography measurements37 enabling one to obtain the field’s
polarization profile.

We use the above apparatus to produce both framed trefoil and
cinquefoil knots. The holograms displayed on the SLM for this
purpose are displayed in Fig. 4b along with the amplitude and
phase of the fields that they are designed to generate. The latter
are given in Eqs. (4) and (5) for the cases of the trefoil and
cinquefoil knots, respectively,

ψ Tref
a;b;s ðϱ;φÞ ¼ 1� ϱ2 � 4ða2 � b2Þϱ3 � ϱ4 þ ϱ6

�

� 2ða� bÞ2ϱ3e�3iφ � 2ðaþ bÞ2ϱ3e3iφ
�

e�ðϱ=sÞ2=2;

ð4Þ
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Fig. 2 Braid representation of knots. The diagram of a trefoil knot (a) along with its corresponding braid (b). Both ends of the braid diagram are connected

to illustrate how its closure yields the knot in a. A trefoil knot (c) obtained from the stereographic projection of the braid in d. The projection effectively

connects both ends of the braid, highlighted by a black outline, thereby transforming the two strands of the braid into a knot and the enclosing cylinder, C,

into a torus, T 2. e, f An optical-framed knot (e) and its unwrapped form (f) obtained by applying a coordinate transformation on the curve formed by the

knot while preserving the local orientation of the knot’s frame. g Extracted twisting angle of the frame of the two strands in the structure shown in f.
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ψ
Cinq
a;b;s ðϱ;φÞ ¼ 1þ ϱ2 � 2ϱ4 � 16ða2 � b2Þϱ5

�

� 2ϱ6 þ ϱ8 þ ϱ10 � 8ða� bÞ2ϱ5e�5iφ

� 8ðaþ bÞ2ϱ5e5iφ
�

e�ðϱ=sÞ2=2;

ð5Þ

where ϱ is a scaled and dimensionless version of the cylindrical
radial coordinate, φ is the azimuthal coordinate, and a, b, s are
parameters that determine the shape of the knot. For the trefoil
knot, we considered parameters of a= 1, b= 0.5, and s= 1.2,

whereas for the cinquefoil knot, we used a= 0.5, b= 0.24, and
s = 0.65. These fields are obtained based on stereographic
projection methods explored in ref. 35 and are further discussed
in Supplementary Note 4. As discussed in the latter, the selected
parameters enable the creation of shorter knots. Furthermore, as
emphasized in Supplementary Note 5, the frame of these knots is
less disrupted by noise in the position of the C-lines arising from
experimental imperfections. The framed knots of these fields
expected from theory are shown in Fig. 5a, whereas the knots
generated in our experiments can be found in Fig. 5b. Aside from
minor perturbations that arise where the C-lines are born and

Decoding encoding

M = 6

N = 518400

N = 518,400 2�3

� = 2
�, �

� = 1.2283

3�2

2�3
3�2

5�1 5�1

Fig. 3 Prime encoding scheme of framed braids. A framed braid on the right encodes a message—the output of a certain program specified by the planar

diagram of the braid. In particular, the braid representation can be linked, as discussed below, to the prime factorization of a large integer N. An operation in

such a program is identified with a sequence of crossings. Its inputs are taken as the number of half-twists per strand. To maintain privacy, the closure of

the braid, i.e., the framed knot/knotted ribbon (in the case of even/odd number of half-twists, respectively), is transmitted instead of the braid itself. This

allows the sender to complicate the message, if desirable, by adding an arbitrary number of Reidemeister-II and -III moves. The unique framed braid

representation may be recovered on the receiver’s end by transmitting two additional numbers, α and β, alongside with the knotted object. In this example,

we chose for a simple elucidation α= 2 and the first three primes p1= 2, p2= 3, p3= 5, one per strand in the braid (to showcase the scheme in the richer

case of three strands, we preferred here the figure-eight knot, rather than the double-strand trefoil and cinquefoil knots). The corresponding numbers of

half-twists in our example are d1= 3, d2= 2, and d3= 1, giving a total ofM= 6 half-twists in the resulting framed knot. This is the topological invariant to be

transmitted. The number β is subsequently computed according to Eq. (2). Once received (on the left) the framed knot can be associated with the

previously encoded integer N; the number of half-twists M and the pair α and β are substituted into Eq. (3) to yield N, which here equals 518, 400. The

prime factorization of N results from the actual number of half-twists per strand in the braid representation, 518;400 ¼ 22
3
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whose polarization is adjusted by a half-wave plate (λ/2) and later fed into a folded Sagnac interferometer. In the interferometer, the two polarized

components are individually modulated by a spatial light modulator (SLM) and then coherently recombined to form an optical-framed knot. The latter is

imaged using a 4f system, and then reconstructed by means of polarization tomography relying on a sequence of optical elements that include a quarter-

wave plate (λ/4), a half-wave plate, a polarizing beam splitter (PBS), and a CMOS camera. Figure legend: mirror (M), L (lens). b Holograms used to

generate framed knots, where knotted fields (trefoil and cinquefoil) are imprinted on the right-handed circular component of the optical field, and a

Gaussian field is written on the left-handed component. c Amplitude and d phase of the fields generated by the corresponding holograms.
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annihilated at the knot’s extremities, we observe that the knots’
frames are in fairly good agreement with what is expected from
theory. The unwrapped form of our experimental knots based on
Eq. (1) is shown in Fig. 5c. We plot the corresponding twisting
angle of these unwrapped knots along with the one expected from
theory in Fig. 5d, where we observe once more that both strands
in the structure are endowed with the same number of half-twists.

At this point, it is worth accentuating that the quantity of
interest in Fig. 5d consists of the total twisting angle in the
unwrapped knot. It might be tempting to treat the latter as one of
the knot’s braid representations. However, due to the knot’s
unwrapping, the number of half-twists in each strand may not
exactly amount to an integer. Both ends of the braid are mapped
from an azimuthal cross-section of the measured knot. Therefore,
if the orientation of the frame at this cross-section is not the same
for all parts of the knot, then the twisting angle of the strands in
the unwrapped knot will not strictly amount to integer multiples
of π. However, the sum of the twisting angles in each strand will
amount to such a multiple given that the knot is a closed
structure. This physical trait, in conjunction with the aforemen-
tioned (α, β) pair, in turn allows us to formulate the properties of
the braid under consideration, which, for our purposes, consists
of a purely algebraic entity. By taking this consideration into
account and following the scheme outlined in Fig. 3, the knotted
structures illustrated in Fig. 5 along with a given choice of (α, β)
can be used to encode a braid representation of these knots.

Discussion
The above generation and detection schemes can be extended to
deal with non-paraxial optical knots. In practice, this extension
would be achieved through the use of tight-focusing lenses
and more sophisticated forms of polarization tomography38.
As implied in Fig. 1, one could prospectively exercise further
control over the C-line’s frame with the presence of a stronger
longitudinal polarization in the electric field. Furthermore,

non-paraxial methods would enable the generation of knots with
a more manageable longitudinal extent. Indeed, a wealth of
structures, including the trefoil and cinquefoil knots investigated
here, are predicted to form over a distance comparable to the
optical field’s wavelength34.

In practice, the act of sending information encoded within
knotted C-lines by means of the scheme presented in this work
could be achieved with an apparatus similar to the one presented
in Fig. 4. The act of encoding information would be performed
with the folded Sagnac interferometer enclosing the SLM and
potentially other optics. Once the optical field is imbued with its
knotted properties, it is then transmitted to a location where it
can be decoded by means of an imaging system consisting of the
two lenses shown in the setup. Finally, information is decoded
from the field by means of the reconstruction techniques pre-
sented in this work, i.e., polarization tomography, to reconstruct
the knot followed by a coordinate transformation to extract the
corresponding braid. One could argue that the entirety of this
information could be extracted from a single plane measurement
of the field’s properties, which would then enable the knot’s
reconstruction based on its theoretical propagation as prescribed
by the optical wave equation. However, as alluded to in several
parts of this work, sources of experimental imperfections such as
aberrations, which have long been known to affect the topology of
structured light beams39, may potentially complicate such an
approach. Namely, a full account of the aberrations and errors
introduced by our interferometric setup would be needed to
enable a full field reconstruction. This complication thereby
encourages the use of the more direct reconstruction approach
reported here.

To summarize, we introduced a construct for framed knots
within optical polarization knots. This construct relies on the
presence of knotted C-lines within the considered wavefield. Due
to the singular nature of the axis of the polarization ellipse sur-
rounding these lines, a frame can be assigned to the knot based on
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Fig. 5 Trefoil and cinquefoil optical-framed knots. a Optical-framed knots expected from theory attributed to the holograms displayed in Fig. 4. b Framed

knots reconstructed from tomographic measurements of the beams generated by these holograms. c Unwrapped versions of the knots shown in b.

d Twisting angle of the braid shown in c along with the values expected from theory.
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its trajectory and the oscillation plane of the polarization ellipse
along the C-line. Through the use of a coordinate transformation
along with an encoding scheme relying on the braid representa-
tion of framed knots, we demonstrate how paraxial-knotted C-
lines produced in experiments can be employed as information
carriers. More specifically, we have shown that the braid repre-
sentation of framed knots can be employed for encoding and
decoding topologically invariant information such as the number
of half-twists, as demonstrated above, being related to the prime
factorization of large integers. It is expected that other topological
invariants like the Alexander and Jones polynomials could consist
of other encoded properties. The full potential of this scheme
could be investigated by its application to more sophisticated
knotted structures35, such as experimentally generated figure-
eight knots21. In addition, further engineering of the knot’s frame
through the use of non-paraxial structures34,40 could be used to
apply different numbers of half-twists within the knot. The
generation of these more complex topologies may also be of
interest in other applications relying on framed knots, such as
quantum money41,42. On a more fundamental level, the methods
outlined here may be of interest in quantifying and encoding the
topological properties of more complex types of knots such as
those that could be formed by the singularities in knotted tangles
within random polarization fields43 or speckle fields5,44.

Methods
Coordinate mapping for the braid extraction of knots. To unwrap the con-
sidered knots, we rely on the stereographic projection discussed in the main text.
Based on the dependence of the complex variables (u, v) on the spatial coordinates
of the space in which the braid and knot are defined, which are respectively
denoted as (x, y, h) and (ρ, φ, z), one can establish the following relation between
both sets of coordinates

x 7!
ρ2 þ z2 � 1

ρ2 þ z2 þ 1
; ð6Þ

y 7!
2z

ρ2 þ z2 þ 1
; ð7Þ

h 7!φ; ð8Þ

where (x, y, h) and (ρ, φ, z) refer to Cartesian and cylindrical coordinate systems,
respectively.

Generation of optical-framed knots. The generation of the knotted structures
presented in this work relies on the method used in ref. 21. As illustrated in
Supplementary Fig. 1, an 810-nm laser is first coupled to free space where it later
goes through a half-wave plate and a polarizing beam splitter (PBS) to modulate its
intensity. It then goes through another half-wave plate in order to put the beam in
an equal superposition of horizontal and vertical polarization components. The
beam then goes through a folded Sagnac interferometer, which first separates each
component with a PBS. In the interferometer, each polarization component is
individually modulated by a SLM (Holoeye, Pluto Series) with the holograms
shown in Fig. 4b. A half-wave plate is inserted within the interferometer to ensure
that both components have the polarization that allows them to be modulated by
the SLM. One of these components acquires a profile with knotted phase vortices14

whereas the other acquires a large Gaussian profile. The two parts of the beam are
then recombined at the exit of the interferometer where they are converted to
circular polarizations by means of a half-wave plate (not shown in Fig. 4a) followed
by a quarter-wave plate. In practice, this conversion can be achieved with only a
quarter-plate as shown in Fig. 4a. However, we opted for the inclusion of the half-
wave plate as it compensated for the effects of our dielectric mirrors on our beam’s
polarization, which needed to be introduced in our setup due to spatial constraints.
As shown in ref. 21, converting the two polarizations to the circular polarization
basis enables the conversion of knotted phase vortices into knotted C-lines.

The holograms provided in Eqs. (4) and (5) are expressed in terms of a
dimensionless radial coordinate ϱ= ρ/w0, where ρ is the radial coordinate and w0 is
a scaling parameter. The w0 values used to generate the knots shown in Fig. 4 were
0.35 mm for the trefoil knot and 0.42 mm for the cinquefoil knot.

Measurement procedure. We reconstruct the polarization field formed by the
knotted C-lines by means of tomographic polarization measurements37 at 40
planes spread out across the longitudinal extent of the knot. These measurements
include six polarization projections along the horizontal, vertical, diagonal,

anti-diagonal, left- and right-handed circular polarizations. As shown in Supple-
mentary Fig. 1 and depicted in Fig. 4a, the polarization projections are performed
with a quarter-wave plate, followed by a half-wave plate, and then a PBS. The
projections themselves correspond to the average of six frames recorded with a
CMOS camera (Thorlabs DCC1645C).

Our choice of w0 resulted in knots with an experimental longitudinal extent of
66 and 58 cm for the trefoil and cinquefoil knots, respectively. Measurement planes
were separated by 1.5 cm while acquiring data for the trefoil knot whereas they
were separated by 2 cm for the cinquefoil knot.

Framed knot reconstruction. Sources of image degradation in the polarization
measurements, such as speckles of dust on the camera, are first removed by making
the recorded measurements go through a non-aggressive low-pass filter. The
processed images are then used to extract the beam’s first, second, and third Stokes
parameters, s1, s2, and s3. The latter are employed to reconstruct the polarization
profile of the knotted field at 40 planes transverse to the beam’s propagation. As
performed in ref. 21, the location of the C-lines along these planes is then deter-
mined by finding contour intersections in the phase of the field formed by s1+ is2.
The transverse locations of the C-lines at each plane are then connected to provide
the knot formed by the beam’s polarization field. In order to smooth out numerical
noise arising from the discretization of the CMOS images used to obtain the knot, a
Gaussian filter with a width of 1 pixel is applied on the knot’s transverse coordi-
nates, i.e., x and y. Spline interpolation is then used to estimate the knot’s location
outside of the considered transverse planes. The orientation of the frame of the
knot is then extracted by taking the cross product between the gradient of the
knot’s coordinates and the normal vector of the C-line’s oscillation plane. For the
paraxial knots considered in our experiments, this orientation corresponds to the
direction of propagation of the beam. More detailed discussions regarding the data
processing involved in the reconstruction of the framed knot are provided in
Supplementary Note 6.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Code availability
The code producing the figures is available from the corresponding author upon

reasonable request.
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