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ABSTRACT 

The coherent interaction between an optical wave and an electron beam 

in a free electron laser (FEL) is shown to be capable of optically guiding 

the l igh t . The effect is analyzed using a two-dimensional approximation 

for the FEL equations, and using the properties of optical f ibers . Re

sults of two-dimensional (cyl indrical ly symmetric) numerical simulations 

are presented, and found to agree reasonably well with the analytically 

derived cri ter ion for guiding. Under proper conditions, the effect can 

be large and has important applications to short wavelength FEL's and to 

directing intense l ight . 
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I . INTRODUCTION 

I t has long been known tha t the coherent interaction between the l ight 

and the electron beam in an FEL produces a phase shif t of the l ight [ 1 ] , 

and that the sign of the effect is such that the l ight is refracted toward 

the electron beam [1 ,2] , In recent numerical simulations we have observed 

guiding of the light by the electron beam, as if the electrcn beam were an 

optical fiber [3 ,4] . These observations stimulated the investigation 

reported on here. 

In th i s work we t rea t the bunched electron beam as if i t were an 

optical fiber with a constant index of refraction and a well-defined edge. 

In Sec. II we review the properties of such step-profile optical fibers 

for a real or complex index of refraction. In Sec. I l l , we use one-

dimensional FEL theory to evaluate the index of refraction of the electron 

beam, and present numerical simulations to i l l u s t r a t e optical guiding. We 

then examine, in Sec. IV, guiding in the exponential growth regime. We 

find that the intuit ive c r i te r ion for guiding during exponential growth, 

az r > 1 , (1.1) 

can be strongly violated. Here the field amplitude grows as e o Z , and z r 

is the Rayleigh length obtained from the electron beam size and l ight 

wavelength. The analytical derivations are compared with the resul ts of 

numerical simulations. Final ly , in Sec. V, we mention several potential 

applications of self-guiding. 
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I I . OPTICAL PROPAGATION IN FIBERS 

In th i s section, we review the sal ient facts about c i rcular step-

p ro f i l e opt ical f i be rs , with emphasis on the LPQ, mode, the lowest order, 

l inear ly polarized mode. This is the mode that the numerical calculat ions 

model, and which one would expect to be excited in an FEL with a l inear 

wiggler. We determine the value of the f iber parameter (defined below) 

necessary for optical guiding. 

The usual analysis of step p ro f i l e f ibers [ 3 , 4 ] assumes that the 

f iber consists of a central core of radius a and index of re f ract ion n, 

and a cladding of index n , . In our treatment, the core is the electron 

beam and the cladding is f ree space. 

We can make the assumption that the f iber is weakly guiding: 

|n - 11 « 1 . (2.1) 

This inequal i ty is quite good for a l l cases of in te res t , and is consistent 

with the assumption of slowly varying phase of the optical f i e l d : 

& « k . (2.2) 

f a i r i l i a r from FEL theory 

Following Marcuse [ 4 ] , we consider guided modes with only one 

transverse e lec t r ic f i e l d component E (but both magnetic and e lec t r i c 

longitudinal components), fo r which 

/cos(v*>)\ 
E x = AJ (KIT) , r < a , (2.3) 
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J ( a) / c o s M T 

H v ( l T a ) \ s 1 n ( v * ) / 

In Eq. (2.3) and (2.4) , J and H are Bessel functions and Hankel 

functions of the f i r s t k ind , respect ively. The arguments of the functions 

are 

« = \ / n 2 k 2 - B 2 , (2.5) 

v = > / B 2 - k 2 , (2.6) 

k = £ , (2.7) 

and the f i e l d is assumed to vary as 

e 1 ( B 2 - « t ) ^ ( 2 # 8 ) 

Continuity of B z and Ez at the f i be r edge yields the dispersion r e l a t i on : 

K V l ( K a ) fK v+i(ra) 
J % >a) ~ K j Y a ) 

with 

(2.9) 

(K 2 + Y

2 ) a 2 = V2 = (n 2 - 1) k 2 a 2 . (2.10) 

The quantity V is called the "fiber parameter". 

The condi t ion for mode cu to f f in a f iber is 

Y a » 0 . (2.11) 

In th is l i m i t the dispersion r e l a t i o n , Eq. (2 .9 ) , s impl i f ies to 

Jj(V ) = 0 i f v = 0 , (2.12) 

and 

J 0 (V C ) = 0 I f M - 1 . (2.13) 
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In Eq. (2.12) V c is the value, at cutoff, of the fiber parameter V. 
Clearly, since increasing V means more zeros of the Bessel functions 
which satisfy V < V, the fiber parameter measures the number of guided 
modes supported by the fiber. Note that from Eq. (2.12) there is no cut
off for the LP Q 1 mode. (The first index labels the Bessel function, 
the second labels the zero's.) 

While formally there is no cutoff for the LPQ, mode, it is incorrect 
to think of the mode as bound by the fiber for all V > 0. To examine 
this more closely, near cutoff (fa « 1) the v = 0 modes satisfy: 

( °0 ( V ) \ 
Ya = 1.12 exp (-r^Tvy! • < 2- 1 4) 

Since the mode amplitude f a l l s of f r ad ia l l y as exp(-yr) for large yr, 1/Y 

measures the radial extent of the mode. An examination of Eq. (2.14) 

shows the mode extends far outside the beam for V « 1. 

For the LP„. mode to be considered guided, we w i l l somewhat a r b i 

t r a r i l y require that the 1/e point of Ey be wi th in 5 times the f i be r 

radius. This condition corresponds to demanding that 

V2 > 1 . (2.15) 

The analysis can be extended to a f iber with gain (or loss) by 

permit t ing V to be complex. The dispersion r e l a t i o n , Eq. (2 .9) , is 

unchanged, but K and y can now also be complex. From numerical so lut ion 

of the complex dispersion r e l a t i o n , we f ind the above c r i te r ion (2.15) 

generalizes to 

Re(V2) + 1/2 Im(V2) > 1 . (2.16) 
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The nature of the so lu t ion , however, is d i f f e ren t — a complex y co r re 

sponds to propagation of rad ia t ion away from the f i be r , balanced by gain 

in the f i b e r . 

I f we examine l i g h t propagation in an i n f i n i t e parabolic medium with 

gain [ 5 ] we obtain an analogous c r i te r ion fo r guiding. 

I I I . THE INDEX OF REFRACTION OF AN ELECTRON BEAM 

3.1 General Analysis 

The electron beam in a high-gain FEL physica l ly bunches on an optical 

wavelength; because of the bunching, the beam has an ef fect ive index of 

re f rac t ion greater than un i t y . This is in sharp contrast to the behavior 

of an unmagnetized (and unbundled) plasma, and is the basis for the 

opt ical guiding ef fects described in th is paper. In the previous sect ion, 

we have presented the c r i t e r i o n that the index of ref ract ion must sa t is fy 

in order for a f iber to guide the laser beam; in th is section we derive 

the index of ref ract ion of an electron beam in an FEL. 

As a further pre l iminary, we wish to draw a d is t inc t ion between two 

e f fec ts , which we w i l l label " re f ract ive guiding" and "gain focusing". 

The f i r s t refers to the f am i l i a r guiding of an optical beam by a f i be r 

with a real index of r e f r a c t i o n . The power in the opt ical beam 

propagates exactly para l le l to the f i be r . The second, gain focusing, 

refers to se l f -s imi la r propagation of an opt ica l beam pro f i l e around a 

f iber with gain: power d i f f r a c t s away from the f i be r , but the gain in 

the f i b e r more than balances d i f f r ac t i on . The resul t is an opt ica l 
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p ro f i l e that grows in amplitude, but does not change shape (hence the 

descript ion as se l f -s im i la r propagation). The d is t inc t ion between these 

two cases is pr imari ly in the nature of the index of re f rac t ion . Gain 

focusing occurs around a f i b e r with a purely imaginary index of r e f r a c 

t i o n ; re f rac t i ve guiding when the index of re f rac t ion is purely r e a l . In 

an FEL, the ef fect ive index of ref ract ion is complex, producing a mixture 

of re f rac t i ve guiding and gain focusing; in the examples we present, 

re f rac t i ve guiding dominates. 

Refractive guiding alone dominates in at least two circumstances: 

a) af ter saturation in an untapered wiggler (when the l igh t in tens i ty is 

roughly constant), and b) i n a tapered wiggler. The real part of the 

index of ref ract ion of an o p t i c a l l y bunched beam comes from the FEL 

equations as formulated in Ref. 6: 

» « " H - S S - ^ ^ * • <"> 
mc ke ' 

Gain focusing may dominate in the exponential gsin regime of an FEL with 

an untapered wiggler. The general expression fo r the imaginary part of 

the index of ref ract ion comes from the amplitude equation: 

1 de„ 2ireJ a., . „ , , . 

s mc ke. * 

In Eq. (3.1) and (3.2), e s is the normalized r.m.s amplitude of the 
electric field: 



e lEsl e - = - ~ 4 ^ (3.3) 

(for a linear wiggler); aw is the dimensionless r.m.s. vector potential 

of the wiggler field: 

- ^ ( , 4 , 
V2 k , mT 

where kw is the wiggler wavenumber. The current density is J, iA is the 

phase of an electron in the pondermotive potential well, and the brackets 

denote an average over the electron distribution. We use Gaussian c.g.s. 

units. 
From Eq. (3.1) and (3.2) we see that refractive guiding and gain-

focusing are distinguished simply by whether<£^Jr> or <——>domi

nates; i . e . , by the relative phase between the electron bunches and the 

laser electric field. 

The expressions for n in Eq. (3.1) and (3.2) are derived for a 

uniform infinite medium and a plane electromagnetic wave. We use the 

value of the index on the electron beam axis to determine the fiber 

parameter V. The relationships among dtf/dz, de /dz and n are changed by 

two-dimensional effects, as described in Sec. IV. 

3.2 Examples of FEL Guiding 

In this section, we present numerical simulations to illustrate 

guiding in the exponential gain regime (which we discuss in detail in 

Sec. IV), and guiding in an untapered wiggler after saturation. The 
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simulations were performed at LLNL with the 2-dimensional FEL code FRED. 

An ear l ier version of the code is described in Ref. [ 7 ] and [ 8 ] ; the code 

has since been modified to include f u l l betatron motion of the electrons. 

The code fol lows an axisymmetric laser beam around an electron beam that 

bunches long i tud ina l ly ( in *\> [ 1 ] ) . Axisymmetric d i f f r ac t i on effects are 

f u l l y included, via the paraxial wave approximation; re f ract ive and gain 

effects are included through the local source terms provided by the 

electron beam. 

The two categories of FEL guiding can be i l l u s t r a t e d with a single 

simulat ion, based on the design of an FEL in a storage r i ng . The 

parameters of the simulation are l i s ted in Table I . Figure 1 is a 

three-dimensional contour p lo t of laser in tens i ty versus r and z. The 

i n i t i a l bump in the laser i n tens i t y on axis is the input 30 MW laser beam 

at a focus; guiding is evident in the later growth of the laser f i e l d , 

and in the saturated regime (past 16 m). The guiding is v is ib le more 

quant i ta t ive ly in Figs. 2 through 4, which are cross-sections of the 

laser p r o f i l e at several values of z. The laser p r o f i l e is nearly 

constant over 60 Rayleigh lengths of propagation. Figure 2 is a 

cross-section in the exponential gain regime, F ig . 3 in the saturated 

regime, and F ig . 4 at the end of the wiggler. An in terest ing ef fect of 

the guiding is i l l us t ra ted in F i g . 5, which is a p lo t of the phase of the 

e lect r ic f i e l d versus radius at the end of the wiggler : the decrease in 

(6 with increasing r indicates tha t the output laser beam is actual ly 

converging to a f e u s 8 cm beyond the end of the wiggler . 
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3.3 Guiding After Saturation 

After saturation, the guiding of the light is entirely refractive, 
and Eq. (3.1) is applicable* We can generally take the bunching term, 
<(COS4')/Y>» to be = l/2Yg, where VQ is the average electron Lorentz 
factor. 0.05 +must of course remain less than or equal to unity, and 
perfect bunching at4" =0 never occurs. Then, for the parameters of the 
simulation, we find 

Re(V) := 1 , (3.5) 
after saturation. 

For guidino of the light after saturation, we obtain in general 

V2 - Zel "\ > ! , ( 3. 6 ) 

mc" Y 0 e s -

where I is the total current. With a slight modification, this equation 

is applicable to tapered wiggler amplifiers; the expression for V must 

be multiplied by = 2 f t r a p p e d C 0 S k H " w h e r e ftrapped i s t h e f r a c t i o n o f t n e 

electrons trapped in the decelerating ponderomotive potential well [1], 

and \p is the resonant iA of an electron that decelerates with the 

bucket. 

IV. GUIDING IN THE EXPONENTIAL GAIN REGIME 

We can analyze the guiding in the exponential gain regime by extend

ing the linear analysis in Ref. [9] to include the effects of diffraction 

(and incidentally, energy spread). To do so, we write the longitudinal 
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electron equations derived by K r o l l , Morton, and Rosenbluth [1 ] in 

complex form: 

dz 

Hz -

Re 

Re 

i V* e e i & j 

k w " 
2 ^ . i 

^ ( l . a ^ - ^ e - j 
w T " 

(4.1) 

(4.2) 

In Eq. (4.1) and (4 .2) , a. is the phase t f an electron with respect to a 

plane wave; in terms of +,• and #, 
J 

& j s +j (4.3) 

The factor fg is the well-known difference of Bessel functions [ 10 ] . 

The complex f i e l d equation follows from Eq. (3.1) and (3 .2 ) , but 

with addit ion of a transverse gradient term: 

2 c 

(4.4) 
3 e „ 

8Z 

2 i r i e a.. •• 

.3 ' T B N 
mc 1 ^ 2 k 

where e s is now a complex f i e l d amplitude. The to ta l number of electrons 

is N. The transverse gradient term follows d i r ec t l y from tha paraxial 

wave equation [11 ] . The recogni t ion that a guided laser f i e l d propagates 

with an unchanged p ro f i l e permits us to approximate the transverse 

gradient term very simply: 

2k (4.5) 



12 -
where z r = kwcl2 for a Gaussian profile with an electric field 1/e radius 

of w. The self-similar profile of a guided beam is not Gaussian; hence 

the approximate nature of Eq. (4.5). 

Equations (4.1), (4.2), and (4.4) can now ail be linearized, taking 

e s to vary as e u ' z ' z . To incorporate an electron energy spread, we 

take a square distribution for the electron energy: 

?A7 ' T0 

0 , otherwise. (4.6) 

The result of linearization is a cubic in the complex, dimensionless 

parameter X: 

x 3 + x2 [1 + 2 AkQ z r ] 

2 AkQ z r * (Ak 0z r) 2 - 4 (k w z r ) 2 ±- (4.7) 

Here 

A k w z r + U k 0 z r ) 2 - 4 ( k w z r ) 2 i l y 
Y 0 

A k 0 = k w 

2Y 

k 7 (1 + ^ ) (4.8) 

ic a parameter that measures the departure from resonance of the center, 

Y , of the electron distribution function, and 

2 2 
« _ 4ireJ *w fB _ 2 

3 3 z r 
roc Y _ 

(4.9) 
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is the dimensionless parameter that measures the coupling between the 

electron beam and the l i gh t . 

One's natural inclination is to attempt a simplification of this 

cubic, identifying the dominant terms and discarding the res t . Unfortu

nately, for many applications, all terms in the cubic are comparable, and 

the standard general expression for the analytic solution to a cubic must 

be used. 

The expression for the fiber parameter V- of the electron beam in 

terms of x is simple, and comes from Eqs. (3.1) , (3 .2) , (4.4) and (4 .5) : 

2 
V2 = f^- (1 + \) • (4.10) 

r 

We take the 1/e point of the Gaussian transverse density profile of the 

electron beam to be an effective fiber radius. For the parameters of the 

simulation described in Section 3.3, with w=0.02 cm (as observed in the 

simulation), the cubic yields 

V2 = 1.03 - 0.12i 
(4.11) 

X = 0,03 - 0.12i 

Our cr i ter ion for guiding [Eq. (2.16)] is sa t i s f ied , although the laser 

beam is somewhat more t igh t ly confined to the electron beam than |V| = 1 

would predict . In terms of e i ther the assumed w, or V, the discrepancy 

is only about 20 percent. 

The value for |Im(x)iis consistent with the exponential gain observed 

in the simulation. The fact that Im(x) is much less than unity ind i 

cates that the gain length is much longer than the Rayleigh range, 
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strongly violating the naive criterion mentioned in the Introduction, 

Eq. (1.1). 

The general procedure for evaluating the importance of guiding laser 

light by an electron beam is iterative. The cubic, Eq. (4.7), is solved 

with an assumed value for w; twice the electron beam radius (w=2a) is a 

good initial guess. From the solution for x, Eq. (4.10) gives V. The 

value of V determines, through Eq. (2.9) and (2.10), values for y and . 

The quantity w. is then given by 

w = 1/ |Re( Y ) | . (4.12) 

Iterating produces a consistent solution for the laser beam size and the 

growth rate, if a guided solution exists. 

We have assumed that the transverse derivative term in Eq. (4.5) can 

be adequately approximated by using w, the light bea&i size — this 

assumption permitted us to use the Rayleigh range of the laser profile in 

the derivation. When w » a, or V < 1, this assumption is violated; for 

V < 1, the transverse derivative term must be written as 

V^2 e s = - K

2 e s (4.12) 

with K obtained from the fiber dispersion relation. An interesting 
example of this limit occurs when the electron beam current becomes very 
small (A > 0), with ak Q = AY = 0. Then the cubic Eq. (4.7) reduces to 

x 3 + x 2 + A k w z r = 0. (4.13) 

Perturbing around the roots x = 0, 0, - 1 obtained with A = 0, we 

find 
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* « ± i /Ak^" r. - A Kzr • { 4 - 1 4 > 

Al l three roots correspond to V « 1 and w » a, as one would expect. 

The growing root in Eq. (4 .13) , x = - i JAkwzr, is very d i f fe ren t 

from what one would expect from one-dimensional theory, with or without a 
1/2 f i l l fac to r . The growth rate is less, and scales as J rather than 

j l / 3 ; the physical reason for the difference is the importance of 

d i f f rac t i on in th is l i m i t . 

As one would expect, d i f f r a c t i o n decreases the l inear growth ra te . 

The e f fec t of d i f f rac t ion on guiding is unexpected, however, and can be 

seen from the form of Eq. (3.1) and (3 .2) , For a given bunching 

< ( C O S + ) / T > . d i f f rac t i on reduces the e lec t r ic f i e l d e . The index of 

ref ract ion of the electron beam is thereby increased, enhancing the 

guiding. I t is this enhancement that permits exponential gain even when 

Eq. (1.1) i s v io la ted. 

V. APPLICATIONS 

We have been motivated in th i s study, and have emphasized in th i s 

paper, the importance of op t ica l guiding (under some circumstances) to 

FEL performance. As we have seen, the phenomena can be rather important 

and thus one can contemplate FEL's of exceedingly long length. In th i s 

way, i t appears possible to have a small electron beam radius and a very 

long wiggler (hence a very high gain FEL) even in the VUV range. 

* 
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Because of the ef fect of opt ical guiding i t is possible to d i rec t 

and focus the FEL-generated-optical beam. This is of interest for very 

intense beams, such as are contemplated for laser i ne r t i a l fus ion, where 

lenses and mirrors of conventional materials would be destroyed by the 

l i g h t . Use of opt ical guiding appears to be r e l a t i v e l y straightforward 

since a simple magnetic def lec t ion of the electron beam w i l l resu l t in a 

def lect ion of the l i g h t . 

I t should be noted that opt ical guiding appl ies, also, to very short 

wavelength l i g h t , which does not interact coherently with normal mater ia l . 

Application of this to the VUV and to soft X-rays would appear to make 

possible some interest ing devices. 

Optical guiding w i l l be e f fec t ive in an Inverse Free Electron Laser 

(IFEL) as well as in an FEL (A. Gaupp, private communication) and hence 

can be important in the operation of an IFEL, but th is requires a large 

accelerated current. 

F ina l l y , we note that opt ica l guiding may make possible resonant 

r ing FEL's ( J . D. Dawson, pr ivate communication). This requires FEL 

operation when the FEL is no longer s t ra igh t , which can be achieved with 

an isochronous r i ng . I t appears possible, in p r inc ip le , to have an FEL 

whose gain is modest per un i t length, but whose action extends over many 

c i r cu i t s of the r i n g . 

Af ter the completion of th is work our at tent ion was drawn to work by 

6. T. Moore which nicely compliments that presented here [12 ] . 
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Table I 

Simulation Parameters 

Current (I) 270 A 

Electron beam radius in the wiggler (a) 0.01 cm 

Electron Lorentz factor ( o) 2000 

Fractional electron energy spread 1.2»10~ 
( r .m .s . 41) 

Laser wavelength (2Wk) 2500 A 

Input laser power 30 MW 

Dimensionless r.m.s. wiggler vector 4.352 

potent ia l (a w ) 

Wiggler length 30 m 

Wiggler period (2ir/k w) 10 cm 
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FIGURE CAPTIONS 

Figure 1. A three-dimensional plot of laser intensity vs. r and z inside 

tho wiggler. 

Figure 2. A cross-section of the laser intensi ty , with a least-squares 

Gaussian f i t , at 7 = 10 m, in the exponential gain regime. 

The 1/e point of the electric field for the Gaussian f i t (the 

light beam radius) is at 0.024 cm . 

Figure 3. A cross-section of the laser intensi ty , with a least-squares 

Gaussian f i t , at z = 25 m, after saturation. The light beam 

radius is 0.023 cm. 

Figure 4. A cross-section of the laser intensi ty , with a least-squares 

Gaussian f i t , at z = 30 m, the end of the wiggler. The l ight 

beam radius is 0.024 cm. 

Figure 5. A cross-section of the phase i> of the complex electr ic f ield 

amplitude at the end of the wiggler, z = 30 m, with a 

least-squares parabolic f i t . The decrease of b with 

increasing r indicates that the l ight is focusing at the end 

of the wiggler. 

8559v/0196v 
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