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Helicity is a property of light which is familiar from particle physics but less well-known in optics. In this paper we
recall the explicit form taken by the helicity of light within classical electromagnetic theory and reflect upon some of
its remarkable characteristics. The helicity of light is related to, but is distinct from, the spin of light. To emphasise this
fact, we draw a simple analogy between the helicity of light and electric charge and between the spin of light and electric
current. We illustrate this and other observations by examining various superpositions of plane waves explicitly.
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1. Introduction

It was first suggested by Poynting [1], and later confirmed
experimentally by Beth [2], that a beam of light possesses
a manifestly intrinsic ‘spin’ angular momentum in the
direction of propagation that is associated with the rotation
of electric field vectors and magnetic field pseudovectors
[3–5]. This property of light, together with the ‘orbital’
angular momentum that is associated with the spatial distri-
bution of the electromagnetic field and its rotation [6], has
been the subject of much research interest in recent years
[3,7–9].

Determining the fundamental description of the angular
momentum of light in electromagnetic theory has proved
surprisingly difficult. Regarding the manifestly intrinsic
angular momentum of light in particular, clarity follows
from an observation that is familiar from particle physics:
the photon is massless and relativity suggests, therefore,
that the photon only possesses one meaningful component
of spin angular momentum, the component in the direction
of propagation [4,5,10]. The value taken by this component
is referred to as the photon’s ‘helicity’ [11]. The helicity of
a photon in a circularly polarised plane wave mode is ±�,
the plus or minus signs referring to left- or right-handed
circular polarisation, respectively, in the optics convention
[12]. We suggest that it is the helicity, rather than the spin,
of light that lies at the very heart of the description sought
[13–15].

Helicity is a subtle property of light.Although it is closely
related to the spin, and indeed the polarisation, of light, it
is fundamentally distinct from both. It is somewhat diffi-
cult to convey the significance of such relationships and
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distinctions through an examination of the simplest optical
field: a single plane wave. In this paper we instead consider
more exotic optical fields composed of multiple plane waves.
This allows us to explore the similarities and differences bet-
ween the helicity and the energy of light and to illustrate an
interesting analogy between the helicity of light and charge
(both of which are signed quantities). Finally, it allows us
to demonstrate clearly that, as claimed, the helicity of light
is distinct from both the spin and polarisation of light.

2. The optical helicity

We work within the classical domain and consider freely-
propagating light, adopting a system of units with ε0 =
μ0 = c = 1. The electric field, E, and the magnetic field, B,
obey Maxwell’s equations, which then take the form [12]:

∇ · E = 0, (1)

∇ · B = 0, (2)

∇ × E = −∂ B
∂t

, (3)

∇ × B = ∂ E
∂t

. (4)

We begin by recalling some observations regarding the
helicity of light that have been made elsewhere by ourselves
and others [13–30]. The explicit expression for the total
helicity of an optical field is

H =
∫∫∫

1

2

(
A⊥ · B − C⊥ · E

)
d3r, (5)

where A⊥ and C⊥ are, respectively, the transverse, gauge-
invariant [31] pieces of the familiar magnetic vector
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potential and an analogous electric pseudovector potential,
due to Bateman [32], defined such that

E = −∇ × C⊥ = −∂ A⊥

∂t
, B = ∇ × A⊥ = −∂C⊥

∂t
.

(6)

The optical helicity, H, was introduced by Candlin [16],
who referred to it as the ‘screw action’. It is a conserved,
manifestly intrinsic quantity with the dimensions of an
angular momentum, in spite of the fact that it is a time-even
Lorentz pseudoscalar, possessing no sense of orientation
in spacetime. The form of the operator, Ĥ, representing
the optical helicity, H, within the quantum domain was
observed by Candlin [16] and corresponds to the notion
of helicity that is familiar from particle physics, describing
a helicity of ±� per photon in a circularly-polarised plane
wave mode. The optical helicity, H, is related to, but is
ultimately distinct from, the ‘magnetic helicity’ introduced
by Woltjer [33], which is utilized in the study of certain
plasmas. Moreover, the form of the optical helicity, H, is
resembled by that of the ‘vortex helicity’ or ‘fluid helicity’
introduced by Moreau [34], which is utilized in the study
of certain fluids.1

The helicity of light is, in fact, locally conserved, as
expressed by the helicity continuity equation:2

∂h

∂t
+ ∇ · s = 0, (7)

where

h = 1

2

(
A⊥ · B − C⊥ · E

)
(8)

is the integrand seen in (5), which we interpret as being the
helicity density of an optical field, and we identify

s = 1

2

(
E × A⊥ + B × C⊥)

(9)

as being the helicity flux density. Remarkably, the helicity
flux density, s, is also the candidate for the spin density of
an optical field that was put forward recently by one of us
[3]. Indeed, the volume integral of s is the total spin, S,
of an optical field [3–5,31,36], the correct form of which is
due to Darwin [36,37] and to Humblet [38,39]. Although
they are related, we emphasise that the optical helicity, H,
and the optical spin, S, are distinct: whereas the helicity
of a photon in a circularly-polarised plane wave mode is
±�, its spin is ±�k/|k|. The latter result was observed by
Lenstra and Mandel [40] and was investigated in greater
detail by van Enk and Nienhuis [4,5] who showed that
the optical spin, S, is not a true angular momentum in
that the operators representing its components within the
quantum domain do not obey the usual angular momentum
commutation relations. We have explored this point in detail
elsewhere [3,13,15].

In playing its dual role, the helicity flux density or spin
density, s, reminds us of Poynting’s vector, which also plays
a dual role in that it is simultaneously the energy flux density

and the linear momentum density of an optical field [12].
Indeed, Equation (7) is reminiscent of Poynting’s theorem
[41]. We have considered the analogy between the funda-
mental descriptions in electromagnetic theory of the helicity
of light and the energy of light in detail elsewhere [13,14].

The rather surprising appearance of two potentials in
these discussions may be viewed as a reflection of some-
thing deeper: Maxwell’s equations (1)–(4) are highly
symmetric. In particular, they place the electric field, E,
and the magnetic field, B, on equal footing, retaining their
form under a ‘duality rotation’:

E → E′ = E cos θ + B sin θ,

B → B′ = B cos θ − E sin θ, (10)

for any time-odd Lorentz pseudoscalar angle θ , an obser-
vation due to Heaviside [42] and Larmor [43]. It is this
rotational symmetry that is associated with the conserva-
tion of the helicity of light, a connection made by Calkin
[17] which ourselves and others have pursued elsewhere
within the context of Noether’s theorem [15,30]. There is
thus a sense in which the optical helicity, H, embodies the
principle of electric-magnetic democracy, a phrase coined
by Berry [44]. Such associations seem reasonable given
that a duality rotation (10) literally rotates the electric field
vectors and magnetic field pseudovectors in a single plane
wave about its direction of propagation [13–15].

3. The density of helicity: interference versus
quasi-interference

In Section 2, we suggested an analogy between the helicity
and energy of light. Comparing the helicity density, h, given
by (8) and the energy density [12],

w = 1

2
(E · E + B · B) , (11)

we see that they bear a remarkable resemblance [13].
Physically, however, they differ in many subtle respects.

In general, the energy density, w, is positive, although
it can vanish at certain points in space at certain times. In
contrast, the helicity density, h, can be positive, vanishing
or negative. The energy density, w, is sensitive to the phe-
nomenon of interference, manifest in the presence of the
dot products E · E and B · B seen in (11): interference is
maximised when parallel fields are superposed but is absent
when orthogonal fields are superposed. The helicity density,
h, however, is not inherently sensitive to interference but
rather, we suggest by analogy, to a kind of ‘interference’
between the electric and magnetic fields and the transverse
pieces of their associated potentials, manifest in the pres-
ence of the dot products A⊥ · B and −C⊥ · E seen in (8).
We refer to this phenomenon as quasi-interference.

We illustrate these ideas by considering an optical field
composed of a superposition of two linearly-polarised plane
waves, 1 and 2, of equal angular frequency, ω0. Initially,
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Journal of Modern Optics 27

Figure 1. Three different plane waves of equal amplitude and equal angular frequency, ω0. The polarisations of the plane waves are
indicated by shaded (light blue online) arrows. The fields, E (blue online) and B (red online), and the transverse pieces, C⊥ (orange
online) and A⊥ (green online), of their associated potentials, are depicted at some instant of time within the expanded views of the
wavefronts. The value taken by the helicity density, h, given by (8) should be compared with the relative orientations of E and C⊥ and
of B and A⊥ within each plane wave [14]. (The colour version of this figure is included in the online version of the journal.)

we suppose that the wavevectors, k1 and k2, of the plane
waves are parallel. Of course, the optical field itself may
then be thought of as a single plane wave which can, in
turn, be decomposed in various other ways however, these
decompositions are not convenient for our present exposi-
tion. Now, suppose that the polarisations of the plane waves
are parallel. The electric fields and the magnetic fields of
the plane waves are also parallel and, therefore, the plane
waves interfere. The electric and magnetic fields of each
plane wave are, however, orthogonal to the transverse pieces
of the associated potentials of the other plane wave and,
therefore, the plane waves do not exhibit quasi-interference.
The nature of the interference (constructive or destructive)
is dictated by the relative phase of the plane waves which
influences the amplitude of the (linearly-polarised) optical
field. The energy density, w, of the optical field can be
greater than, equal to or less than the sum of the energy
densities that are attributable to the plane waves individu-
ally. The helicity density, h, of the optical field vanishes. If
we suppose instead that the polarisations of the plane waves
are orthogonal, the electric fields and the magnetic fields of
the plane waves are also orthogonal and, therefore, the plane
waves do not interfere. The electric and magnetic fields of
each plane wave are, however, parallel to the transverse
pieces of the associated potentials of the other plane wave
and, therefore, the plane waves exhibit quasi-interference.
The nature of the quasi-interference is also dictated by the
relative phase of the plane waves which now influences the
polarisation of the (elliptically-polarised in general) optical
field. The energy density, w, of the optical field is simply
the sum of the energy densities that are attributable to the
plane waves individually. The helicity density, h, of the

optical field however assumes a value ‘equivalent’ to �σ

per photon, where the polarisation parameter, −1 ≤ σ ≤ 1,
takes its limiting values of ±1 for left- or right-handed
circular polarisation, respectively [13,14]. If the optical field
is of left-handed circular polarisation (σ = +1), it is found
that A⊥ and C⊥ are in phase with, and are parallel to
and anti-parallel to, B and E, respectively, giving rise to a
positive helicity density, h. Opposing relative orientations
are found if the optical field is of right-handed circular
polarisation (σ = −1), giving rise to a negative helicity
density, h. If the optical field is linearly-polarised (σ = 0),
however, it is found that A⊥ and C⊥ are a quarter cycle
out of phase with, and are orthogonal to, B and E, respec-
tively, giving rise to a vanishing helicity density, h. See
Figure 1. Zambrini and Barnett have made observations
that are closely related to those made here [45].

Now let us consider what happens when the wavevectors,
k1 and k2, of the plane waves lie within the x–y-plane,
enclosing small angles 0 < θ0 � 1 on either side of the
x-axis such that k1 and k2 are themselves separated by an
angle of 2θ0 as depicted in Figure 2. In this particular case,
we take the amplitudes of both plane waves to be equal
to E0 > 0, supposing that the polarisation of plane wave
2 is confined to the x–y-plane whilst the polarisation of
plane wave 1 is at an angle φ0 to this plane. We take the
wavevectors and the electric fields of the plane waves to be:

k1 = x̂ cos θ0 + ŷ sin θ0, (12)

k2 = x̂ cos θ0 − ŷ sin θ0, (13)

E1 = ((−x̂ sin θ0 + ŷ cos θ0
)

cos φ0 + ẑ sin θ0
)

× E0 cos (k1 · r − ω0t) , (14)
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x
y

z

k2 k1

2 1

Figure 2. Two plane waves, the wavevectors, k1 and k2, of which
lie in the x–y-plane, separated by an angle 0 < 2θ0 � 1. The
superposition of these plane waves constitutes the optical field
examined in the latter part of Section 3. The angular separation of
the wavevectors has been exaggerated for the sake of clarity. (The
colour version of this figure is included in the online version of
the journal.)

E2 = (
x̂ sin θ0 + ŷ cos θ0

)
E0 cos (k2 · r − ω0t) , (15)

where x̂, ŷ and ẑ are Cartesian unit vectors and the total
electric field is of course given by E = E1 + E2. To first
order in θ0, the helicity density, h, and the cycle-averaged
energy density, w, of the optical field are

h = E2
0

ω0
sin φ0 sin (κ0 y) , (16)

w = E2
0 (1 + cos φ0 cos (κ0 y)) , (17)

where κ0 = 2θ0ω0 is a wavenumber. Notice that the helicity
density, h, is time independent. It can be shown that this is
true of all strictly monochromatic optical fields: ∂h/∂t = 0.
Due to the small angular separation, 2θ0, of the plane
waves, their relative phase oscillates as a function of y, with
wavelength 2π/κ0. The helicity density (green online) and
cycle-averaged energy density (purple online) are plotted
in Figure 3 for φ0 = 0, π/4 and π/2. For φ0 = 0 the
polarisations of the plane waves are (essentially, as θ0 is
small) parallel (see Figure 2) and the optical field is lin-
early polarised. The plane waves then interfere such that
w oscillates between 2E0 and 0. That is, we have ‘bright’
and ‘dark’ fringes: a redistribution of energy within the
optical field, attributable to constructive and destructive
interference, respectively. In contrast, no quasi-interference
occurs and h vanishes (solid lines in Figure 3). An opti-
cal field possessing such characteristics can be found, for
example, in the far-field of a Young’s double slit diffraction
pattern using linearly polarised light. If, instead, φ0 = π/2,
the polarisations of the plane waves are orthogonal and
the polarisation parameter, σ , of the optical field oscillates
between σ = +1 and σ = −1, reflecting the oscillation of
the relative phase of the plane waves discussed above. As
the plane waves do not interfere in this case, w assumes a
value of E2

0 at every point in space. The plane waves do,

however, exhibit quasi-interference such that h oscillates
between +E2

0/ω0 and −E2
0/ω0 (see small dashed lines in

Figure 3). That is, we have ‘helicity fringes’: a redistribution
of helicity about h = 0 within the optical field, attributable
to quasi-interference. Such optical fields have been utilised
recently in optical trapping experiments [46,47] and have
been referred to as polarisation gratings. Gradients in the
polarisation of an optical field are also utilised, of course,
in the laser cooling of certain atoms [48–52]. Although they
are related, it should be borne in mind that the helicity and
the polarisation of light are distinct, a point to which we
return in Section 5.

4. The flow of helicity

In Section 2 we introduced the helicity flux density or spin
density, s, and made an analogy between the helicity con-
tinuity equation (7) and Poynting’s theorem. Although we
are considering freely-propagating light, assuming a strict
absence of charge, we can also make a comparison with the
familiar charge continuity equation [12]:

∂ρ

∂t
+ ∇ · j = 0, (18)

which relates the charge density, ρ, to the current density, j .
Charge, and indeed the charge density, ρ, can be positive or
negative and a flow of positive charge in a given direction
can yield the same current density, j , as a suitable flow
of negative charge in the opposite direction. Similarly, the
helicity, and indeed the helicity density, h, of an optical field
can be positive or negative and a flow of positive helicity in a
given direction can yield the same helicity flux density, s, as
a suitable flow of negative helicity in the opposite direction.
The analogy stops there, however, as there is no obvious
physical significance to the volume integral of the current
density, j , whereas the volume integral of the helicity flux
density or spin density, s, is the optical spin, S, which is the
total spin of an optical field [13–15], as discussed in Section
2.

To illustrate these ideas, let us consider the optical field
depicted in Figure 4, which is composed of two circularly-
polarised plane waves, 1 and 2, of equal amplitude,
E0/21/2 > 0, and equal angular frequency, ω0, propagating
in the +x- and −x-directions and possessing polarisation
parameters σ1, σ2 ∈ {−1, 1}, respectively. The correspond-
ing electric fields are

E1 = E0

21/2

(
ŷ cos (ω0 (x − t)) − ẑσ1 sin (ω0 (x − t))

)
, (19)

E2 = E0

21/2

(− ŷ cos (ω0 (x − t)) + ẑσ2 sin (ω0 (x + t))
)
, (20)

and the total electric field is of course E = E1 + E2. The
helicity density, h, and the helicity flux density or spin
density, s, of the optical field are:

h = E2
0

2ω0
(σ1 + σ2) , (21)
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Figure 3. From (17), plots of the helicity density, h, and the cycle-averaged energy density, w, of the optical field depicted in Figure 2.
(The colour version of this figure is included in the online version of the journal.)

Figure 4. Two circularly-polarised plane waves, the superposition
of which constitutes the optical field examined in Section 4. (The
colour version of this figure is included in the online version of
the journal.)

s = E2
0

2ω0
(σ1 − σ2) x̂. (22)

Notice that, like the helicity density, h, the helicity flux
density or spin density, s, is time independent. It can be
shown that this is true of all strictly monochromatic optical
fields: ∂s/∂t = 0.

If both plane waves possess the same sense of circular po-
larisation (σ1 =σ2 =±1), there is a non-vanishing helicity
density, h = ±E2

0/ω0, but a vanishing helicity flux density
or spin density, s = 0. In contrast, if the plane waves possess
opposite circular polarisations (σ1 = −σ2 = ±1), there is a
vanishing helicity density, h = 0, but a non-vanishing
helicity flux density or spin density, s = ±E0 x̂/ω0.

Returning to the analogy made above between the helicity
of light and charge, we can liken the first case (σ1 = σ2 =
±1) to a combination of two counterpropagating flows of
charge of the same sign, giving rise to a net charge (cf.
h 	= 0) but no net current (cf. s = 0). In contrast, we can
liken the second case (σ1 = −σ2 = ±1) to a combination of
two counterpropagating flows of charge of opposite signs,
yielding overall neutrality (cf. h = 0) whilst giving rise to
a net current (cf. s 	= 0). Counterpropagating circularly-
polarised beams of light possessing the same handedness
are utilised in the process of cooling certain atoms [48–52]
whilst counterpropagating circularly-polarised beams of

light possessing opposite handedness (but slightly different
amplitudes) have been utilised recently in a fluorescence
detected circular dichroism experiment [53–55], which
yielded an enhancement of a certain measure of dissym-
metry over that which can be observed utilising a single
traveling beam of circularly-polarised light.

Evidently, it is possible to produce light that possesses
a non-vanishing helicity but a vanishing helicity flux and,
in particular, a vanishing spin (and vice versa). This is, we
suggest, a clear demonstration that the helicity of light and
the spin of light are indeed distinct, in spite of the intimate
relationship between them that is embodied in the helicity
continuity equation (7).

5. A subtle distinction

In this section we explore the subtle distinction between the
polarisation of light and the helicity of light. Polarisation
is a concept which is invoked to describe the manner in
which the electric field vectors, in particular, evolve in
time within an optical field. In contrast, the helicity of light
possesses the dimensions of an angular momentum and may
be thought of as flowing continuously within an optical
field, in accordance with the helicity continuity equation (7).
Nevertheless, the polarisation and helicity density of a
single plane wave are closely related [13,14], as discussed in
Section 3. In particular, we can associate the presence of ro-

Figure 5. Two plane waves, the superposition of which constitutes
the optical field examined in Section 5 and depicted in Figure 6.
(The colour version of this figure is included in the online version
of the journal.)
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30 R.P. Cameron et al.

Figure 6. The optical field resulting from the superposition depicted in Figure 5. The electric field vectors and the magnetic field
pseudovectors within the optical field rotate with opposite senses. (The colour version of this figure is included in the online version
of the journal.)

tating electric field vectors (circular polarisation)
directly with a non-vanishing helicity density. For more
exotic optical fields, however, such associations are not
necessarily appropriate.

We can demonstrate this fact through an examination of
the optical field depicted in Figure 5, which is composed
of two plane waves, 1 and 2, of equal amplitude, E0 > 0,
and equal angular frequency, ω0, that are linearly-polarised
parallel to the z- and y-axes and propagate in the +x- and
−x-directions, respectively. Their electric fields are

E1 = ẑE0 cos (ω0 (x − t)) , (23)

E2 = − ŷE0 cos (ω0 (x + t)) . (24)

The total electric field, E = E1 + E2, and indeed the total
magnetic field, B, can be expressed in the revealing forms:

E = (− ŷ + ẑ
)

E0 cos (ω0x) cos (ω0t)

+ (
ŷ + ẑ

)
E0 sin (ω0x) sin (ω0t) , (25)

B = (− ŷ + ẑ
)

E0 cos (ω0x) cos (ω0t)

− (
ŷ + ẑ

)
E0 sin (ω0x) sin (ω0t) . (26)

Notice that the optical field is in the ‘lin ⊥ lin’configuration
as shown in Figure 6. Such fields may be utilised, for exam-
ple, in the laser cooling of certain atoms, due to their inher-
ent ‘polarisation gradients’ [48–52]: at x = xN = Nπ/2ω0
and x = xM = (2M + 1) π/4ω0, the electric field vectors
oscillate within the y–z-plane in linear and circular man-
ners, respectively, where N = 0,±1,±2, . . . and M = 0,

±1,±2, . . . are integers. The magnetic field pseudovectors
also oscillate within the y–z-plane in linear and circular
manners at x = xN and x = xM , respectively. However,
the sense of rotational motion that they exhibit is opposite
to that exhibited by the electric field vectors, due to the
opposite signs of the second terms seen in (25) and (26).

In this case we find that the helicity density, h, and the
helicity flux density or spin density, s, of the optical field
both vanish:

h = 0, s = 0. (27)

This result is perhaps unsurprising given the opposing
rotational motions exhibited by the electric field vectors and
the magnetic field pseudovectors within the optical field: as
discussed in Section 2, the optical helicity, H, itself lacks
any sense of orientation in spacetime and embodies the
principle of electric-magnetic democracy. Evidently, the
mere existence of rotating electric field vectors (circular
polarisation) does not in itself imply the existence of a non-
vanishing helicity density, h, and helicity flux density or
spin density, s, within an optical field in general.3

6. Discussion

We have explored some of the relationships and distinctions
between the helicity of light and other properties of light
that may be more familiar, namely the energy, spin and
polarisation of light. We have illustrated our observations by
examining various superpositions of plane waves explicitly.

It should be noted that the optical helicity, H, is not the
only quantity in electromagnetic theory that describes
the manifestly intrinsic angular momentum associated with
the rotation of electric field vectors and magnetic field pseu-
dovectors. In addition, we recognise the optical spin, S,
and other quantities besides [13–15]. In consideration of
our recent investigations, it now appears that the description
extends indefinitely. It seems clear, however, that the optical
helicity, H, lies at the very heart of this description, as
suggested in Section 1.

It is natural to ask, of course, whether the demonstrated
ability to ‘sculpt’ the helicity of an optical field is of any
practical use, a subtle point given that helicity is not a
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conserved property of light in the presence of charge [14].
We shall return to this interesting question in future
publications.
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Notes
1. The use of the word ‘helicity’ in this context is due to Moffatt

[35] who proposed it by analogy with the concept of helicity
familiar to him from particle physics.

2. We hope that no confusion arises here between the helicity
density and Planck’s constant: in the present paper, we use h
to denote the former and � to denote the reduced form of the
latter.

3. Although the electric and magnetic fields are treated in an
equal manner by Maxwell’s equations (1)–(4), they are, of
course, distinct entities. In spite of the opposing senses of
rotational motion exhibited by their vectors and pseudovec-
tors, respectively, it would certainly not be fair to say that
the optical field under examination possesses no rotational
motion whatsoever: the electric and magnetic fields do not
‘cancel each other out’. Indeed, further investigation reveals
the presence of non-vanishing components of spin flux density
or ij-infra-zilches densities, ni j [13].
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