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CHAPTER I
INTRODUCTION

This investigation is concerned with the heterodyne detection of a
randomly distorted optical signal beam. The randoﬁ distortion; i. e.,
random fluctuations in the phase and‘amplitude of the received signal,
may, for example, be a result of the beam having traversed a turbulent
atmosphere exhibiting a randomlyi fluctuating index of refraction. For
the case of an atmospherically distorted plane wave this problem has
been considered[ 1,2], but only with a ﬁon- optimal plane wave local
oscillator beam. The specific problem under consideration in this in-
vestigation is to determine that time invariant optical heterodyne de-
tection scheme which is optimal, in the sense that it maximizes the
average heterodyne signal-to-noise ratio.

Optical heterodyne detection is possible because the detectars
in the optical region|[ 3] are "square law' detectors (i. e., the detector
output current is proportional to the intensity or square of the electric
field. In this process| 3] the incident beam is combined on the
detector's surface with a single frequency, high intensity beam called
the local oscillator wave. The detector current will then contain com-
ponents at frequencies equal to the difference of frequencies of the

1



signal and local oscillator. These difference frequencies can, for
‘example, be in the microwave range or lower, where efficient broad-~
band amplification is easily obtained[ 3] .

Perhaps the most serious difficulty with direct heterodyﬁe de~
tection of the incident optical signal lies in the fact that the detector
surface may be thousands of wavelengths wide. This then, as will be
described in detail later, imposes a very severe alignment tolerance
between the signal and local oscillator waves if one is to maintain a
constant-signal-local oscillator phase difference. Fluctuations about
this precise alignment requirement result in fading of detected signal
level.

Realize now that the atmosphere, with its ever changing pressure
and temperature (and hence, index of refraction), will cause distortions
in both the amplitude and phase of an optical signal and then one can
reasonably ask —is there any chance that direct heterodyne dete;':tion
will be practical for atmospheric optical links?

This investigation partially answers this question in that it
determines the maximum average signal-to-noise ratio obtainable with
a time invariant detection scheme. It also prescribes the local oscil-

lator shape required to achieve the maximum signal-to-noise ratio with



no optical preprocessing of the received signal. It is further demon-
strated that no optical processing scheme can increase the signal-to-
noise ratio above this maximum value. Some related topics are also
briefly considered.‘

To introduce the subject in more detail, the remaining sections
of the introduction contain a detailed review of the problems and con-
cepts associated with optical heterodyne detection; and present further
references to the literature. First a general introduction to optical
communications is presented followed by a discussion of signal-to-
noise ratio and its use as the figure of merit for the evaluation of
optical communication systems. The next two sections describe in
qualitative, but detailed, fashion how phase and amplitude fluctuations
effect the heterodyne signal. The last two sections contain a discussion
of a different approach to optical heterodyne detection, namely, one
using time dependent detection schemes. These are discussed and

compared with time independent schemes employed in this investigation.

A. Discussion of Optical
Communication

There has recently been a resurgence in optical communications.
This resurgence owes its existence to the fact that optical comimuni-
cation systems today possess the necessary prerequisites of any practi-

cal communications link. These are: (1) An efficient source of energy



(the laser) and (2) Efficient detectors (e. g., the phototube and the
semiconductor photodiodes). As each of these necessary components
also exist for other regions of the electromagnetic spectrum.(for ex-~
ample, at radio and microwave frequencies), one might then reason-
ably ask — why even consider optical communications? As one miéht
suspect, the answer to this question must somehow be related to the
essential difference between optical energy and these other forms —
namely, the wavelength ( or frequency) of the associated electromag-
netic wave. This conclusion is correct because it is for this reason
that optical communication systems hold the following two important
advantages over their counterparts at r-f and microwave frequenciesid]:

(1) Increased directivity, and hence, greater antenna gain (with
smaller antenna size). The larger antenna gain implies, of course,
that less transmitter power is required to achieve a given level of
received power, and

(2) The hugeness of the available optical spectrum ( 1014 to
10*° cps) and hence, the wide bandwidths available for the trans-
mission of information.

The first of these advantages implies not only the possibility of
efficient long distance communications[ 4], such as satellite to satellite
and earth to moon, but also the ability to simultanéously operate

several optical links in close proximity. With regard to the second



advantage, it can be noted that the available bandwidth at optical fre-~
quencies is almost 20,000 times greater than that at microwave fre-
quencies[ 4]. With the rapidly increasing desired rate and quantity of
communications, the optical link may, then, soon be requirea as a
replacement for the present microwave links. For example, the
telephone company envisions the day when a single coast to coast

laser link will simultaneously transmit thousands of ''picture-telephone'
conversations. Potential applications for lasers also exist in the area
of computers and as extremely accurate position and velocity measuring
instruments.

B. Signal-to-Noise Ratio -
Undistorted Signal

An important quantity for evaluating the performance of a com -
munications channel, in the absence of random fluctuations in the re-
ceived signal, is the signal-to-noise ratio. In the case of heterodyne
detection, it is the ratio of beat signal power to noise power. The
noise, i.e., a randomly fluctuating current added to the beat signal
current, may be the result of[4] external (or background) radiation
falling on the detector surface; or of the quantum nature of the light
flux ( important for "very small'" received signal powers), and of the
detector itself. »In the case of a photodetector[ 4], the internal noise

ijs a result of the randomness of the electron-emission from the
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photosurface ( shot noise); of the dark current; i. e., that current which
flows even in the absence of any external radiation; and of thermal, or
resistor, noise. In this investigation it v:r'ill be assumed that the local
oscillator power is of sufficient magnitude so that the detector is
operating in the shot noise limited condition. In this case, the noise
power, i.e., the rms value of the shot noise, is directly proportional
to the local oscillator power[ 5] . As the beat signal power is, ideally,
directly proportional to the product of local oscillator and received
signal powers[ 5] , it follows that the signal-to-noise ratio is, for this
case, directly proportional to the received signal power.

The importance of the signal-to-noise ratio is that it is this
quantity which, in the case of a discrete or digital communications
system, is needed to determine the error performance of the system[ 6] .
That is, it determines the probability that the detector makes an error
in deciding what message was sent to it. Iﬁ the case of waveform com-
munication, the signal-to-noise ratio is neecded to determine the mean
square error between the transmitted and received wave forms[ 7 — the
mean square error being a measure of the '"fidelity'' of the received

signal.



C. Average Signal-to-Noise

In the presence of random fluctuations in the received signal, the
signal-to-noise ratio is, by definition, no longer a deterministic func-
tion. That is, the random fluctuations in phase and amplitude of the re-
ceived signal induce random fluctuations in the beat signal and hence, in
the signal-to-noise ratio. A quantity which can be determined, and to
which much attention has been given, is the average signal-to-noise
ratio. Thus, in the case of an atmospherically distorted plane wave
optical signal, Fried[ 1] and Gardner[2] have shown that because of
the random distortion there is a limit to the achievable average signal-
to-noise ratio, no matter how large one makes the detector collection
aperture. (Recall that, ideally, the signal-to-noise ratio is directly
proportional to the collected optical signal power and hence, should
increase as the size of the collection aperture is increased.) It will be
important to remember in what follows that each of these analyses
assumed a plane wave local oscillator beam.

Although the average signal-to-noise ratio does not provide
sufficient information to fully evaluate the performance of a communi-
cations link, for reasons to be given below, it does, nevertheless,
afford an easily obtainable parameter upon which some general predic-
tions of performance can be based. For example, it sets the lower

bound on the minimum obtainable probability of error or minimum



mean square error[ 8] . Inthe work that follows, the primary interest
in the average signal-to-noise ratio is in that it does provide a parame-
ter for easily comparing the performance capabilities of different
heterodyne detection schemes. In particular, the interest here is in
determining that time invarient heterodyne detection scheme which
yields the largest average signal-to-noise ratio.

It is worth noting here that the average signal-to-noise ratio does
not determine the "average performance' of the communications channel.
That is, this quantity does not determine the average probability of
error, in the case of digital communications, nor the average mean
square error in the case of waveform communication. The average
signal-to-noise ratio would determine these quantities if they were
linearly related to the signal-to-noise ratio. Unfortunately, they are
highly nonlinear functions of the signal-to-noise ratio[ 6]. This is
just what one might suspect. The basic idea here is that a signal-to-
noise ratio of, say 20 to 1, is ''nearly" sufficient to completely
surpress the effects of the noise. Increasing this ratio to 40 to 1
improves the performance very little. On the other hand, if the
signal-to-noise ratio is "very small' , then communication is '""nearly"
impossible. Thus, if the signal-to-noise ratio were to fluctuate
between 40 and 0, it is clear that the average performance is certainly

worse than that obtained with a constant signal-to-noise ratio of 20.



Therefore, in order to precisely determine the average perfofmance

of the system, it would be necessary to know the probability distribution
function of the beat signal power[8]. However, as described above, the
average signal-to-noise ratio does provide an easily obtainable estimate
of system performance and is, for this reason, the quantity to which
attention is here given.

D. Effects of Random Phase
Fluctuations

Qualitatively, the effects of random phase fluctuations ( amplitude
fluctuations will be discussed separately) on the signal-to-noise ratio
may be understood by recalling the following: If two monochromatic
beams of light with different frequencies are combined on the surface
of a square law detector (e. g., a phototube) then the output current at
the difference frequency, i. e., the beat signal, will have a maximum
amplitude when the two wavefronts are parallel. This is because this
output current is given by the sum of the beat frequency currents gener-
ated at each ""point'" on the detector surface, and the phases of the indi~
vidual currents are given by the difference in the phases of the local os-
cillator and received beams at the point in question. Thus, the individual
beat signals will all add in phase only when the local oscillator and re-
ceived signal wavefronts are parallel. Therefore, any fluctuations in

the difference in phase between two points on the signal wavefront will
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result in an average beat signal amplitude and hence, signa.:l-to-noise
ratio which is less than that in the absence of the fluctuations. Perhaps
even more importaﬁt, it is apparent that in the course of time the magni-
tude of the beat Asignal can fluctuate, i.e., signal fading will appear. It
is important to note that these fluctuations are always such as to reduce
the magnitude of the beat signal from its maximum value. It is also
apparent that as the magnitude of these phase fluctuations increase,
such as might be expected when the size of the receiver aperture is
increased, that the reduction in average signal-to-noise ratio from its
maximum value will increase. A more complete discussioh of this
point is provided in Chapter IIL

E. Effects of Amplitude
Fluctuations

Random fluctuations in the beat signal and the associated reduction
in average signal-to-noise ratio can also be caused by random ampli-
tude fluctuations alone in the received signal. This is clear when the
received optical signal power fluctuates with time. However, this can
also be true even when the received optical signal power does not fluctu-
ate with time, That is, a simple, time dependent, redistribution of the
received power over the collection aperture can cause the beat signal
to fluctuate with time. To see this, recall that the beat signal amplitude

generated at an individual ""point" on the detector surface is directly
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proportional to the product of the amplitude; Aj, of the received beam
and the amplitude; Bj, of the local oscillator beam at the point (i) in
question. Thus, for the case of parallel wavefronts, the net beat signal

amplitude is proportional to the sum

i

over all "points' on the detector surface. Defining abstract signal and

local oscillator "vectors" A =(A;, A ..., Ay) and B = (B, Bz, ...,

By) s respectively it follows that[ 20]

I, = } AiBi=X- E
‘i_'
Recall now that the dot product of two vectors is less than or at most
equal to the product of the magriitudes of the individual vectérs. Thus,
I, = Z ];S ,X' , E, . As is well known, the equality sign holds only
when the two vectors are linearly dependent; i. e., when B; = CAj,
where C is an arbitrary constant.

One can now make two very important statements. First, the
ratio of beat signal power (proportional to If)) to noise power ( propor-
tional to local oscillator power, or to }glz) is a maximum when the
local oscillator and received signal beams have, not only parallel wave-

fronts, but also identical amplitude shapes over the detector surface.

An interesting way of stating this can be obtained by employing complex
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notation to describe the amplitude and phase of the signal and local oscil-

lator beams, i. e., Aie‘](biand Biejei, respectively. Thus, write these

InAst jbiz InByt §6;

quantities in the form e i and e eLirespectively,
and call the quantities 5;= InA;+ jd;and L;= InB;+ jO;,the 'complex
phases' of the signal and local oscillator beams respectively. Then
the condition for maximum signal-to-noise ratio is that the complex
wavefronts of the signal and local oscillator beams be ''parallel' over
the detector surface. That is, the difference in complex phase at any
point must be a constant, independent of the location of the point on
the detector surface.

The second point to notice is that the magnitude of the beat signal
for the case of parallel wavefronts, i.e., I5 = A - E: can fluctuate with
time by virtue of either the magnitude of X (which is proportional to re~
ceived signal power) changing with time; or by A (i. e., the signal
amplitude at''point"” 1) changing with time even when the signal power,
|Z]2, is independent of time.

It is interesting to consider the beat signal variance. Note that
it is possible for the effects of amplitude fluctuations alone, on the
variance of the beat signal, to be nearly as severe as those of phase

fluctuations alone. Thus, for the case of phase fluctuations, it is easy

to see that 0 < l Iol < IA[ ' B' . On the other hand, for the case of
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amplitude fluctuations alone, it follows that IX' B; < l Iol < IKI I E' .
The smallest value, lKl Bj, occurs when the entire received optical
signal is concentrated about the "point'" i. Thus, for very large aper-
tures it is eveident that the possible amplitude induced variations of I
can be almost as large as the possible phase induced variations. This
is true even when the received optical signal power, i e., IKIZ, does
not fluctuate with time.

F. Time Dependent Detection
Schemes

Chase[ 9] has examined one method for partially overcoming the
effects of the random phase fluctuations of the received optical signal.
Rather than using a ''fixed' local oscillator beam, his scheme would
employ a local oscillator beam which would track any tilting of the
signal wavefront. In the event that the distortion consists of only a
random tilting then this scheme will obviously yield the maximum
possible signal-to-noise ratio consistent with the magnitude of the re-
ceived optical signal power. If, however, there is some additional
phase distortion and/or amplitude fluctuations then this scheme offers
only limited improvement. Fried[ 10] suggests that such a scheme
can, for "short'" propagation paths where the significant part of the
distortion consists of a random tilting of the signal wavefront[ 11] ,

yield a shot noise limited signal-to-noise ratio improvement over the
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non-tracking system of perhaps 6 dB. For "long' propagation paths,
Fried[ 10] indicates that the improvement is negligible. It is interest-
ing to note here that Fried[ 11] shows that even for ''long'' propagation
paths, the "significant'' portion of the signal distortion may be described
as a random tilting, in‘this case not of the signal wavefront, but rather
of the "complex wavefront' . Recall that it is just this ""complex wave-
front'" which must be ""matched" by the local oscillator beam in order
to obtain the maximum possible signal-to-noise ratio. Thus, if it were
possible to devise a means to track any tilting of the complex wavefront
(a scheme which would require adjusting both the phase and amplitude
of the local oscillator beam) then a significant increase in the average
signal-to-noise might be obtained, not only for short propagation paths,
but also for long paths.

Other time dependent detection arrangements, such as an array
of "small" detectors whose output currents can be adjusted in both
amplitude and /or phase, can be expected to offer still further improve-

ment.
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G. Time Independent
Detection Schemes

As opposed to examining these or other time varying detection
schemes, this study will determine whether a significant increase in
the average signal-to-noise ratio can be obtained by employing a time
invariant detection arrangement.

One of the initial thoughts here was that an improvement might
be obtained by heterodyning in the focal plane of a lens through which
the received signal alone is allowed to pass. An example will show
that, on the surface, this scheme appears to offer a method for
increasing the average signal-to-noise ratio while simultaneously
reducing the signal power variance. A careful analysis will, however,
show that this is not true. Thus, suppose that the fluctuations of the
received signal consist of only a random tilting of an otherwise un-
distorted plane wave. If this signal is combined with a plane wave
local oscillator beam, say parallel to the average signal wavefront,
then with each receiver aperture size there will be associated a
particular value of average signal-to-noise ratio and signal power
variance. Suppose now that the received signal alone is passed
through a lens. Then, in the focal plane of this lens, the tilting of
the signal wavefront manifests itself as a change in the location of
the focused spot (i. e., the Airy disk). By employing a local oscil-

lator beam whose area is as large as the entire area over which the
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focused spot moves, it is apparent that the average beat signal power
can be increased, and its variance reduced from the corresponding
values obtained heterodyning with the received signal before it is passed
through the lens. That is, without the use of the lens, the tilting of the
signal wavefront results in non -parallel signal and local oscillator
wavefronts and hence, a. réduction in beat signal power. On the other
hand, with the use of the lens, the tilting simply causes the focused

spot to move to a new location on the detector surface where a "new."
local oscillator beam is waiting for it.

At first glance this scheme might seem to offer an excellent
method for "tracking' wavefront tilt. A more detailed analysis will,
unfortunately, reveal thatvthis scheme cannot yield an average signal-
to-noise ratio (indeed a time behavior of the beat signal itself) which
cannot be obtained without the use of the lens. The basic idea here is
that this scheme achieves its apparent '"advantages'' at the expense of
an increase in local oscillator power and hence, of shot noise. To see
this, recall that when the "complex wavefronts' of the signal and local
oscillator are "parallel” , the beat signal power is directly proportion-
al to the product of received local oscillator and optical signal powers.
Thus, without the use of the lens, let the maximum value of the beat
signal power (i. e., the value obtained when the signal wavefront

""lines up'' with the local oscillator wavefront) be directly proportional
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to PL * Pg, where Py and Pg are, respectively, the received local
oscillator and optical signal powers. Further, suppose that, with the
use of the lens, the beat signal power is to be maintained at this peak
value. Assuming then that all of the received optical signal power,
i.e., PS, is contained within the focused spot, it follows that the local
oscillator power contained within an area equal in size to that of the
focused spot must equal P;. But the total area of the local oscillator
beam was, in the scheme described, to be made larger than the area
of the focused optical signal spot(hence, increasing the total local
oscillator power and therefore, the noise power). Thus, the average
signal-to-noise ratio is, by this scheme, not increased by as much as
one might have at first suspected. In fact, as will be shown below,
no matter how one choses the shape of the local oscillator beam in
the lens focal plane, the corresponding average signal-to-noise ratio,
indeed the time behavior of the beat signal itself, can be obtained with-
out the use of the lens. [ See Reference 23 for additional discussion. ]
Other more complicated schemes, such as using an array of
""small' lenses and heterodyning in the common focal plane of each
one, could be individually analyzed. It will, however, be shown below
that all optical systems which perform a time invariant, power
conserving linear transformation on the received signal, yield a
performance ( measured in terms of average signal-to-noise ratio and

time behavior of the beat signal) which is identical to that obtained
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without the use of the optical system. This important result allows one
to determine the performance of all such optical systems by considering
the simpler problem of heterodyning with the received signal in the
absence of any optical system.

One might now argue that, at least for the case of an atmospheri-
cally distorted optical plane wave, the problem of heterodyning with
the received signal itself has already received sufficient consideration,
that is, by Fried{1] and Gardner[ 2]. Recall, however, that the
previous analyses of this problem assumed a plane wave local oscillator
beam. Is this, however, the optimum shape for the local oscillator
beam? That is, does it yield the largest possible average signal-to-
noise ratio?

In the absence of any fluctuations of the received plane wave signal,
a plane wave local oscillator beam is the optimum local oscillator beam.
When the fluctuations are present and are such that the average received
signal is a plane wave, one is tempted to say that the optimum local
oscillator beam is still a plane wave. This conclusion is, however,
not necessarily correct. Indeed, the results of this report allow one
to determine the shape of that fixed local oscillator beam which
maximizes the average signal-to-noise ratio for a given size receiver
aperture. The results appear in the form of an integral equation to

be satisfied by this optimum local oscillator beam. It is shown that
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the solution of this integral equation for both the phase front and ampli-
tude shape of the optimum local oscillator beam depend on only the
mutual coherence function of the received beam.

This result is derived in Chapter IL Chapter III discusse's the
solution for several simple examples, and Chapter IV offers aﬁ alterna-
tive derivation and physical interpretation of the results of Cha‘pter II.
In Chapter V the optimum local oscillator beam is determined explicit-
ly for the case of an atmospherically distorted optical plane wave.
Furthermore, the corresponding maximum average signal—to-i%loise
ratio dependence on receiver aperture size is given and is comipared
with that obtainable with a plane wave local oscillator wave as reported
by Fried[l ]. In Chapter VI it is shown that no additional improvement
in the average signal-to-noise ratio can be obtained by performing any
time-invaridant preprocessing operation on the received signal, before
combining it with a local oscillator beam. Chapter VI includes some

general comments and recommendations for future work.



CHAPTER 11
DERIVATION OF EQUATIONS FOR DETERMINING
OPTIMUM LOCAL OSCILLATOR WAVE FUNCTION

A. Introduction

In this Chapter the equations for determining'the optimum local
oscillator wave function are derived. Note that no particular form is
assumed for the statistics of the signal distortion. The numerical
evaluation of the results obtained will, however, depend on the assumed
‘statistics.

The physical situation under consideration is as follows: Suppose
that a source transmits, into a turbulent atmosphere, an optical beam
characterized by a time invariant amplitude and phase and angular fre-

quency wg (see Fig. 1). As a result of index of refraction fluctuations

I BEAM SPLITTER
INCOMING RECEIVED —~r| PHOTO-
SIGNAL AT SIGNAL™ > | TUBE
BEAM
COLLECTION LOIAL
APERTURE STOP 0SCILLATOR

Fig. l--Heterodyne detection scheme.
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( with time) along the propagation path, this beam appears at the re-
ceiver characterized by a time-varying amplitude and phase. This
beam, or one derived from it, say by passing it through a lens, is
then to be combined with a local oscillator beam, characterized by

a time-invariant amplitude and phase and angular frequency wy» on
the surface of a square law detector. As a result of the random
distortion of the received beam, the output current at the difference
frequency will exhibit a time varying amplitude and phase. Our
concern here is with the average power of this beat signal over a
given interval of time T. This average power will be seen to depend
not on the detailed behavior of the amplitude and phase fluctuations of
the received beam, but rather on only certain averages of these
fluctuations over the time interval T, specifically, on the mutual
coherence function. It will also depend on the choice of the amplitude
and phase of the local oscillator beam. The local oscillator power will
be assumed to be of sufficient magnitude so that, as described previ-
ously, the noise power is directly proportional to the local oscillator
power. The problem of interest is, then, when given the necessary
averages associated with the received beam, how should the phase
and amplitude of the local oscillator beam be shaped over the detector

surface so as to maximize the average signal-to-noise ratio ?
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B. Derivation of Equations

Since the noise power is directly proportional to the local oscil -
lator power, maximization of the average signal-to-noise ratio is e-
quivalent to maximizing the average beat signal power subject to the
condition of constant local oscillator power. The procedure, then, is
to employ the calculus of variations combined with the technique of
Lagrange multipliers to determine the conditions to be met by the
optimum local oscillator wave function.

The heterodyne detection configuration is shown in Fig. 1. The
collection aperture, which defines the illuminated portion of the photo-
surface, has arbitrary shape. A point on the photosurface is chosen
as the origin of a coordinate system in the plane of the photodetector
surface. The vector X denotes a position in this plane.

The incoming signal beam is given by the expression

]

(1) Eg = A(X,t) cos(wgt + ¢(x, 1))

Re U(x,t) est ,

where the incoming wave function U(x,t), is

(2) Ut = A(ny S0

The time variation of U is assumed to be due only to the random
changes in the index of refraction, with time, along the propagation

path. The received signal wave function is U(x,t) W(x), where



23

W(X) defines the collection aperture, i e., W(%) =1 for points within

—_

the aperture and W(x) = 0 for points outside the aperture. The local

oscillator field is denoted by

(3) E = B(%) cos (wpt +8(%))
= Re V(%) el®Lt

where

(4) V(3 = B() &

is the local oscillator wave function. The photodetector output current

at the difference frequency,

(5) W T wg - w )
is

I=Re el q g W(x) V(%) U(xt) dx

where m is constant, characteristic of the photodetector.
The average beat signal power over one period of the difference
frequency is

( 6) P = % nzﬂ 3 W VD UE O W) V() U™ (X, 1) dx ax' ,

where it has been assumed that U is ''nearly' constant over each period

of the difference frequency.
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The average value of P, denoted by<P>, over a time interval T,

long compared with one period of the difference frequency, is
1 ' — — e —r —
(7) P, =<P> == nZSSW(x)W(x')v’"(x)V(xw
<U(K ) U (X, 1) > dx dx’

The photoelectron shot noise power is, for the case where the local
oscillator power is much greater than the received signal power, direct-

ly proportional to the local oscillator power

(8) Py = %ﬂg V(%) V(%) dx

and, in fact, the average signal noise ratio (per unit bandwidth) is

given by[5 ]

S - 1 (Bo
o = (3) ’

where e is the magnitude of the electronic charge.

The function V(%) which maximizes P, subject to the condition
of constant Py is sought. That is, by employing the calculus of vari-
ations, the condition on V for which 8 Py = 0,where 8P, is the variation
in P, caused by adding a variation 8V to V, is required. The allowable
variations in V are, however, not arbitrary in that Py is to be held

constant. The condition on 8§V is then that GPL = 0, where 6P, is the

L
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variation in Py caused by a variation 8V in V. This constraint can be
included by using the method of Lagrange multipliers. It follows then

that the condition on V for maximum Py is met when

(10) 1i1?_0_+(_)\)_1§£14__=0 ,
2 —

where ( -\) is the undetermined Lagrange multiplier. Then, from

Eq. (7)

(11) Po+6PO=';j n? §§W(§5W(?)
[V(x) +8V(x)] *[V(x") +6V(x")]
<U(x, 1) U (X', 1)> dx dx' ,

and hence to first order in 6V,

o
g
(@]

(12) SS W () W(x) V¥ (%) 6V(x") + V(x')6V* (%) ]

N[ —
3
™

<U(%, ) UF (x',t)> dx dx'

2 Re \ gw&') W(x") V(x") 6v™ (%)
<U(x U (%, 1)> dx dx'

gince by symmetry

SgW(?Z)W(;')v*(;)av&") <U(x, ) UuS (%, 1> dx dx'

= §§ W) W(E) V(E) 8V ()
*

<U(XK U (X, 1)> dx dx'



Similarly, from Eq. (8)

6 — > —_— o —_— — lamad
(13) —llp—l-‘—=S‘[V(x)6Vk(x) + V(X)) 6V(x) ] dx

=1

2

2 Reg V(%) 6V (x) dx

From Egs. (12) and (13), Eq. (10) gives

(14) ZReQS W(R) WE) V(x) 6V (%) <U(3t) U™ (x',1)> dx dx’

N2 Reg V(%) 6V¥ (%) dx = 0
or

(15) ZReg d;{SW(;)W(;')V(;') <U(K U (X, 4> dx

—_—

Y V(Z{)} sv¥(x) =0 ,

—

which is satisfied, independent of the choice of §V(x), by choosing A\

so that the expression within the brackets is zero; i. e.,
(16) S‘W(;)W(;')V(_;;') <U(x ) UF (%, t)> dx' - A V(x)=0

Statedv more precisely, since 6V is a complex number, Eq. (15)
demands that
{ @ Rre (-~ -} Re V=0
and

deIm{"""} Im &6V=10

26
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which is satisfied by choosing both the real and imaginary parts of
{---} equal to zero, as given by Eq. (16).

The determination of the local oscillator wave function which maxi-
mizes the average beat signal power over the time interval T, subject to
the condition of constant local oscillator power, has now been reduced to
the solution of an integral equation, Eq. (16). This equation, related to
the Fredholm Equation, is known to have solutions, called eigenfunctions,
for only certain discrete values of X\, called eigenvalues. The appearance
of the function W(X) on the left hand side of Eq. (16) simply indicates
the rather obvious fact that V(—}:) should be zero where there i$ no signal
beam.

It will now be shown that all the eigenvalues are real and in so doing
the desired eigenfunction will become apparent. Thus, let Aj be an eigen-
value of Eq. (16) and Vi(;) the corresponding eigenfunction. Substi-

R rp—
3

tuting this solution, multiplying by V, (%), and integrating the resulting

equation with respect to x yields

(17) SSW(BW(?‘)V?(;’)viG') <U(xHU (X, 1)> dx dx'

N \ Vi(¥) Vi (%) dx =0

L %4
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In view of Eqs. (7) and (8), Eq. (17) reads

(Poli _ . (Pp);

';‘ n? ';' n
or
(18) A == (—13°—>
n \Py, 5
But the right hand side of Eq. (18) is real; i.e., Pj = Pi and PL= P"J}_J

and hence A\{ must be real. Furthermore, \; is directly proportional
to the ratio of average signal power to local oscillator power and hence
to the average signal-to-noise ratio. Thus, the desired eigenfunction,
V(x), is that corresponding to the largest eigenvalue, N .., of Eq.(16).

Equation ( 16) is really two equations in one; i. e. , both the real
and imaginary parts must separately add to zero. Equating the imagi-
nary part to zero will yield an explicit solution for the phase front of
the local oscillator wave function and equating the real part to zero will
yield an integral equation to be satisfied by the corresponding ampli-
tude shape of the local oscillator wave function.

Thus, from Egs. (1) and (3), Eq. (16) may be written

(19) g\W(;{’.)W(;{")B(_}:')ej[e(xl) -8(x)]
ca(mta(m,yel P00 e Ol o8 8 <o,
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Equating the imaginary part of Eq. (19) to zero gives

(20) SWGQW(:?) B(x') { cos[6(X') - 8(x%)] <A(X, t)A(x',1)
sin[¢ (3, t) - (x',t)]> + sin[0(x") - 8(x)]

<A(;, t)A(;',t) cos ¢(;.t) - ¢(:’,t)]> } d; =

The left hand side of Eq. (20) can be made zero, for all ;, by choosing

the expression within the brackets equal to zero; i. e., by choosing

(21) tan[6(x) - 6(x')]

<A(% ) A(x',t) sin[d (x, t) -d( %', t) ]>

<A(% t)A(X', 1) cosfb (%, 1) -o(x',t)]>

Equating the real part of Eq. (19) to zero gives

(22) ()‘W(;)W(_;') B(x') { cos[8(x)-0(x")] < A(% t)A(X',t)
cos[d (%, t) -6 (x' 1) ]> + sin[0(x) -6(x") |

<A(F ) A(%'.t) sin[d (%o t) ¢ (%', 1)]> } dx' -AB(x) =0 .

Equations (21) and (22) may be written in more compact form by

defining
(23) §(?<’,>—<7) = <A(x, t)A(;' »t) sin{ d(x, t) -d(x', )] >
(24) Clmx )= <A(% ) A(x 1) cos[ (1) -b(x',t)] >

and
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(25) D(%, x') = C(x,x') cos[d (x)-8(x") ]
+ S x)sin[0(x)-08(x)] (={C?+8%)

Thus, Eqs. (21) and (22) become, respectively,

. FEa
(26) tan[ 8(x) -8(x')] = — —
C(x,x")
and
(27) S W(%) W(x') B(x") D(x,x")dx' - A\B(%)= 0

Equations (26) and (27) constitute the requirements on the local
oscillator pnase 9(;) and amplitude B(;) , respectively, to ensure the
maximum average signal-to-noise ratio. The only properties of the
received-~signal beam appearing in these equations ( namely, C and g)
are, respectively, the real and imaginary parts of <U(;<., t)U* (;' » £) >
which represents a two-point correlation on the incoming signal wave-
front. Physically, [¢ represents the average homodyne beat signal
obtained by adding the signals U(x,t) and U(;c,‘,t) on the surface of a
square law detector. Sirﬁilarly, s represents the homodyne beat signal
obtained by adding signals U( >_<:t) and U(-;(.', t) , the latter delayed by

m/2 radians, on the surface of a square law detector. A method for

experimentally determining these two functions is given in Appendix B.
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Note that Eq. (26) determines only the difference in phase be-
tween pairs of points on the local oscillator wavefront; i.e., the shape
of this wavefront. This is as it should be since adding a constant term
8, to any 0(;) merely alters the time at which I achieves its peak value
during one cycle of the beat frequency, but has no effect on P nor <P>.
Thus, arbitrarily choosing the origin of coordinates as the phase refer-

—’

ence point (i. e., )=0) Eq. (26) determines G(;) in the form
(28) Q( = tan” j —
C( X, 65 ]
In this Chapter the equations which determine the optimum local oscil-
lator wave function have been derived.

In the following Chapter, the optimum local oscillator wavefront
will be determined for several simple examples, the solution for the
case of an atmospherically distorted wavefront being deferred to

Chapter V.



CHAPTER Il
SOLUTION OF EQUATIONS FOR
SEVERAL SIMPLE EXAMPLES

In this Chapter the optimum local oscillator wave function will be
determined for two simple examples. In addition, the conditions under
which the optimum local oscillator phase front is parallel to the aver-
age received-signal phase front will be determined.

For the case in which neither A nor ¢ is a function of time, Egq.
(28) should reduce to the well-known result that the local oscillator
wavefront should be chosen parallel to the signal beam wavefront.

Indeed, from Eqs. (23) and (24)

(29) S(%,0) = A(X)A(0) sin[ () -¢(0)]
and
( 30) C(% 0)= A(x) A(0) cos[d(x)-4(0)]

and hence, Eq. (28) becomes

sin[ (%) -(0) ] ]

e(x) = tan~! 3

(cosl &(x) ()] |

or
(31) e(x) = &(x) -9(0)
as stated.

32
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To determine the corresponding amplitude shape, substitute Eq.
(31) into Eq. (25) to obtain

D(x, %) =A(%) A(x') cos[¢ (x) -b(x')] cos[d (%) -d(x')]
+ A(%) A(x") sin[ (x) -d(x") ] sinlé (%) -o(x") ]
or

(32) D(% x') = A(%)A(x")

Subsituting this result into Eq. (27) gives, for the equation to

—_—

be satisfied by B(x),

(33) SW(;)W(:') B(x')A(x) A(x')dx' -\ B(x) =0
or
( 34) W(x) A(%) §W(;‘)B(?')A(;)d;7 - N B(x) =0

[

But the integral in Eq. (34) is independent of % and hence its solution
for B(;) is, simply

(35) B(¥) = (const. )A(X) W(F) =CA(RW(X) .

where the constant may be determined from the condition of constant

local oscillator power; that is, from Eq. (8)

P,

c? =

—_—

%”S W(x) A¥( %) dx
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Thus, as stated in the introduction, the maximum beat signal
amplitude, for fixed local oscillator power, is obtained by choosing
not only parallel wavefronts but also identical amplitude shapes for
the received signal and local oscillator beams. Equation (35) is
shown in Appendix I to be, simply, a statement of the Schwarz in-
equality applied to the ratio PO/PL.

Next, the condition for which the local oscillator phase front
should be chosen parallel to the average received signal phase front
is derived; that is, the condition for which 9(:) = < ¢(;,t) —4)(?, t) >

is determined. Thus, from Eq. (28), it follows that this condition

will obtain, provided

—_— = —

—_— - S( %, 0)
(36) tan <¢(x,t) -9(0,t)> = —=—=
C(x,0)

In order to determine the condition under which Eq. (36) holds,

let

(37) (3 1) =0(0, 1) = Bdo(x) *+ ag(x, 1),

where ao(;,t) represents the fluctuations of ¢(;, t) -cb(?it) about its

average value

— — —

(38) Bbo(x) = <d(x,t)-$(0,t)>
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Then, from Eqs. (23) and (24), Eq. (36) may be written

<A(x, 1) A(0, 1) sin[ Doy (x) +a (% t)] >

(39) tan Ad,y(x) = — — — —

<A(x,t)A(O,t)cos[A¢o(x)+ao(x,t] >
or |
(40) tan A, (x) =

— —_ — —

<A(x,t) A(?): t)cos ao(;, t)> sin Adg( x) +<A(x,t) A(0,t)sin ao(;, t)> cosAd)o(_;{)

<A(X, t) A(T,t) cos ag( %, t)> cos Adp( %) ~< A(X, t) A(T, t) sin ag( X, t)> sin Ady(%)

Writing —
sin A¢4( x)

tan A¢0(§<') = —

cos B¢ (x)

and cross-multiplying, Eq. (40) yields

<A(% 1) A(D, t) sin a (3, t) > [ sin? Apo(X) + cos? B (x)] =0
or

(41) <A(x% t)A(0,t) sina (x,8)> =0

Equation (41), then, is the condition on the received signal wave
function for which the optimum local oscillator phase front is parallel
to the average received-signal phase front. This condition obtains, for
example, when the fluctuations in the phase difference ¢(;t) -4)(6., t) is
symmetric about its average value; i. e. , when the fluctuations in

ao(;, t) are symmetric about zero, and the fluctuations of the received
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signal amplitude product A(;, t)A(O0,t) are independent of the fluctuations
in the phase difference between these points. That is, the latter of these

conditions implies that

—_— — —

<SA(X, t)A(D, 1) sin ag( X, t)> =< A(X,t) A(0,1)> < sin a (X, t)>,

while the former condition imples that <sin ao(;, t)> = 0 and hence
Eq. (41) is satisfied.

The results of the following example will serve to illustrate the
basic conditions for which there exists an aperture size above which
there is little or no increase in the average signal-to-noise ratio. In
addition, a simple extension of this example will, in Chapter IV, pro-
vide the basis for an alternative derivation of the equations defining
the optimum local oscillator wave function. Thus, consider the
followings:

Let the receiver aperturc be divided into N equal area regions
as shown in Fig. 2. Let both the amplitude, Aj{t) and the phase,
$i(t), of the received signal be independent of position over each
region Si; i =1,2,...,N. Assumec, for now, that the optimum ({ixed)
local oscillator beam will also have uniform amplitude, Bj, and
phase 0;, over each region Si;i =1,2,...,N. Then, with Uj(t) =

.. ‘9.
AieJc’bl and Vi = Bie‘] 1, it follows, from Egs. (7) and ( 8), that
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or

(43)

37

Fig. 2--Received signal (for the example
used in Chapter III).
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where AS is the area of the region S; and

(44)

Mi; =<Uin' > .
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Consider first the case where the fluctuations in the received
signal are absent. Then, with ¢; =, and A; = A for all i, it follows

that Mj; = AZ and hence, with 8; = 6, and B; = B, for all i,

P NB? + 2B? E%\]—-—l-)—
(45) 59 = nal as -
L NBS
or
P
(46) oo = nAL (N&S)
L

That is, as shown previously, the signal-to-noise ratio is directly
proportional to the collected signal power, i. e., to% nAg (aperture
area) = -;-n Af:( NAS). [NOTE: It is a simple matter to show, as was
done previously, that for any choice for B; and 08; other than Bj = Bg
and ; = 8, the signal-to-noise ratio is less than that given by Eq.
(46). ]

On the other hand, for the very special case where the signal
correlation between any two distinct regions is zero, i. e., Mij =0

for 1 #j, it follows that, with <A}> = AZ

[e) ?

N

), *
P =
(47) =2 - na? (as) 1

L

N

BZ

i
i=1

or

(48) = nAp (45)
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which is identical to the signal-to-noise ratio obtained from one area
alone. It is important to note here that even in this éxtreme case the
average beat signal power increases directly with N, for B; = By, but
so too does the noise power (which is proportional to Py ) with the
result that the signal-to-noise ratio is independent of N.

In a more general case, for example where the correlation be-
tween two regions is a decreasing function of their separation, the
signal-to-noise ratio lies somewhere between those two extremes.

When Bj = constant, the important point to note is that as N increases
the sum in Eq. (45) deviates more and more from its maximum value,
N( N-1) /2, and hence the rate of growth of P, /P1,, for a unit increase

in N, decreases with increasing N. This is, of course, the basic

result obtained by Fried[ 1] which indicates the existence of a minimum
aperture size, above which the increase in signal-to-noise ratio is
"small" . With reference to this last case, the problem under consider-
ation here would be to determine how the B;'s and 8;'s should be chosen
so as to maximize the average signal-to-noise ratio for a given size
aperture.

In this Chapter the optimum local oscillator beam was determined
for several simple examples. The next Chapter gives an alternative

derivation of the results of Chapter IL



CHAPTER IV
ALTERNATIVE DERIVATION QOF INTEGRAL EQUATION
DETERMINING OPTIMUM LOCAL OSCILLATOR WAVE
FUNCTION AND PHYSICAL INTERPRETATION OF RESULTS

In this Chapter the integral equation which determines the opti-
mum local oscillator wave function is derived as a consequence of the
Karhunen-Loéve Theorem| 12] . This derivation allows for both physi-
cal interpretations and additional consequences of the results of
Chapter II. These include: a measure of the amount of turbulent degra-
dation ( based on relative sizes of the eigenvalues); and a means for
separating a distorted signal beam into a set of statistically orthogonal

signals.

A. Introduction

A way of introducing the subject clearly is to first consider a
simple extension of the last example of Chapter III. Consider again
that the receiver aperture can be divided into N equal area regions
over each of which both the amplitude, Aj(t}), and the phase, ¢i(t),
of the received signal, U(;{., t)W(;) are independent of position.
Again, let the mutual coherence of the signals at any two distinct

locations be zero. This time, however, let the average intensity,

40
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<A§( t) >, of the signal at location i depend on i Then, from Eq. (43)

N
Z <A (t>B1
i:

2
1

P
4 _.2.=
(49) 5 na

12

Bj

|_.-

i=

. IV

For the case where <A;> was independent of location ( the case
treated previously), the maximum signal;to-noise ratio was shown to
be equivalent to that obtained from a single area S;. Which area S

was chosen made no difference since the average received optical

signal power was the same for all of them. For the present example

it is reasonable to expect again that the maximum signal-to-noise ratio
will be equal to that obtainable from a single area. This time, however,
one should expect the area to be that one for which the average optical
signal power is largest. This conclusion is correct and can be formally

verified as follows:

The B;'s which maximize P, /PL are determined by setting

NP, /P7)
(50) —L—P———L——=O ; i=1,2,...,N )

BBi
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Thus, from Eq. (49)

o(P,/P
(51) (Po/Pr) _
8Bj
N N
2 < AZ - 2> g2 .
(Z Bi>(ZBJ<Aj>) (Z <A1>B1>(ZBJ)
i=1 i=1
nAS
N
2 2
i=1 :
or
(52) (P, /P1)
3Bj
J N
AS 2 2 2
m - 2Bj }_ Bj [<Aj > - <Af>]

[dl o )’ =1

(P /Pr) _ 0
SBJ-
. »N, is obtained by choosing all of the Bji's equal to zero

It is easy to see that a solution of the equation, ;

i=1,2,..

except one. Thus, let

Bq#Ofori=q
(53) B.

1

0 fori#gq

To see that this is indeed a solution note that for j # q in Eq. (52),

the factor ZBj is zero and hence,m_)_ =0,
BBj
for j = q every term in the third factor on the right hand side of Eq. ( 52)

On the other hand,
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is zero. This is true since Bi =0 for i #j = q and <A%> - <A§> =90

(P /P
for i =j. Hence, —(—~9—/——I‘—i = 0.

BBq

The corresponding ratio of Py to Py is

o) 2
(54) = nAS <Ag

L

and this is clearly a true maximum for that q for which <A2q> 2 <A€ >
i=1,2,...,N.

Thus, as expected, the maximum average signal-to-noise ratio is
equal to that obtained by heterodyning with a single area — namely, that
particular area for which the average received optical signal power is
largest.

It is important here to extr.act the essential features of the above
example. They are:

(1) The received signal U(;,t)W(:) may be viewed as a sum of
N time independent signals, pi(X), with (random) '"complex amplitudes"
Ui(t ). In this example pi(%) is a pulse type function with amplitude one
over the region S; and zero amplitude elsewhere. Mathematically,
the essential property of the pulses, pi(_f) , is not that they are physi-

cally separated in space, but rather that they are mutually orthogonal

over the receiver aperture. That is
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o Jfl ifi=j
‘SPi (x)pj{x) = |
0ifi#j
L
(2) The "amplitudes'" , U;(t), in this series representation of
the random signal are mutually orthogonal, i. e.,

5 <AI> ifi=j

. l 0 if 1]

(If <U;> = 0 for all i, then the orthogonality is equivalent to uncorre-
latedness. }

(3) The optimum local oscillator beam is determined by that
pulse Pq (_:;) which, in the series representation of U(—:;,t)W(—;;) s, has
associated with it the largest average optical signal power.

It follows then that if the received signal U(_::, t)W(_;) , can be
represented in terms of a series of spatially orthogo-nal signals,
{®,(x)}, with orthogonal coefficients, {U,(t)}, then the optimum
(fixed) local oscillator beam is proportional to Qq(;) , where
< ,Uq’z>2. < ,Ui ,7.)' This argument assumes, of course, that the optimum

local oscillator beam can be expanded in terms of the set {@n(;) } .o
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B. Karhunen-Loeve Theorem

The results of the previous section lead one naturally to ask if
any received signal can be expressed in terms of a series of spatially
orthogonal functioﬁs with ''statistically' orthogonal coefficients.
According to the Karhunen-Loeve theorem[ 12] the answer is yes! —
provided only that the received signal possesses a continuous mutual
coherence function. A statement of this theorem follows[ 24] : There

exists a series, Z Un(t) (%), possessing the properties that

(55) SW(?!) bn(3) &5 (%) dx = 8
and

* 2
(56) <UR()U¥ (0> =< U] > 6y

which is convergent in a ''mean square sense' uniformly to

— — 2
U(x,t) W(x) if, and only if, the numbers <|Un( t)f > and the corre-
sponding functions ¢.(x) are, respectively, the eigenvalues, A\, and

the orthonormal eigenfunctions, 4)(;;) , of the integral equation
(57) SMu(?{,?J) $(x')dx’ = N ¢(x)

where
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( 58) My(%,x7) = <U(xt) W(x) U (X, t) w(x')>

Proof: Suppose U(x,t) W(x) has the asserted decomposition. Let;

—

and x' vary over W(;) , and
N
( 59) ZN( %5 t) =Z Ui(t) $3(x) S

i=1

th

be the N partial sum of the series. Since Zy(t) is convergent in

the mean square sense uniformly to U(; t) W(;) » l.e.,

—_— —_ —_— 2
( 60) < IU( % ) W(x) - Zn(=, t)l > ~ 0 uniformly as N increases,
it follows that

< ZN(;' t) Zﬂi\l( x', t)>— Mu(;.;') uniformly as N increases.

But
N
<Z (3t 2* (% t>—Z<IU 1> 6.0 6F (=
N(F B2 > = sol” > a5 67 (3
j=1
and hence
(61) SMu<Z§)¢n<1")d§7=<|Un<t> %> ¢, (%)

and the ''only if'' part of the theorem is confirmed. To demonstrate

the "if'* part of the theorem note first that
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(1) From the fact that Mu(;’ x') is defined, continuous and
symmetrical [ i. e. , Mu(;’;) = Mf;(;{",_.x)] over W(—;:) if follows[ 25]
that: The integral equation, Eq. (57), possesses a set (finite or
denumerably infinite) of eigenvalues to each of which there corre-
sponds a finite set ( which may always be assumed to be an ortho-
normal set) of linearly independent eigenfunctions. The eigen-
functions corresponding to distinct eigenvalues are orthogonal.

(2) Mu(;, ;7) , being a mutual coherence function, is a non-
negative definite type function, i.e., SS Mu(;,;) v (;;) V(?:')d;::i::"
=< I SU(?, t) W(;) v* (;) d:_;.l 25 > 0 for all V(_}Z) . For this case
Mercer's theorem([ 25] states that, with each eigenvalue (neceéssarily

positive) listed as many times as its multiplicity ( and with distinct

indices) and in the order Ay 2 Ay 2 A3 ++- ,
(62) My( %, x') =Z STHESAED!

where the convergence is uniform. [If an eigenvalue has multiplicity
greater than one, the set {¢n(_;c)} is not uniquely defined. But

My(x,x') is, as distinct sets lead only to a ''regrouping’ of the terms

in a given series. ]
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In order to construct the desired series for U(;, t)W(;) let
(63) U,(t) = SU(?E, t) W(x) % (%) dx
It follows that U (t) exists and
(64) UL UI(H)> =N, 6,

and hence Eq. (56) is satisfied. In addition Eq. (55) is satisfied
because the ¢n(_):) were choosen to be orthonormal. Finally, the
convergence of the seriesz ULl t)¢n(—;) in the mean square sense
uniformly to U(;;., t) W(-}_;) follows by Mercer's theorem. Q. E. D.
The above characterization of the signal U(;;, t)W(;{) is now
sufficient to deduce that the optimum local oscillator wave function,
V(;{’) , must be a solution of the integral equation, Eq. (57), corre-
sponding to the maximum eigenvalue. To show this, let V(;c’) be an
arbitrary, square integrable local oscillator wave function and note

from Eq. (9) that

( 65) P = -21; n? SSMu(;,;)V* (%) V(=) dx dx'

But, from Eq. (62)

(66) SMu(?c’n?) V(x') dx’ =S Z Nyby(%) oF (%) V(x') ax’

= Z )‘ivi‘bi(;")
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where

(67) Vv, = S V(x") ] (x') ax'
and the convergence is uniform. It follows then that
1 5 - l ,2
(68) P,= ‘2'11 NIV
Noting[27] that V(;) admits the expansion, convergent in the mean,
(69) V(x) "'Z V;$i( %) + h(x)

where h(;) is some function dependent on V(;) and orthogonal to all

the ¢i(;) [h(;) = 0 if the set {¢n(;)} is complete ], it follows that
'4 1 —_— x = — o 2 — 2
(70) P =sn\ V)V (xhax =) [vi]® +) [n(x | ax

and hence

Z)\.. ,V.,z

P, _ i i

Py, i 2 - 2 .
Z A +§|h(x)l dx

Finally, since the V; are independent of h(;) , it follows ( see pp. 42-43)

(71)

that Po /PL is a maximum when h(x) = 0 and all the V;, except Vq, are

equal to zero, where q is such that

(72) Ag =< qu( t)|2> >< |Ui( t) |2 =N
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Therefore, an optimum local oscillator wave function is
(73) V(%) = Vgog(x)

and the corresponding maximum average signal-to-noise ratio is

S 1 /P n
(74) (—) = -2) = ()
N/ max 2 \Pr/max 2€ max

This completes the determination of the optimum local oscillator
wave function. The results, obtained previously in Chapter I, have now
been shown to be rather simple consequences of the Karhunen-Loéve
theorem.

C. Interpretation of Eigenvalues

The above derivation allows for an easily obtainable physical in-
terpretation,and then further consequences, of the eigenvalues of the
- integral equation, Eq. (57). Thus, note that the average total received
optical power,
(75) <p> & g <U(= YU (B> WHER W,

is, from Egs. (62) and ( 64), given by

(76) <pg> =Z <|Un(t)|2> =Z .

Two important consequences of this result will now be derived. The
first will lead to the conclusion, obtained previously, that in the
absence of any fluctuations in the '"shape'' of the received signal the

optimum local oscillator beam has the same ''shape'' as that of the
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received signal. The second result concerns a measure of the effect
of the wa;\refront distortion based on the relative sizes of the eigen-
values Ay,

Thus, it follows from Eq. (76) that for a given magnitude of
<Pg >, the maximum obtainable average signal-to-noise ratio
(™~ XApnax) reaches its lafgest possible value when all A, except one
(any one) are zero. Then Apax = <Pg> and the average signal-to-
noise ratio is proportional to the average collected optical power.
Suppose then that )‘q is the only non-zero value of A. Then, from
Eq. (60) Uq is (at least with probability one) the only non;zero coef-

ficient in the Karhunen—Loe’ve series for U( ;:t)W(;). Thus, for this

case
(77) U ) W(X) = Uqg(t) q>q<§<’)

But it has already been shown by Eq. ( 73) that the optimum local

oscillator wave function is,
(78) Vix) = qubq( x)

This is, of course, the result obtained previously, although here in
a somewhat more general form. Stated precisely, the result is: If

the received signal is the product of a function of position only, times
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a function of time only, then the ''complex wavefronts' of the received
signal and local oscillator must be '"parallel" over the detector surface.
The second interpretation of Eq. (76) is obtained by noting that,
again for fixed < Pg>, the maximum obtainable average signal-to-noise
ratio has its minimum possible value when all Ay have precisely the
same value. Thus, suppose that the turbulence ''scatters" the trans-
mitted signal into, say N modes, @, ®;, ***, ®y each pode possess-

ing, on the average, the same optical signal power, i. e.,

(79) < luyf?> = <[> = ... = <[UN[7‘>
or

(80) Mo=h = =y

Then

(81) xmax=—<—§—li>—

and hence, the average signal-to-noise ratio (~ A ..) approaches
zero as N becomes large.
It is apparent now, that the ratio of A, to Z A\ affords a
n

measure of the amount of '"degradation'' introduced by the turbulence.

Indeed, the ratio

)‘max

(82) y =
)
n
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gives the factor by which the maximum possible average signal-to-
noise ratio is reduced from its value in the absence of fluctuations in

the ""shape'' of the received beam:.

D. Optical System

To conclude this Chapter, consider finally the possibility that
there exists an optical system which could spatially separate the light
associated with the signals Uj(t) (I)n(;) in the Karhunen—Loe’vé series
expansion of the received signal U(;, t)W(;). If such a syétem existed
then the processed signal, say Z(?, t) , would have precisely the particu-

lar form treated in the introductory example of this Chapter ( see Fig. 3).

N y - PLANE
X - PLANE

INPUT '\ T(?.’y')\ ~
BEAM ya 3 j

INPUT OPTICAL
SIGNAL TRANSFORMATION
STATISTICALLY
ORTHOGONAL
SIGNALS

Fig. 3--Illustration of optical system
described in Chapter IV.
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Thus, let us attempt to find the transfer function of an optical system
which has the property that if U(-;;, t) W(_.x) is the input signal, then the

output signal is

e 0]
—_ = 1
(83) Z(y,t) =Z U,(t) P(y-yp)
n= J Sn
where
( .
1 if yeASn
(84) Ply-yqn) =
0 otherwise

Thus, at locationy =yq

(85) Z( Yy t) =

\as,
where AS, is the area occupied by the signal Z( ;;, t).
Assume that the optical system is a linear one with transfer
function T(—:;,;n) so that

—

(86) Z(yart) = § W(m U t) T(mr ya) dx

-~

At this point either of two procedures may be used to determine
T(x, ;;1). The first, and simplest, is to note that the coefficients,
Up(t), in the Karhunen-ILoeve series representation of U(;, t) W(;;)

are, from Eqgs. (56) and (55), given by

(87) Unt = S wmuEy e, ax
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—_—

This follows by multiplying both sides of Eq. ( 56) by &,(x), integrating,
and then making use of the orthogonality property of the functions
{@,(%)} as given by Eq. (55).

Upon comparing Eqs. (85), (86), and ( 87) it follows that

— 1 —
(88) T( x, Yn) = q)n( x)

AS,
An alternative, and more complicated, procedure for deriving the

form of T(X,yn), which really assumes no knowledge of the Karhunen-

Loéve theorem, is to note that what is really being asked of the optical

system is that it endow the processed signal, Z(;r»,t) , with the property

that the signals at any two distinct locations be orthogonal, i. e.,

AS_ <|Un(t)|z>- ifm=n

(89) <2y ) 2" (yit) > =
‘ 0 ifm%¥ n

In addition, note that the transformation T(;, ;r:l) must be a
unitary, or energy conserving, transformation. This follows since
U(;, t)W(;) and Z(_;r’, t), being but two representations of the same
signal, must have the same energy. A more detailed discussion of
this, unitary property, is given in Chapter VL

The above characterization of the transformation T(;, ;r_;) is

sufficient to now deduce ( by substituting Eq. ( 86) into Eq. (89),
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(e¢]

multiplying both sides by T( x, ;’m) AS ., and making use of the
&

unitary property of T) that T(x,ypn) must satisfy the integral equation
— — — — — 2 —_— —
(90) Mu(X, x') T(x', Yn) dx' =<|Un| > T(x, Yn) .

It follows then, upon comparing Egs. (90) and (58), that

—_ . 1 .
(91) T(x,yp) = (const. ) &p(x) = ——— @,(x)

(35,
which is precisely the result obtained by method 1.

This completes the alternative derivation, based on the Karhunen-
Loeve theorem, of the equations which determine the optimum local
oscillator wave function. This derivation was shown to lead to previous
results; to a measure of the turbulent degradation based on the relative
sizes of the eigenvalues; and to the possibility of separating a distorted
beam into a set of statistically orthogonal signals. An additional
consequence of these results, which offers a possible method for
determining the variance of the beat signal power, will be discussed in
Chapter VI. In the following chapter the optimum local oscillator beam
is det;armined explicitly for the case of an atmospherically distorted

plane wave optical signal.



CHAPTER V
THE OPTIMUM LOCAL OSCILLATOR WAVE FUNCTION
FOR THE CASE OF AN ATMOSPHERICALLY
DISTORTED OPTICAL SIGNAL

In this Chapter the optimum fixed local oscillator wave functions
are explicitly determined for the case of an atmospherically distorted
plane wave optical signal and two aperture shapes. Furthermore, the
corresponding maximum average signal-to-noise ratio dependence on
receiver aperture size is given and is compared with that obtainable

with a plane wave local oscillator wave as reported by Fried[ 1].

A. Mutual Coherence Function

In order to determine the optimum local oscillator wave fﬁnction,
i. e. , the solution of Egs. (26) and (27) for the phase shape and the
amplitude shape of the local oscillator beam, a knowledge of the real
and imaginary parts of the mutual coherence function, Mu(;' ::7), of the
received signal are required. For the case of an optical plane wave
traveling through atmospheric turbulence, which is the only case to be
considered here, Tatarski[ 14] presents theoretical and experimental

evidence showing that the log-amplitude fluctuations have a normal

distribution. Similariarguments can be made to show that the phase

57
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fluctuations will also have a normal distribution. Based on this fact and
subject to the assumptions of isotropy and homogeneity of the statistics

of log amplitude and phase, Fried[ 1] demonstrates that

(92) <A(3) A(X)sin($(x) -¢(x'))> =0

and

(93) <A(X)A(x') cos(d(x) -d(x')> =A% exp [ %D( r)}

where A is the rms value of A(;) and D(r), r = l;-;:TI » is referred to

as the wave structure function. It is the sum of the phase structure

function

—_—

(94) Dy(r) = < [6(x) - o(x)]%>

and the log-amplitude structure function

—_— —

(95) Dy(r) =<[4(x) - £(x)]*>
where
(96) 2(%) = In[A(x)/ 7]

Furthermore, as given by Fried[ 1],

(97) D(r) = 6.88(r/r,)"

where ry is a constant determined by the path, the turbulence along

the path, and the optical wavelength. An alternative derivation of
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this result, based essentially on the method of Hufnagel and Stanley[ 15]
is given in Appendix III. In Eqs. (92) and (93), the angle brackets
denote an ensemble average. That is, in deriving Eqs. (92) and (93)
the turbulent atmosphere is characterized by a family of time-inde-
pendent index of refraction functions, each with an associated proba-
bility of occurrence. The amplitude and phase of the wave, as functions
of position, are then determined for each family rﬁember by solving the
time independent wave equation. An ensemble average then, represents
a sum over all possible values of the quantity in question, each weighted
by the probability of occurrence of the corresponding index of refraction
function. In what follows it will be assumed that time averages over the

interval T correspond to these ensemble averages so that, from Eqs.

(23) and (92)

(98) S(x, %) =0

and from Egs. (24) and (93)

(99) C(x x')= A% exp [ _;_D(r)]
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B. Determination of Optimum
Local Oscillator Wave
Function

Having prescribed C and S, the optimum local oscillator wave
function may now be determined by solving the phase equation, Egq.
(26), and the amplitude integral equation, Eq. (27), with these
functions as input data. Thus, it follows from Eqs. (26), (98), and
(99) that

(100) 9(;3 -9(3) =0,

i. e. , the optimum local oscillator phasé front is flat. This is the
choice made by Fried{ 1] and Gardner[ 2] , both of whom selected a
plane wave local oscillator beam, in determining the average signal-
to-noise ratio. It will, however, be seen below that the optimum local
oscillator amplitude shape is not flat, as is the case for a plane wave,
and herein will lie the difference in the results reported here as com-
pared with that reported by Fried and Gardner.

From Egs. (25), (98), (99), and (100) it follows that

(101) D(x,x') =C(x,x") = A® exp [--;- D( r)]
and hence, the amplitude integral equation, Eq. (27), becomes

v

(102) (W(;')W(—Q)Kz exp[- %D( r)] B(x')dx' =\ B(x) .
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An approximate solution of this equation, for B(;) , has been ob-
tained for two cases. The first case considers a square aperture,
while the second considers a circular aperture.

First then let W(;) define a2 square aperture of area D? Further-
more, let this aperture be subdivided into N smaller squares, each of
area AS, as shown in Fig. 4. If now, the amplitude of the local oscil-

—_— —

lator beam, i.e., B(x), over the square with center located at x= x;

r.
\li
N
//Pi

AS

)

(w

j

Fig. 4--Receiver aperture.

is approximated by a constant Bj, and if the integral,
& exp [- %D( r)] d}_cT , over the square with center at x = ;i is approxi-
mated by exp [- %—D( rij)l AS for all points in the square with center at

—
X = X5 where

(103) rij=,;i-;j| ,
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then Eq. (102) becomes

N
(104) KZASZ BiE(Xi’Xj) =>\Bj;j=1,2,...,N
i=1
where
- 1
(105) E(xi,xj) = exp [-— > D rij)]

Equation ( 104) then, represents N equations which may be solved for
the N unknown amplitudes.

Defining the matrix

E(x1,%x1) E(x1,%2) --- E(x1,xy)
(106) E = E(xz:x1) E(xp,%) --- E(xp,xy)
E(xNsx1) E(xpp %2) === E(xn»xy)

and the column vector

1
o
™~

(107) B

These N equations may be written as the matrix equation

N
(108) _I:Z__B_=<‘:“'—)_B_= N B.
AL AS
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Equation ( 108) will have a non-trivial solution for B proévided

that

X\
(109) det<g -—_-—--> =0
A2 AS

As discussed above, the N roots of this equation for \, i. e., the eigen-
values of £Eq. (108), are all real and the desired amplitude solution,
i. e., the eigenvector of Eq. (108), is that corresponding to the

largest eigenvalue, A\ ... Furthermore, as discussed above A . is

directly proportional to the maximum average signal-to-noise ratio.

That is, from Eqs. (9) and (18), with \ = )\m

s) n )
11 - = | — A
(10 (N max (28 max

If, as shown in Appendix V, both sides of Eq. (110) are divided

aXx

r 2 —
by (nc) = ) A% AS the corresponding normalized signal-to-noise
\IZS
ratio, here denoted by vy, is comparable to the normalized signal-to-
noise ratio given by Fried[ 1] and denoted there by ¥. Performing

this division gives, for the normalized signal-to-noise ratio

\
(111) Y:;f(..!&ﬂi) = p? Moo

where

(112) B =
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_ Mmax

1
and where N\ . =-——— is, from Eq. (108), the maximum ecigen-
AZ AS
value of the E matrix, which might be called the mutual coherence
matrix. Since the eigenvalues of this matrix depend on r,, and since
m B = D is the length of one side of the square aperture, expressed
r

in units of ry, Yy is seen to be a function of aperture size, D, and r,,.

That is,
t
(113) Y =¥(D,rg) =B N max

C. Intensity Pattern of Optimum
Local Oscillator Beam and
Corresponding Signal-to-Noise
Ratio

Equation ( 108) has been solved for B and y for aperture sizes
corresponding to D = 0. 3r_; D =0. br_; D = ro; D= 1. 5rg; and D = 2r,,
The results are shown in Figs. 5 and 6.

Figure 5 (a and b) compares the normalized signal-to-noise 1;atio,
v, with the corresponding quantity, ¥, calculated by Fried] 1]. As
Fried[ 1] points out, the important point to note is that for aperture -
sizes greater than r, i.e., D/ry > 1, there is little significant
increase in the average signal-to-noise ratio.

In Fig. 6 (a,b,c,d,e), plots of the ratio of the optimum local
oscillator beam intensity at points along the main diagénal of the
aperture to the intensity at the center of the aperture, i.e.,

(B(r) /B(0) )2, where r = distance from center of aperture, is shown



NORMALIZED SIGNAL - TO- NOISE RATIO (r)

0.01

I S W I

1.0
APERTURE SIZE (‘%O)

(a)

Fig. 5(a)--Normalized signal-to-noise
ratio ( square aperture).

65



66

ASYMPTOTIC LIMIT

l l

0.l 1.0 10 100

0.0l1

DIAMETER (94;)
(b)

Fig. 5(b)--Fried's normalized signal-to-noise
( round aperture).

for several aperture sizes. In all cases, the intensity pattern is
symmetric about the center of the aperture. It is quite apparent
from these figures that the optimum intensity pattern is not uniform
across the receiver aperture. Even for an aperture size as small
as 0. 3rp, the intensity falls off to 70 percent of that at the center.
For an aperture size equal to rq, it falls off to 16 percent and for
an aperture size equal to 2r,, the intensity at the corners of the
aperture is only 4 percent of that at the center,

The real question of interest here is whether or not the opti-
mum local oscillator wave function leads to a significant increase

in the average signal-to-noise ratio over that obtained for the case
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Fig. 6--Local oscillator intensity patterns
( square aperture).
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of a plane wave local oscillator as reported by Fried[1]. In order to

determine this, a plot of

(S/N)

max

(114) G

(8/N) Plane Wave

is shown in Fig. 7. An expression for G may be obtained as follows:
For the case of a plane wave local oscillator the average signal power
is, from Eq. (7) with M,(x,x') = Kzexp [— —;-D( r)] and V{x) V*(x‘) =

B(x) B(x') = B,

10
e
zt sl
2 o
0 s
<n 61—
B o
=
-Z_é q
=5
o
gz 2
wo
[72]
. A R N N B B

02 04 06 08 1,0 1.2 1.4 1.6 1.8 20
APERTURE SIZE (B4 )
(o]

Fig. 7--Percent increase in (S/N) -
square aperture.
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' 1 2 =2 —_— —r 1 —_— -
(115) Po = > 12Bg A W(x)W(x'")exp |- E—D( r)| dx dx'
(V)

Making the same approximations as in deriving Eq. (104), this becomes

N

1 ]- 2 2——2 2 - — —
(116) Py = > BgA (AS) E(xj,x;)
i
i,j=1

The corresponding local oscillator power is, from Eq. (8) with

B(X) =0 outside the aperture, given by

1

(117) Pp, = 5 S‘W(X)Bo dx

1 2
E nBo NAS

The average signal-to-noise ratio is then, for the plane wave case,

Pl
118) (S/N) - =
( P.W. 2e P'
L
N
. KZAle E( x4, %
—Ze'ﬂ N (xl’XJ)
i, j=1

Finally, from Egs. (114), (110) and (118)

(119) G = max N
E(—;{.i:_;(‘

3)

or
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! N

N

i, j=1

(120) G = \

It is evident from Fig. (7) that there is indeed practically no
significant increase in the average signal-to-noise ratio, over that
for the plane wave case. In fact, for an aperture size equal to rg,
the increase is only 4 percent and even for an aperture size of 2rg,
it is only 9 percent. It appears then that very little is to be gained,
insofar as average signal-to-noise ratio is concerned, by shaping the

local oscillator beam according to the method developed here.

Consider next the case of a circular aperture. It should be noted
here that the solution of this problem, which makes use of the circular
symmetry of the optimum local oscillator beams amplitude pattern,
Bo(;) , offers greater accuracy without an increase the number of un-
knowns, Bg(%j); i=1,2, ..., N[17].

Thus, for a circular aperture of.radius (D/2), Eq. (102) becomes,

in terms of >polar coordinates r and 6,

D/2 2m
(121) A g r'dr' S‘ de'Bo(T')eXP{- %D( r2+ r'2. er'cos(e'—e))]
0 0

= NBg(r); 0<r<D/2 ‘
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Since the 0' integration is independent of By, Eq. (121) may be written

in the form

D/2
(122) K"S Bo(rY)Q(r,r")r'dr' = X\ Bg( 1)
0
where
2w
(123) Q(r,r') = S exp [— %D( r2+1r'? 2 2rr' cos(®' -9))] 4e'
0

and is independent of 6.

. _r
Lettirg U NHIDE Eq. (122) becomes
1
(124) (B (U')QPU Du)urag: = > B _(U);
J 7o 2 T2 ‘D \2 o ’
0 “ —
NKZ)
0<UXLl

With the function Q evaluated by numerical integration, the one
dimensional integral equation, Eq. (124), may, in precisely the same
manner as for the square aperture, be reduced to a set of S algebraic

?

equations in S unknown amplitudes, By = Bo(0); B; = Bo(‘;‘)i e

Bg_j = Bo(gsj—l) . These S equations, expressed in matrix form,
are -
(125) (Kij) (Bj) =\ (B i,j=0,1,---,8-1

where
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2T
5/3 56
(126) Kij = JS\ exp 4-3. 44( D ) [iz-*-j2 -2ijcos 0'] as’
0 2roS
and
N
(127) A=

%2 (D )2
2S

. * 1
The maximum eigenvalue, A' =\

max’ and the corresponding

eigenvector, ( Bj) £ have been determined for several values of

op
aperture diameter D. The corresponding maximum, normalized
average signal-to-noise ratio, y', d.e:f'i.n'ed i.n the same manner as for
the square aperture is

4 2
(128) y= = (—%—) Mo

The results of these calculations are given in Figs. 8 and 9
The results agree quite closely with those for the square aperture.

It should be noted here that the amplitude shape of the optimum
local oscillator beam depends critically on the size of the aperture.
That is, for example, the amplitude pattern for the aperture of
diameter 2r, is not obtained by simply ''extending'’ the pattern obtained
for the aperture of diameter r,. Indeed, at a distance of r /2 from the

center of the 2r aperture (which corresponds to the edge of the rg

o
aperture) the intensity is 62 percent of that at the center. On the other

hand, at the edge of the r, aperture the intensity is only 30 percent of

that of the center.
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Fig. 9--Normalized intensity patterns
( round aperture).

In summary then, the local oscillator shapes and signal-to-
noise ratios have been derived for the important case of an atmos~
‘pherically degraded plane wave. It has been shown that the optimum
local oscillator beam does not lead to a significant increase, com-
pared with the plane wave local oscillator beam, in the average
signal-to-noise ratio. This is so, even though its shape differs

markedly from that of the plane wave.



CHAPTER VI
EQUIVALENCE OF DIFFERENT HETERODYNE
DETECTION SYSTEMS AND VARIANCE
OF BEAT SIGNAL POWER

In the previous Chapter it was shown, for the case of an atmos-
pherically distorted plane wave, that no significant improvement in
the average signal-to-noise ratio, over that for the case of a plane
wave local oscillator, can be obtained by judiciously choosing the
shape of the local oscillator wave over the receiver aperture. It is,
however, conceivable that an additional increase might be obtainable
by pre-processing the received signal in some manner before mixing
it with a local oscillator beam.

It is, however, shown in this Chapter that (at léast for a general

class of time invariant, linear pre-processing operations) no additional

inhcrease in the average signal-to-noise ratio can be obtained. This
statement is true, no matter what the nature of the distortion of the re-

.ceived optical signal — atmospheric, or otherwise.
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A. Discussion of Different
Detection Methods

The heterodyne detection configuration under consideration is
shown in Fig. 10. The spatial filters may adjust the phase and/or
amplitude of the signals incident on them, as indicated. The effect
of the linear operator is to generate the signal Z(y,t) from the re-
ceived signal U(?f, t)W(_;) Gy (_:E). This device may, for example, be
a lens and in this case it can be shown[ 16] that Z(;:, t) is propor-
tional to the spatial Fourier transform of U(;, t)W(;)Gl(—;). This is,
of course, not the only possible lens operation. In any case, any time

invariant linear relationship between Z and UWG; can be expressed

in the form

(129) Z(y.t) = ( {U(x, ) W(%) Gy (%) } L(x,y)dx

[}
I

For example, in the case where a lens is used to produce the spatial
Fourier transform of U(%,t) W(%), L(X,y) = ( const. ) e-j; ? The
one restriction to be placed on the linear operator is that it be such
that the power in the signal Z(?, t) equal the power in the signal

U(—}Z, t)W(—}:) G, (—;{). Stated simply, this means that the linear operator
removes no light from the beam it receives, but merely rearranges
the incident light to form a new signal, as is the case, for example,

with the large lens. The only points at which energy may be removed

from the beam are at the spatial filters No. 1 and No. 2. In the case
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Fig. 10--Time invariant detection arrangement.

LL



78

of the lens, performing a Fourier transform, for example, the spatial
filter No. 2 could attenuate and/or adjust the phase of the different
spatial frequency components (i. e. , Z(_y.i, t)) of the signal U(;, t)w(_::)
G1(%).

The condition to be imposed on L(;,W by the requirement that no

energy be removed from the incident beam (here denoted by V(;, t)) is

determined by the equation

(130) 5 z(v:) 2 (Y, vy dy = § V(% )V (X, t) dx
where
(131) Z(y,t) = g V(% t) L(x,y) dx

Subsituting Z from Eq. (131) into Eq. (130) gives

(d?’(d?{v&’, HL(xy) | ax V(L L (%)

- g‘V(;, £y V¥ (%, t) dx

or
(132) Sd;(d; V() Vi (x5t \ Lz y) L (x4 y)dy
o/ [V

- g V(% t) V' (%', t)dx
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Defining the function

(133) (%, %) = SL(?»?JL* (x',y)dy
Eq. (132) becomes o=
(134) 5 d;g dx' V(% t) V' (%', 1) (%, %)

_ SV(;,t) v (%, t)dx

It is shown in Appendix IV that if Eq. (134) is to hold for all V(;, t),

then

(135)

=
%)
I
L/j
IS
®
<
=
i
My
o
~

il
[o4]
%

1
x.

where 6 is the Dirac delta function.

B. Equivalence of Different
Methods

In order to show that no additional improvement in the average
signal-to-noise ratio can be obtained by performing any such pre-
processing operation on the received signal, two steps are sufficient.
The first step is to determine the maximum average signal-to-noise
ratio that can be obtained from the processed signal Z(V, t) Gz(—);) and
the second is to show that it is equal to the maximum average signal-

to-noise ratio that can be obtained from the received signal U(;, t) W(?c).



80

Consider first the signal Z(?, t) Gz(—y_r’). The average signal-to-

noise ratio is, from Eqs. (9), (7), and (8)

1 ) &, - —_ %k - —_ & - —
] gnZSgR (VIR(y")Ga(y) Gz (V) <Z(y,t)Z (y',t)> dy dy'

—_— ——

n‘S R(y)R*(y) dy

N =

Note that Gz(;r») appears only in the numerator of S/N. It follows
that for all vaiues of ¥ for which R(-;;) # 0, the magnitude of Gz(—):)
should be set at its maximum possible value, namely one. For those
values of-)_r.for which R(?) = 0, IGZ(—;) l may be set equal to one. Now
note further that an examination of S/N shows that the phase of either
R(Y) or G(¥) may be adjusted to maximize the numerator of S/N with
no effect on the denominator of S/N. It follows that the phase of

—r —

Gy(y) may be set equal to zero. Then G,(y) will be set equal to one
and thus, Gz(—.) has afforded no improvement.

The analysis to follow should be considered to apply to the signals
UWG; and Z. For notational simplicity, however, the factor G, (-;)
will be absorbed into the factor U(x,t). Thus, let UWG; = U'W.

The result of the following analysis will be that the signals U'W and

7 lead to the same maximum value of S/N.



81

Note, then, that the maximum average signal-to-noise ratio that
can be obtained from the signal Z(;r’, t) is achieved by choosing the local

oscillator wave function, denoted R(;r.) » to be that solution of the integral

equation,

(136) 3 M (y,y') R(y") = AR(y)
where

(137) M (y,y) =<Z(y,02" (v, 0>

—

is the mutual coherence function of the signal Z(y,t). This follows
directly from the derivation of Eq. (16) by replacing U(X,t) W(X)

by Z(?, t) and V(_;{) by R(—};). Furthermore, with reference to the
discussion following Eq. (16), it follows that the maximum average
signal-to-noise ratio that can be obtained from the signal 2(7, t) is
directly proportional to the maximum eigenvalue, N,y of Eq. (136).
Thus, in order to show that the signals U'W and Z lead to the same
maximum value of S/N it is sufficient to show that the eigenvalues of

Eq. (16)

— — —_ =

EMU,(X,X') V(x')dx' = Agr V(%)

are identical with the eigenvalues of Eq. (136)

—_—

S M, (v, y)R(y)dy' = Az R(y)
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To show this, it is sufficient to show that every eigenvalue of Eq. (16)
is an eigenvalue of Eq. (136) and vice-versa. That such is the case
obviously depends upon the relationship between My and My - This

relationship is, from Eqs. (137) and (129)
(138) My (y,y') = S d;(‘ dx' L(x, y) My (%, %) L* (%', y")
and hence, Eq. (136) may be written

(139) Sd;_rT gd?ZS dx' L(x, y) Mypi(3 %) L¥ (%' y') R(Y")

=\, R(Y)

Then, multiplying both sides of Eq. (16) by L(;, ;IT and integrating with

respect to x gives

(140) S ax | axt L 3) Myg( ) V()

=g gv&') L(x,y) dx
Replacing V(x') by | dx''8(x'' -x') V(%'") Eq. (140) may be written
(e (e vy 5 a3 v

= AU,S V(%) L{x, y)dx

—_— -

From Eq. (135), &(x'' - x') may be written in the form
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(142) 8(x" - x') =gL”%x',y')L(x",y')dy'
and hence Eq. (141) may be written

(143) S‘da‘cgd;' (%, y) MU.(§,?)Sd?' gd;ﬁ L (%7
L(;",;;') V(-;”) = )\U‘S V(;{.) L(;,;:) dx—.
Finally, by interchanging order of integration, Eq. (143) may be

written

( 144) (d}ng;S dx' L(%, y) Mi(x, x') L¥ (%', ")

{S d:”V(:”) L(;" ,-;r" )J = )\U ,S. d:V(—;) L(; ;

Comparing Eqs. (144) and (139), it follows that

> —_—

( 145) R(Y) = 3 dx V(%) L(x, y)

is a solution of Eq. (136) corresponding to )\Z = )‘i provided that V(;)
is a solution of Eq. (16) corresponding to Ay« = A;. Thus, every
eigenvalue of Eq. (16) is an eigenvalue of Eq. (136). In order to show
the converse of this statement, i e., that every eigenvalue of Eq. ( 136)
is an eigenvalue of Eq. (16), multiply both sides of Eq. (139) by

—_— —

* . . - s
L" (x",y) and integrate with respect to y to give
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(146) S‘d;g\d;’ g dy L(x, y) L™ (x", y) My (%, ")
dy'L" (x', y') R(y") =XZdeR( y) L{x", y)

From Eq. (135), the ?integration on the left hand side of Eq. ( 146)

gives rise to 5(%x-x"). Then, performing the ;integration, Eq. (146)

becomes
(147) SdQMU'(?!",;") {ay'L* (", YY) R(YH }

- § L B R
Finally, comparing Eqs. (147) and (16), it follows that
(148) V() = SL"“ (3 y) R(y) dy

is a solution of Eq. (16) corresponding to Ay =)\j provided that R(y)
is a solution of Eq. (136) corresponding to XZ = )‘j' Thus, every
eigenvalue of Eq. (136) is an eigenvalue of Eq. ( 16). Furthermore,
the relationship between the corresponding eigenvectors, as given by
Eq. (145), is precisely the same as that between the signals

U' (%, t) W(x) and Z(V, t).

It follows then, that

(149) Mmax = Myimax
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which, as discussed above, implies that the maximum average signal-
to-noise ratio that can be obtained from the signal Z(y,t) is equal to
the maximum average signal-to-noise ratio that can be obtained from
the signal U'(;{’. t) W(_>Z) .

It is a simple matter now to show that the filter function G, (—;c)
may be set equal to one. The argument is precisely that used to show
that Gl(—;r’) may be set equal to one.

It has been shown then, that there is no possibility of obtaining a
larger average signal-to-noise by employing an optical system of the

form discussed.

C. Variance of Beat Signal Power

In this section the variance of the beat signal power (i. e., fluctu-
ations about the average value) is discussed. As mentioned in the
introduction, the variance may actually be more important than the
average signal-to-noise ratio in determining the performance o‘f a
communications link. A simple extension of the above theory will,
however, show that not only is the maximum average signal-to<noise
ratio independent of the choice of the optical system, but so too are
the corresponding instantaneous values, and hence, the variance of
the béat signals. To show this, let the optimum local oscillator
wave function for heterodyning with the received signal U(X, t) W(x)

be denoted by Vo(%x). Then, from Eq. (145), the optimum local



86

oscillator wave function for heterodyning with the signal Z(;r., t),
obtained by passing the signal U(X,t) W(X) through the optical

system, is given by
( 150) Roly) =S dx V(%) L(x,y)

That is, ROG;) is obtained by passing Vo(;:.) through the same optical
system as was U(;, t) W(;). The objecfive now will be to show that
RO(;’) and Z(;;, t) produce the same beat signal current (vs. t) as
does Vo(;’) and U(;, t) W(::). Thus, from Eq. (5) the beat signal

current for Vo(—.) and U(;, t) W(—.) is given by

(151) Iy = Re )“f S W(x) VE (%) U(x, t) dx

Similarly, the beat signal current for the pair Ro(;; and Z(—;, t) is

given by
.(.L)t * * —rn —_— —
(152) I,= Re e’ n‘SRo(y)Z(y,t)dy

Substituting for Ro(—.) and Z(;f’, t) their equivalents, as given by

Eqgs. (150) and ( 129) respectively, one obtains
(153) I, = Re e/t n gd?g dx Vi (%) L* (3% y)

gd?{w&’) U(% t) L(x, y)

or
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(154) I, = Re &% n SS‘S W(x') Vi (%) U(x', 1)
L* (%, y) L(x', y) dy dx' dx

From Eq. (135), the ?integration gives rise to the delta function,

&( %' -;). Then, performing the x integration, one obtains
(155) I, = Re 'y gvv(?{) Vo (%) U(x,t) dx

which is identical to the beat signal current Iy as given by Eq. ( 151),
Thus, not only is the maximum average signal-to-noise ratio the same,
independent of the choice of the optical system, but so too is the time
behavior of the corresponding beat signals.

The equivalence of these different heterodyning schemes can be
seen from a very simple argument[ 17] . The crux of the argument
lies in the fact that the beat signal current is unchanged by passing
both the signal and local oscillator beams through, for example, a
lens before combining them on the photodetector surfacef[l,23]. This
equivalence is, of course, implied by the fact that Iy, Eq. (152),is
equal to Iy, Eq. (151), and that L(;, _T represents a linear trans-
formation. A rather simple argument then shows that: the optimum
local oscillator beam for heterodyning with the received signal after
it alone is passed through the lens, must be identical to the beam

obtained by passing through the lens the optimum local oscillator beam

for heterodyning with the received signal itself. It follows that no
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additional improvement in the average signal-to-noise ratio, indeed in
the time behavior of the beat signal itself, can be obtained by hetero-
dyning with the received signal as it appears, for example, in the focal
plane of a lens.

The above is not meant to imply that the optimum local oscillator
beam discussed here, may not lead to a smaller signal power variance
than, for example, that associated with the plane wave local oscillator
beam assumed by Fried[ 1] in his determination of average signal-to-
noise ratio. Indeed, there is reason to believe that the optimum local
oscillator beam, tapered in amplitude as it is, may lead to a smaller
signal power variance than that associated with the plane wave local
oscillator as determined by Fried[21]. This pointis presently under
consideration. It can be noted here that one possible method for
determining the signal power variance associated with the optimum
beam is to note that, from Eqgs. (5), (61), and ( 65), the beat signal

current is, since {@n} are orthonormal,
( 156) I(t) = Re (3" n VA, (1)
It follows then, that the beat signal power is, from Eq. (156)

1 2 2
(157) p(t) = 5 0 [ vl [agn |

and hence that-the, normalized, signal power variance S, defined by
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2 - 2
(158) g - SPHO> - <P()>

<P(t)>*?

is, from Eq. (157)

4 2
<lago ['> - <lagol™>

(159) S = >
| <lag(y®>2
or
< 'Aq( R I4> " Mmax
(160) S =
Mmax

where A ., = < , Aq( t) ' 2> » is the maximum eigenvalue of the integral
equation, Eg. (27). Once the form of the probability distribution
function for Aq( t) is known, then S can easily be determined from Eq.
(160). '

It must be noted here that the "optimum'' local oscillator beam
determined above is not, necessarily, truly optimum in the sense that
it affords both a 'large' average signal-to-noise ratio and a ''small"
signal power variance. The truly optimum local oscillator beam
might sacrafice maximum average signal-to-noise ratio to obtain a
"happy medium'' between average signal-to-noise ratio and signal
power variance. This "happy medium'" could, for example, b;a
precisely defined as follows: Given a specific optical communications
system, whose job is, for example, to transmit one of M discrete

messages, then determine that time invariant heterodyne detection
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scheme which minimizes the probability that the receiver makes an
error in deciding which message was sent. Since, as described
previously, the probability of error (or mean square error in the
case of waveform communication) is a nonlinear function of the
signal-to-noise ratio[ 8], the solution of this problem demands a
knowledge of the probability distribution function of the beat signal
power.

This Chapter can be summarized by stating that the "optimum"
time invariant detection scheme can be realized by properly shaping
the local oscillator beam alone. Thus, no additional improvement
can be obtained by pre-processing the received optical signal. This
applies not only to the average signal~to-noise ratio, but also to the
variation of the signal-to-noisé ratio about its average value.

In the next Chapter, recommendations for further study are

given.



CHAPTER VII
COMMENTS AND RECOMMENDATIONS

This Chapter presents recommendations for further extensions
of this work. At this point let us review some of the problems of
optical heterodyne detection. This review will lead to suggested
projects.

A most serious difficulty encountered in heterodyning with an
atmospherically distorted optical beam, even in the absence of ampli-
tude fluctuations, is that the phése difference between any two '"points"
on the received signal may assume, in the course of time, many differ-
ent values; the number of which increases from zero as the po'ints are
separated. This consideration gives some insight to the result obtained
previously, viz., that no single, fixed local oscillator wavefront can
cause the beat signals generated at these points to add in phase '""'most"
of the time. That is, since the difference in phase between these
individual beat signals is a linear function of the phase difference be-
tween the received signals at the corresponding points ( a difference
which may fluctuate through many radians for points not ""too close"

together), it is perhaps unreasonable to expect that these individual
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beat signals will add in phase and thus, produce a large detector output
current "most' of the time. Even if this were possible, the amplitude
fluctuations of the received signal would, even when the total received
optical power remained constant, induce fluctuations in the output beat
signal current. This effect too, can obviously not be entirely over-
come by shaping the local oscillator beam.

In view of the difficulty,i. e. , the random changes in the phase
and amplitude of the received signal, it would appear that the following
represent two most promising methods for obtaining improvement:

(1) Adjust, with time, the shape of the local oscillator ampli-
tude and/or wavefront so that it matches the corresponding quantities
of the received signal for all, or a large fraction, of time, or

(2) Use an array of "small" , isolated detectors and adjust,
with time, the amplitudes and/or phases of the beat signals generated
by each one so that they add as would the individual beat signal currents
generated at each '"point'' of the detector as in method one above.

These two methods are equivalent in the sense that each hits
directly at the heart of the problem, namely, that of compensating,
with time, for the phase and amplitude fluctuation of the received signal.
They differ in that the first method accomplishes this before, and the

second after, the individual beat signals are generated.
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There are, undoubtedly, many possible ways of accomplishing
each of the above. For example, suppose that the atmospheric dis-
tortion of the received signal consists of a random tilting of ah other-
wise ''nearly" flat wavefront. The local oscillator beam could, in
theory, be made to follow this tilting by reflecting it from a flat servo
controlled mirror whose orientation is adjusted until the beat signal
reaches its maximum value. Alternatively, the heterodyning could
be done in the focal plane of a lens through which the received signal
is allowed to pass. By using a fixed local oscillator beam and
activating only that portion of the phototube where the focused signal
spot lies (as determined, for example, by focusing a small fraction
of the received signal to an array of small detectors) then any tilting
of the signal is tracked.

A somewhat more elaborate scheme, utilizing features of both
methods one and two above, could be employed in a case where the
atmospheric distortion can be considered as a random tilting over
only each area of an array of adjacent areas of the received signal.
In this case, the signal from each of these areas could be passed
through a lens and focused to the surface of a photodetector, one
detector for each area. Tilting is tracked by each of these detectors
as discussed above. Finally, the amplitudes and/or phases of the
beat signals from each detector could be automatically adjusted as

described in method two above.
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As each of the above and other approaches will have their own
advantages and difficulties, an evaluation of the performance of
several of these offers an excellent area for future study.

A further investigation that should be undertaken is an experi-
mental determination of the heterodyne signal level probability
distribution function ( for a time invariant local oscillator wave
function). This data is, as explained in the Introduction, necessary
for evaluating the performance of the time invariant detection system,
and will also be useful for designing and evaluating time varying
detection methods.

Furthermore, some thought should be devoted to the possibility
of being able to use the results of heterodyne studies to evaluate the
performance capabilities of other optical communication systems.

As already noted, the Karhunen-Loéve theorem represents a powerful
tool for such studies. Additional background material for this type

of study can be found in Reference 22.



CHAPTER VIII
SUMMARY

The problem under consideration in this investigation was to
determine that time invariant detection scheme which maximizes
the average signal-to-noise ratio in the heterodyne detection of a
randomly fluctuating optical signal beam. This problem has been
solved. Indeed, this scheme can be realized by properly shaping
both the isophase surface and the intensity pattern of the local
oscillator beam. No signal pre-processing is required. Further-
more, it was shown that both the phase front and the amplitude

shape of this "optimum' beam depend on only the two point or mutual
coherence function of the received optical signal. This result, and
its physical interpretations, which were derived formally by the
calculus of variations, have also been shown to be simple conse-
quences of the Karhunen-Loéve theorem.

Several examples were considered. The first showed that for
the special case of a non-fluctuating received signal phase front and

amplitude shape, the local oscillator beam should "match' the

signal beam in both phase and amplitude shape for maximum average
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signal-to-noise ratio. Secondly, the general conditions under which
the phase front of the optimum local oscillator beam is parallel to
the average received signal phase front were stated. Furthermouve,
the basic phenomenon which leads to an aperture size above which
the average signal-to-noise ratio does not increase significantly was
indicated.

For the case of an atmospherically distorted plane wave optical
signal it was shown that the optimum local oscillator beam differs
significantly from a plane wave. Indeed, it is a beam with a flat
phase front, parallel to the average signal phase front, and an ampli-
tude which is a maximum at the center of the receiver aperture and
decreases to a minimum at the outer boundaries of this aperture. In
particular, for the case of an aperture with diameter r, (r, being
Fried's[ 1] "optimum aperture diameter"), the ratio of maximum
to minimum intensity is more than 6 to l.

However, even though this optimum beam differs markedly {rom

a plane wave, it was shown that it does not significantly increase the

.average signal-to-noise ratio over that for the plane wave local

oscillator beam as reported by Fried[1] .
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It should be emphasized here that it has been rigorously shown
that no pre-processing of the distorted signal( which employs an
optical system of the form discussed) can lead to a larger average
signal-to-noise ratio, indeed to instantaneous values of the beat signal
current, which could not be obtained without any such pre-processing.

In Chapter VII of this investigation, several suggestiong for

future investigations were considered.



APPENDIX I
MAXIMUM ("51\'1) - SCHWARZ INEQUALITY
The result given in Eq. ( 35) (namely, that the average beat
signal power is a maximum when both beams have the same ampli-
tude shape, as well as the same phase shape) is merely a statement
of the Schwarz inequality. That is, with both A(%) and ¢(%) inde-

pendent of time it follows from Eq. (7) that

1 — —_— JOR— —_— —_— RV—— —_— —
(161) Py = Y n? S‘SW(X)W(X') Vix) V(x")U(x)U" (x') dx dx'
. 2
=%nz SW(E’)V*(?)U&’M? :

and maximization of P, subject to

— I e

1 ’ - sk

(162) P, =7 g W(x) V(x)V (x)dx = constant
2 J

is equivalent to maximization of the ratio

- x> — 2
(wimv o e

(163) .1_3_9..=n

S.W(?{) V(%) V(%) dx
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Applying the Schwarz inequality to the numerator of Eq. (163); i. e.,
— sk ™ — — 2 —_— — e —> —
( 164) ISW(X)V (x)U(x)dx| < SW(X)V(X)V (%) dx

S W U(xU (% dx

if follows that

— K —_—

(165) Po nSW(?) U(x) U* (%) dx
P

The maximum value of Po/PL then occurs when the equality sign holds
and, as is well known, this condition obtains when the two functions

appearing in the Schwarz inequality are proportional; i. e., when
(166) V(%) =C U(x),

where C is an arbitrary complex complex constant. Writing

C = lCI eJeo it follows from Eq. ( 166) that

(167) 8(x) = ¢(x) + 6,
and
(168) B(x) =|claX® .,

which are precisely the results obtained previously in this investigation.



APPENDIX II
REALIZATION OF OPTIMUM LOCAL
OSCILLATOR WAVE FUNCTION

In this Appendix a brief discussion of one possible method for
realizing the optimum fixed local oscillator wave function is given.

In addition, an experimental arrangement for measuring the mutual
coherence function is shown.

As shown in Fig. 11, the optimum local oscillator beam could
be realized by passing a plane wave through an amplitude and phase
filter whose transmission characteristics would be determined from
the solution of the amplitude integral equation, Eq. (27) , and the
phase equation, Eq. (26). As mentioned above, the solution of each
of these equations requires a knowledge of only the real and imaginary

parts of the mutual coherence function; that is,

C(x %) = <A%K HA(X,1) cos(d(x,t) -b(x'rt))>
and

S(m %) = <A(% ) A(x',t) sin(d(x,t) ~d(x',t)) >

100
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OPTIMUM LOCAL
OSCILLATOR BEAM

Y vz PHASE FILTER

OO\ AMPLITUDE FILTER

PLANE WAVE
LOCAL OSCILLATOR

Fig. 1l--Realization of optimum local
oscillator beam.

Experimentally, these two functions could be determined by the
scheme illustrated in Fig. 12. Here V, is the voltage generated by
passing the output current of phototube one ( P;) through a resistance
of C ohms/m?, AS is the area of the phototube illulﬁinated by the signal
and local oscillator fields passing through the small hole, located at
position }_{.I, in the opaque screen and n[ ] AS is the output current of
P, generated by these fields. The remainder of Fig. 12 should be
self-explanatory. By varying the location of the holes in the opaque
screen, C and S can be obtained for all pairs of points on the received
beam. The function of the computer is to determine the solution of
the amplitude and phase equations; i. e., Eqgs. (26) and (27), from

a knowledge of its inputs, C and S.
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APPENDIX III
MUTUAL COHERENCE FUNCTION

This Appendix summarizes one of several different, theoretical
derivations of the mutual coherence function of an atmospherically
distorted optical plane wave. The derivation follows that suggested by
Hufnagel and Stanley's paper[ 15] together with the needed modifications
discussed by Chase[ 18] and Fried[ 19].

The physical situation under consideration is the following: A
plane monochromatic optical wave, Re U, ejwst, is incident on a region
of randomly fluctuating index of refraction. As a result of these fluctu-
ations, there appear[ 14] irregular changes in the phase and hence,

— iwt
amplitude of the optical field, ReU(r,t e’S"  The quantity of interest
P P q y

is the mutual coherence function, My, defined as

(169) Myl p1sp2r Z) = <U(ps Zst) U (p2, Z,t)>
where _f;i denotes a position in a plane of constant Z (Z being the
direction of propagation of the unperturbed wave) and the angle

brackets denote a time average over an interval of length T.
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To obtain an exact solution of this problem requires solving the
time dependent wave equation. The problem simplifies, however, by
assuming that the time changes in the index of refraction are suffi-
ciently slow ( compared with the optical frequency) so that the fre-
quency fluctuations of the optical field may be ignored[ 21] . With
this assumption the general procedure has been to model the physical
situation by an emsemble of systems each with a spatially varying,
but time independent index of refraction. In other words, the index
of refraction within the media is considered to be a time independent
random function of position. The time changes in the index of
refraction which actually occur are then regarded as changes in the
different realizations of the random index of refraction field, n( T g).
P is a parameter used to distinguish between different members of
the ensemble. It is assumed that the time average in Eq. (168) may

be replaced by an ensemble average so that
(170) My(P1, P2 2)=< U(p1,Z, B) U™ (p, 2, f) >

where Re U(T;, Z,B) ej(“)st is the optical field associated with the index
of refraction ensemble member n(?, B), and the brackets now denote
an ensemble average. What this model neglects is the ""transit"

behavior of the fields which occurs, in the physical system, when the
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index of refraction function changes from, say n(?, Bi1) to n(?, Bo). It
“will further be assumed that changes in the polarization of the field
are negligible[ 14] .

With these assumptions, the optical field at position r,

Re U(T,B) erst, may be written in the form
— i t —_— 1 t
(171) Re U( 1*,{3)er5 = Re A(r,F‘3)er‘]ws

where erjwst represents the unperturbed wave, with Ug = Aoe_jkz,
and A(T,B) describes the phase and amplitude perturbations of the
wave associated with the refractive index function n( ;:B ). Assuming
that the optical wavelvength, A, is "much" smaller than the geometrical
dimension, £,, of the smallest inhomogeneity in the spatial distribution

of the refractive index, it follows that[ 14] U satisfies the (scalar)

wave equation

(172) FRU(T,B) + n¥(T,B) KEU(T,B) =0 .
Letting
(173) n(r,B) =1+n(7,B)

and assuming that n;<< 1, it follows, neglecting terms involving

n% , that A(?, B) satisfies the equation
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(174) V2A(T,PB) +21k58—z- A(T,B) + 2K* ny (T,R)A(T,B)=0

In order to obtain an explicit relation between My and n; (?,ﬁ ),
Eq. (174) could be solved for A(Fl »Z,B) and A¥ (_F’;v Z,B) and their
product then averaged to form M,;. Several methods for obtaining an
approximate solution in this manner appear in Reference 15. Hufnagel
and Stanley[ 15] , however, suggested that one try first to obtain a
differential equation involving the product, A(T).l ,Z,B) A* (_p;. Z,R).
The resulting equation is then to be averaged term by term and then,
"hopefully, directly solvable for M,;. This equation for A(—l;l v Z,F)
A" (—[.'_).z, Z,PB) can be obtained from Eq. (174). From that equation it

follows that A(T;l yZ,B) satisfies the equation

(175)  PA(F1,2,8) +2ik oo A(F1, Z0F)

+2k2 nl(-&,z,p)A(E;Z:ﬁ) =Ol

where V?A(p1,Z,B) = V2A(T,B)|> — , etc., while A™ (pgr Z,B)
r=(Per)

satisfies the equation

—- 9 -
(176) VZA*(PZ:Z!ﬁ)‘Zik ‘a—z— A*(PZ'Z'E)

+ 2k? nl(-;Zthﬁ)A*(?;Zr Z,B) =0
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Multiplying each term of Eq. (175) by A (72, Z,£) and of Eq.
(176) by A( E »Z,B) it follows, upon subtracting the resulting equa-

tions, that
(177) A (52 2,B)V2A(Prs 2, B) ~A(p1, Z, B) V2A™ (5y, Z, B)
g - K, —-
+2ik 2 [ A(PI.Z,F)A .7,
ik 57 [ A(py FYA (p2 £l
+ 21 0y (F1,Z:8) -0 (Par Z,B)] AL ZB) A (p2s Z,£) =0 .

Equation ( 177) almost has the desired form; all but the first two
terms involve only the product of A(py,Z,P) and A" (P2, Z,B). How-
ever, upon averaging Eq. (177) term by term and making use of the

assumption that

(178) <A (30 Z,B)VEA(P1, Z,B) >
=<A(p1,2Z, B) VA" (53 2,0 ,

Hufnagel and Stanley obtained

(179) 537 < AP Zo ) AN (P 2,B)>

-ik< [y (p1s 2, B) -n1 (pas Z, B )]

A(p1,Z: YA (pazZ,R)]> =0
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Hufnagel and Stanley claimed that a solution of Eq. (179) for

<A(?1,Z,F3)A*(E;,Z,f3)>. or, assuming ,Uof =1, for My is
(180) My( P12 2) = <A(P1,Z,B) A% (55, 2,8)>

=< exp{iks[nl(_;;pZ',ﬁ)-nl(-;—).z,z':fs)]dz' } o>
0

Substituting this assumed solution for M,, into those terms in which

it appears in Eq. (179) gives

(181) <[ny(p1,Z.p) -n1(P2s Z,B)]
Z
Lexp { 1k | [mu (71, 2.8) -m (7, 21,8)] 42 }]>
0

? —_ — —_ ge -
= <[m(p1,2.8)-m(pz Z,£)] [A(P1: Zf)A  (p2n Z,8)]> .

Note that A( E; VAN )A* ( 02 Z,B) a pearing in the second term
P2 P g

of Eq. (180) cannot, in general, be replaced by

Z
exp {ik\g‘[nl(—f;.ltzlsﬁ)"nl(?z: Zl:p)] dz' }
0

since, as noted by Hufnagel and Stanley, Eq. ( 180) does not, in general,
imply equality of the guantities within the averaging brackets. Indeed,
these quantities are equai only when the amplitude fluctuations of the
optical field can be neglected. That is, if the path length (2) is

sufficiently short so that geometrical optics may be applied to obtain
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the optical field for each realization of the random field A(_f-; B) then

it follows that

A(P1,2,B) =exp {ind(p1,2)}

h
where 7

Ad(pr,Z) = kS n(p1.2'R) 4z’
0

is the difference in phase between the perturbed and the unperturbed
wave (the latter being that which would be present in the absence of
turbulence).

It should be noted here that the form given for M,; by Hufnagel
and Stanley is, except for some disagreement on its range of validity,
generally agreed to be approximately correct. This is claimed to be
the case even when geometrical optics cannot be applied to determine
the fields for individual realizations of the random field n{ r,R). The
question of interest here is to determine if this result can be deduced
by the method suggested by Hufnagel and Stanley.

Chase[ 18] , in his comments on Hufnagel and Stanley's paper
suggested that Eq. (177) be solved as a first order linear differential
equation for A(p1,Z,P )A:;< (pzs Z, £ ) and that the resulting solution

then be averaged to form M,. Thus, adopting Chase's notation let
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(182) §2Z,8) =A(P1>Z,B)A™ (P2 Z5B)

(183) g(Z,B) = -ik[ny (F1+2.B) -0 (P 2, £ )]

and

(184) h(Z,B) =-(i2k)"! [A™ (52, 2,B)V?A(P1,Z,B)

~A(p1,Z,P) VEA* (53, Z,B)]
so that Eq. (177) takes the form
(185) g.zf(z,m+g<z.ﬁ)f(z,ﬁ)=h(z,ﬁ)

Chase gave as a solution for this equation

Z Z
(186) f(Z,B) =S dZ' h(Z',B ) exp [—S dz" g(Z",ﬁ)]
0 A
' Z
+£(0,B) exp [~§ dz" g(Z",ﬁ)} '
0

where f(0,f) =1 if the optical wave is unperturbed at Z = 0.

Averaging Eq. (186) term by term gives
(187) My(P1spes Z) = <4(Z,F)>

>

Z Z
=< S dzZ' h( Z',B ) exp [-—S az" g(z",B)
0 z'

Z
+ < exp [-g az" g(Z",ﬁ] >
: 0
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Note that it is only the second term in Eq. ( 187) which is given by Eq.
(180) for M. As noted by Chase, however, the assumption that
<h(Z,R)> =0, as given by Eq. (178), does not imply the vanishing of
the first term in Eq. (187). Chase argued this on the grounds that

there is some, non zero, correlation between h(Z',£) and

Z

g dz" g(Z",f). That such is true follows from the facts that:

Zl

(1) h(Z',B) depends on the index of refraction between 0 and 7' while
Z

S dzZ" g(Z'.,f) depends on the index of refraction between Z2' and Z,
Zl

and (2) there is some non zero correlation between the index of re-
fraction in these two regions.

Fried[ 19], commenting on Chase's letter, argued, however, that
since the range of correlation of the refractive index (£,) is very small

compared to the total path length ( L) then the correlation between
Z

h(z',B) and dz" g(Z2",p) is (for most values of Z') very small.
g y
A

In particular, Fried[ 19], claims that the cross correlation product is
of the order lf’) <nf > and hence, can be dropped due to the smallness
of <nf >. This type of argument, Fried[19] notes, is equivalent to
Bourett's hypothesis of local independence, which amounts to regarding

the "stochastic" field n(T,B) as having a negligible local effect on the
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perturbed field U(T,B). If Fried's argument applies, then the assump-
tion that <h(Z',B)> =0, as given by Eq. (177), is sufficient to estab-
lish the approximate accuracy of the solution for M, given by Hufnagel

and Stanley.
Accepting that M, is, approximately, given by Eq. ( 180), we

proceed with the derivation of Hufnagel and Stanley. Thus, the quantity

S defined by
Z

(188) S(BE.T;’Z) =S[nl(EI,z',m-nuE;,z',m] az'
0

is assumed to have a Gaussian distribution ( by central limit theorem)
with zero mean (i e., <n(?, By>=1; ;. <ny( ;:[3) > =0). It follows

from this that

(189) <exp ikS> = exp (—-;- K< s? >)

where 7 7

(190) <s*> = dzlg dZ; < [n1(p1»2Z1,B) -m (p2s Z1+B) ]
0 0

[n1(p1s2Z2:B) -1y (pz,Z2,B)]>

1 2
By making use of the identity (a -b)(c-d) = E[(a-d) + (b-c)2 -(a -c)Z

-(b-d) 2] the integrand in Eq. ( 190) can be expressed in terms of the

index of refraction structure function, Dy, defined as

—_— — 2
(191) Dn=<[nl(Pi:ZJ‘:ﬁ)-nl(Pknzg:ﬁ)] >
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As a consequence of the assumptions of local isotropy and lateral sta-
tionariness together with the Kolmogoroff theory of turbulence, it

follows that

2 23
by

(192) D, =D,(r) =Cy

where C;I is called the refractive~index structure constant and r is
the distance between the points in question.  Actually[ 15] , Eq. (192)
is valid only over the range £, < r < L, where £, (<3 cm) and

Lo(2 103 cm) are referred to as the inner and outer scales of turbu-
lence. Neglecting this restriction, Hufnagel and Stanley show that the

mutual coherence function is

(193) Myl p1sp2: Z) = Mylps 2)

z
exp [-@-) (2.91)1395’35 dz ci]
: .

i

Equation ( 125) has been independently obtained by Fried[ 1].
Comparing this with the form given by Fried[ 1], and used in this

investigation, viz., from Eq. (97)

1 53
(194) M,(p,2) = exp[—-z— (6.88)(p/ro) ]
it follows that, for a path of length R,

— -6
(195) ro =12 X107 xfl’s R-¥5 cN/5 meters
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where M\ is the wavelength in meters. In Fig. 13, the dependence of
ro on Ay, R, and CT\I’ as given by Fried[ 1], is shown graphically.
This completes the derivation of the mutual coherence function
for an atmospherically distorted optical plane wave. In closing it
should be noted that, of those derivations which have come to the
author's attention all seem to arrive at essentially the same form
for the mutual coherence function. However, there is not a general
agreement on its range of validity. In order to settle this issue the
most reasonable approach would, perhaps, as noted by Fried[19],

be based on an experimental study.
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Fig. 13--Dependence of r, upon path length R, and strength
of turbulence as measured by Ci\l (from Reference 1)."

% The C%\] scale in the upper left covers the range of values normally
encountered within several tens of meters of the ground. To use the
graph, a wavelength line is drawn parallel to the four heavy lines.and
passing through the wavelength scale-at the appropriate point. Where
the vertical line, drawn through the range of interest, intercepts the
wavelength line, we pass horizontally over to one of the vertical rg
scales on the left. Which of the ry scales we read from depends on
the value of C;‘l'\] we wish to consider. As an example, we have drawn
the wavelength line for 0. 63 microns and considered a range of one
kilometer. For turbulence strength, denoted by Cf\] =3 X 10716 ¢o
Czi\l = 10715, we see that r, falls between approximately 0. 21 and 0. 11
meters.



APPENDIX IV
UNITARY TRANSFORMATIONS

This Appendix discusses the unitary property of L(%,y) as
given by Eq. (134).

The requirement that
(196) gdi’gd?{' V(58 V(% t) I(%, ¥
= SV(?I,t) v (E &
hold ior all V(;c: t) implies that
(197) (%, %) = 6(x-x')

as stated in Eq. (135).
To show this, let V(;c: t) = 0 except for x in the region A;c;
about;=;i and in the region A;; about x = ;; Let V(%,t) equal
V; in A;; and Vj in A::j- Then, Eq. (196) becomes, for small
Ax,
(198) V; Ax; gV( X', t) (%3, %) dx' + V; AE'{J-SV(?Z',t) I(x;j, x') dx’

= ,V-j_lz A;;-i— ’VJIZ A;;_]
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or

(199) Vi Axi (Vi A Ixix)) + Vi Ax105x5) )
+ VB x; {Vi AxI(xj,x3) + V5 Ax; I Xjrxi)}

= lVilz A;;*- IVJ,ZAXJ

Since the above is to hold for all V(;, t) set V; =0. Then Eq. (199)

J
becomes
( 200) vil (ax)? wxu =) = [vyl” ax
hence
(201) N3 ) = —
X.'X‘ = ——
ir %i Ax

In view of Eq. (201), then Eq. (199) becomes

(202) viv}"IG{i,“ij) + V5V Ixgexp) =0

Again, since this is to hold for all V(?{’, t), let Vi = L; Vj = 1 to obtain
(203) (% %) - I(xj,%3) =0

Finally, letting V; = Vj =1, Eq. (202) gives

(204) 105, %)) + I(%p,%3) =0

From Eqs. (203) and (204) it follows that

(205) X% =05 F AR



Combining Eqs. (201) and (205) it follows that, for Ax —0, I(;, X

has the property of the Dirac delta function, 5(x-x"), i e,

(206) xx) =0; x#%',
and

(207) S (%, %x)dx' = 1.
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APPENDIX V
NORMALIZATION OF S/N

This Appendix discusses the normalization of the average signal-
to-noise ratio as used in Chapter IV,
From Eqs. (5.12) and (5.13) of Fried[ 1], Fried's normalized

signal-to-noise ratio, ¥ (D/ry), is, for a circular aperture of di-

ameter (D/ro) )

8
208 (D = —————— (S/N
(208) (D/ro) (e (S/N)

In order to compare the S/N computed in this investigation with

that given by Fried, the normalized signal-to-noise ratio

8
(209) Y= Z (S/N)
4r? (n/e)A

is plotted. The factor of '4" replaces the factor of ""«'' since a square

aperture is being considered here.

Equation ( 209) may be written in the form

2 2
(210) y=p" —— (s/N)
n/e &? AS
whez.'e
\]AS
(211) B =
To

119



120
From Eq. (18), the signal-to-noise ratio is given in terms of A, ., by
(212) (S/N) = == \
2e max

and hence, Eq. (210) may be written

13
(213) e rﬂ"(————_zma"> = £* Xnax
A AS

as stated in Eq. {111).
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