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Based on an all-optical system, a display of a fractional Fourier transformwithmany fractional orders is
proposed. Because digital image-processing terminology is used, this display is known as the
Radon–Wigner transform. It enables new aspects for signal analysis that are related to time- and
spatial-frequency analyses. The given approach for producing this display starts with a one-
dimensional input signal although the output signal contains two dimensions. The optical setup for
obtaining the fractional Fourier transform was adapted to include only fixed free-space propagation
distances and variable lenses. With a set of two multifacet composite holograms, the Radon–Wigner
display has been demonstrated experimentally.
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1. Introduction

Recently, the fractional Fourier transform 1FRT2 has
become a useful mathematical operation for signal
processing. An optical implementation of it was
obtained with a graded-index 1GRIN2 medium.1–4
In digital image processing and in tomography a
similar transformation, adapted to time-frequency
operation, has been suggested. This transforma-
tion is called the Radon–Wigner transform.5–7 The
relation between the FRT and the Radon–Wigner
transform was discussed in Ref. 8. By calculating
and displaying the FRT for all possible angles, one
obtains a plot that we call the 1x, p2 display.9 This
display contains a continuous representation of the
FRT of a signal as a function of the fractional Fourier
order p and as such might obtain complex values.
Note that this display is reversible, and one can
calculate the original function from it. This display
may also be useful in optics because, for example, it
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Moliner 50, 46100 Burjassot, Valencia, Spain.
Received 20March 1995; revisedmanuscript received 21 Febru-

ary 1996.
0003-6935@96@203925-05$10.00@0
r 1996 Optical Society of America
shows explicitly the propagation of a signal inside a
GRIN medium. Wood and Barry6 suggested a simi-
lar display, which they called the Radon–Wigner
display, and showed its application to the detection
and classification of linear FM components. How-
ever, their display is the intensity representation of
the 1x, p2 display, and thus it is not always reversible.
Thresholding the 1x, p2 display followed by filtered
backprojection to the space–frequency plane reduces
noise and cross-term power for multicomponent lin-
ear FM signals.7 In this paper an optical implemen-
tation of the 1x, p2 display is suggested.
In Section 2 is a mathematical analysis of the

suggested optical setup. In Section 3 the experimen-
tal results are illustrated.

2. Mathematical Analysis

The FRT is a mathematical operation that has
applications in signal analysis and processing. The
integral definitions of the FRT are3
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where p is the fractional order, l is a wavelength, f1 is

10 July 1996 @ Vol. 35, No. 20 @ APPLIED OPTICS 3925



a scaling factor of the transformed function, andC1 is
a constant that equals

C1 5

exp52i3p sgn1sin f2
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Recently the FRT operation was implemented opti-
cally. The bulk approach implementation3 shows
that an FRT of order p can be performed with a setup
consisting of a lens 1with focal length f 2, a free-space
propagation 1of distance z2, and an additional lens
1with focal length f 2 placed at the output plane. The
focal length of the lens f and the distance z should
fulfill

f 5
f1
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f

2

, z 5 f1 sin f 5 Rf1. 132

We call a display that contains a continuous
representation of the FRT of a signal as a function of
the fractional Fourier order the 1x, p2 display, and it
may be useful both for digital signal processing 1see
Ref. 72 and for optics 1e.g., it shows explicitly the
propagation of a signal through a GRIN medium2.
For a one-dimensional 11-D2 object this plot contains
two axes: the space and the FRT order p. The
vertical axis x is the spatial 1-D light distribution
up1x2 of the p-order FRT of the original function u01x2.
The horizontal axis is the FRT order p. More
explicitly one can write

F1x, p2 5 up1x2. 142

As a result, all the fractional Fourier orders of the
original function u01x2 are calculated and displayed in
one plot.
We suggest, using a multichannel approach, an

optical setup that optically implements the calcula-
tions of the 1x, p2 display. The input 1-D object is
converted to a two-dimensional 12-D2 object by the
use of cylindrical lenses. Then a setup that consists
of a sandwich of three phase masks separated by two
free-space propagations is constructed. The masks
consist of many strips, each one a different channel
that performs an FRT with a different order over the
input signal. Each strip is a Fresnel zone plate
with a different focal length that is selected for
obtaining the different fractional order p, and even-
tually the 2-D output will be exactly the 1x, p2 display
of the 1-D input function. Thus the first step is to
prove that the setup illustrated in Fig. 1 indeed
provides the FRT with different fractional orders.
Note that in this setup we permit changing the focal
lengths 1the different strips of the mask2, but the
free-space propagation distances are constant and
remain fixed for all the fractional orders.
According to Ref. 10, the optical structure of Fig.

21a2 is totally analogous to the structure of Fig. 21b2
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The proof is obtained by the use of some of the
Wigner optics tools.10 The tools needed are:

c An inversion, expressed at the Wigner space as

u1x2 = u12x2, W1x, j2 = W12x, 2j2, 162

where x and j are the two coordinates of the Wigner
transform. When matrix terminology is used, the
matrix that operates over the

3xj4
vector and inverts it

32x

2j4
is

321 0

0 214 .
This is true because

321 0

0 2143
x

j4 5 32x

2j4 .
c A Fourier transformation, expressed in the

Wigner plane with the matrix

30 21

1 0 4 .
c A lens with a focal power of

R
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Fig. 1. Suggested optical setup for obtaining the 1x, p2 display.



expressed with the matrix

31 0

R 14 .
c Free-space propagation over a distance of z 5

Rf1, expressed with the matrix

31 2R

0 1 4 .

Thus the setup described in Fig. 21b2 can be written
as

30 21

1 0 43
1 0

R 143
0 21

1 0 4 5 30 2R
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0 214 . 172

Hence a free-space propagation of length z 5 Rf1 can
be represented as the structure illustrated in Fig. 21c2
where

fT 5
f1

2 1 sin f
. 182

Applying this result to the basic FRT setup men-
tioned above, we replace the free-space propagation
part with the setup illustrated in Fig. 21c2. After
combining the focal powers of the lenses, one obtains
the setup in Fig. 21d2with

fa 5
f1

tan
f

2
1 1

, 192

1a2 1b2 1c2

Fig. 3. Experimental results for the input of a Ronchi grating of 1a2 200 lines@cm, 1b2 100 lines@cm, and 1c2 50 lines@cm.

1a2 1c2

1b2 1d2

Fig. 2. Optical configurations: 1a2, and 1b2 Totally equivalent setups, 1c2 configuration equivalent to the free-space propagation of
distance z, and 1d2 setup yielding the FRT with constant distances and varying focal lengths.
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f1
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, 1102

fc 5 fa. 1112

Thus the setup suggested in Fig. 1 is appropriate
for generating the 1x, p2 display because the distances
of free-space propagation f1 are fixed and because
focal lengths fa, fb, fc are varied according to the
fractional order p.
Two masks that act as a varied Fresnel zone plate

were constructed. These masks were generated in
a multifacet 1multichannel2 manner.11 Each strip
1different channel2 in the mask is a Fresnel zone
plate with different focal power according to the
fractional orders p of the specific strip. The differ-
ent focal lengths of the different strips in the first
mask are related to the fractional order p according
to Eq. 192. In the second mask they relate according
to Eq. 1102. The third mask 3with focal lengths
according to Eq. 11124 may be placed in the output
plane. This mask is necessary only if the field
distribution of the output is examined.
The masks’ function is

t1x, y2 5 exp12piax2exp12 pi
x2

lf 2exp12pi
y2

lZR
2 . 1122

The generation of the mask was done with computer-
generated-interferogram technology12 that results in
a binary mask. The phase term of

exp12pi
x2

lf 2
is the encoded Fresnel zone plate; f is fa, fb, or fc
1depending on whether this is the first, second, or
third mask, respectively2, and it varies from one strip
to the other as a function of the fractional order as
shown in Eqs. 192–1112. The term exp12piax2 is a
carrier frequency that diverts the information to the
first diffraction order. To avoid overlaps between
the different diffraction orders, we require that

max0≠u

≠x0 ,
2pa

2
, 1132

where u 5 px2@lf. Thus

a . 0xmaxlfmin0 , 1142

where xmax is the maximal x coordinate and fmin is the
minimal focal power. The term

exp12pi
y2

lZR
2

exists only in the first filter mask. It was added to
avoid overlap between the different strips because of
diffraction. Note that in the output plane the sizes
of the strips will be as in the first mask. This helps
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avoid interference noise between the different facets.
We assumed that the input wave is a Gaussian wave
in its waist. ZR is the Rayleigh distance of the
Gaussian wave, and it equals

ZR 5
pw2

2l
, 1152

where w is the waist width. Because the distance
between the first and the second mask is f1, we wish
that ZR 5 f1.

3. Experimental Results

The setup suggested in Fig. 1 was constructed. The
prepared masks were designed to be a size of 10 mm

1a2

1b2

Fig. 4. Experimental results of the input of a chirp with the
constants 1a2 1.5 m, and 1b2 2.5 m.



3 10 mm with l 5 532 nm. The number of strips
1channels2 was 25; thus, because we assumed that
the input wave was at its waist,w 5 10 mm@25 5 0.4
mm, the width of the beam at the second mask is
w@Œ2; i.e., only 1@Œ2 of each strip is illuminated.
According to w 5 0.4 mm one obtains ZR 5 472 mm.
Because in practice the input wave is not exactly at
its waist, the real free-space propagation distance
should be a little smaller than 472 mm; thus we
chose the free-space propagation distance f1 to be 450
mm. Because the masks’ sizes are 10mm 3 10mm,
xmax 5 5 mm. For the first mask famin 1obtained for
p 5 12 is f1@2 5 225 mm; thus, according to Eq. 1142, a

should be greater than 42. We chose a 5 60. For
the second mask the minimal power length obtained
for p 5 1 is fbmin 5 f1@3 5 150 mm; thus, according
to Eq. 1142, a $ 60. Thus our choice for a satisfies
both cases.
The designed masks were done with a step of 0.04

in the fractional order p, starting from zero and
ending in 0.96. Figure 31a2 illustrates the output
obtained for the input of a Ronchi grating of 200
lines@cm. Figures 31b2 and 31c2 illustrate the output
obtained for the input of a Ronchi grating of 100 and
50 lines@cm, respectively. Figures 41a2 and 41b2 illus-
trate the output plane for a chirp input,

input 5 exp12 ix2

2f 22
with constants of f5 1.5m and f5 2.5m, respectively.
Theoretically, it is known that the FRT of a chirp will
be a d function for the fractional order of

p 5
2

p
tan2112pf 2

lf1 2 , 1162

Fig. 5. Experimental results of the input of a plane wave.
and indeed in the experimental results a d function 1a
bright dot2 was obtained in the corresponding frac-
tional order p.
Figure 5 demonstrates the output when a plane

wave is used as input. Theoretically, the 1x, p2 of a
plane wave should resemble a lying triangle with the
edge of the triangle obtaining p 5 1 1because the
conventional Fourier transform of a constant is a d
function2. The theoretically expected results were
obtained in practice as can be seen from Fig. 5.

4. Conclusions

An optical setup for implementing the 1x, p2 display
was suggested. The setup is relatively simple and
requires only two masks. The masks consist of
strips. Each strip is a different channel that per-
forms an FRT with a different fractional order. The
experimental output obtained suited the result antici-
pated from the theory. The display has several
optical and digital applications. Optically it can
describe the propagation of light through a GRIN
medium, and digitally it can be used for classifica-
tion and detection of linear FM components and in
the noise reduction of multicomponent linear FM
signals.
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