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A circular Dammann grating in the front focal plane of a lens is used to generate an annular beam in the
back focal plane to code an object by two-dimensional scanning. The coded image of the object is decoded
digitally by convolving it with the same annular beam used to code the object. Simple inverse filtering is
subsequently used to improve the contrast of the decoded image. © 2008 Optical Society of America
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1. Introduction

Circular Dammann gratings (CDG) were first pro-
posed by Zhou et al. in 2003 [1]. The CDG might find
many interesting applications, such as measuring
angular rotation of mirrors [2] and generating
disk-shaped distributed feedback lasers [3], where
circular gratings have been used. To the best of
our knowledge, actual applications to CDGs have
been limited only to focal-length measurements
[4]. In this paper we discuss the use of CDGs for op-
tical image coding. In Section 2 we describe the cod-
ing and decoding scheme and demonstrate the idea
by computer simulations. In Section 3 we describe an
optical scanning system that will be used for optical
coding. In Section 4 we discuss the circular grating
and some of its properties. We then show experimen-
tal results in Section 5. In Section 6 we perform sim-
ple inverse filtering on the decoded image to enhance
the quality of the image. Finally, in Section 7, we
make some concluding remarks.

2. Coding and Decoding Scheme

Image coding has a long history, especially in holo-
graphy and x-ray tomographic imaging [5–7]. The re-

construction of coded images is usually accomplished
digitally [8], but the task is often computationally de-
manding, as the coded image has a much larger
space–bandwidth product than that of the data itself
[9]. For this reason, optical reconstruction techniques
have been investigated [10–13]. In this paper we in-
vestigate an optical scanning system for image cod-
ing. Decoding can be performed digitally or optically.
Our scheme is to find a function that can be used for
coding as well as decoding, which simplifies the pro-
cedures of coding and decoding. The coding and de-
coding scheme discussed here is reminiscent of
coded aperture imaging already mentioned [6–13].
In general, the apertures are selected to have some
desirable autocorrelation or cross-correlation proper-
ties such that the coded image can be decoded to ex-
tract the original image. While a huge amount of
work has been published with regard to digital image
coding [14], research in optical image coding remains
vibrant [15–20]. One of the reasons for using optical
coding is that information, such as images, that
needs to be coded already exists in the optical
domain. Another reason is that optical coding, as
opposed to electronic or digital coding, can provide
many degrees of freedom for coding information.
However, when the coded image is already in digital
form, digital decoding is logical. Indeed what we are
proposing here is a hybrid, i.e., optical/digital system
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that is more flexible than an all-optical or all-digital
system alone.
Let us assume the coding function is cðx; yÞ. The

original image is given by oðx; yÞ. Hence the coded im-
age icðx; yÞ is

icðx; yÞ ¼ oðx; yÞ � cðx; yÞ; ð1Þ

where � stands for two-dimensional (2-D) convolu-
tion defined by

f ðx; yÞ � gðx; yÞ ¼
Z

∞

�∞

Z
∞

�∞

f ðx0; y0Þgðx − x0; y� y0Þdx0dy0:

To decode the image, we can convolve the coded im-
age with a decoding function dðx; yÞ to give

idðx; yÞ ¼ icðx; yÞ � dðx; yÞ: ð2Þ

Substituting Eq. (1) into Eq. (2), we have

idðx; yÞ ¼ icðx; yÞ � dðx; yÞ ¼ oðx; yÞ � cðx; yÞ � dðx; yÞ:
ð3Þ

Note that cðx; yÞ � dðx; yÞ in Eq. (3) is the point spread
function (psf) of the overall system. If cðx; yÞ
and dðx; yÞ are suitably chosen such that the follow-
ing condition applies:

cðx; yÞ � dðx; yÞ ¼ δðx; yÞ; ð4Þ

where δðx; yÞ is a 2-D Delta function, then Eq. (3)
becomes

idðx; yÞ ¼ oðx; yÞ � δðx; yÞ ¼ oðx; yÞ; ð5Þ

and we have extracted the original image oðx; yÞ.
Equation (4) is called a Delta reconstruction
condition. The objective is to design the coding and
decoding functions such that the condition in Eq. (4)
is satisfied. We propose that an impulse ring for the
coding and decoding functions will satisfy the Delta
reconstruction condition approximately. We will then
discuss an optical system that can implement
the idea.
Figure 1(a) shows an impulse ring as a coding func-

tion, and Fig. 1(b) shows the convolution of the im-
pulse ring by itself or autoconvolution of the
impulse ring, where we have used the same ring
as a decoding function. Note that the autoconvolu-
tion of the impulse ring has a strong peak at the ori-
gin (deltalike function) but has a faint circular
“bump” away from the center. The circular bump
has a radius that is twice as large as that of the im-
pulse ring. In Fig. 1(c), we show the cross section of
the autoconvolution of the impulse ring through its
peak. Now if we can minimize the influence of the
bump, we will come up with a good approximation
to the condition set forth in Eq. (4). In the next exam-
ple we show how the effect of the bump can be mini-
mized by properly designing the size of the impulse

ring with respect to that of the image to be coded.
Figure 2(a) shows the original “VT” image, Fig. 2(b)
is the impulse ring to serve as the coding function,
and Fig. 2(c) is the coded image. In Fig. 2(d) we show
the decoded image as calculated according to Eq. (3).
We see the image has been decoded correctly but with
some annoying background. The annoying back-
ground is due to the circular bump. The effect of
the bump can be minimized if we choose the size
of the impulse ring to be larger than that of the image
to be coded. This is illustrated in the series of figures
shown in Fig. 3. Indeed in Fig. 3(d), we observe a clea-

Fig. 1. (a) Impulse ring, (b) autoconvolution of the impulse ring,
(c) cross section of (b) through the peak.

Fig. 2. (a) Original “VT” image, (b) impulse ring as a coding func-
tion, (c) coded image, (d) decoded image.
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ner decoded image as compared to the decoded image
shown in Fig. 2(d). We shall now turn our attention to
see how the coding and decoding scheme can be im-
plemented in an optical system in Section 3.

3. Optical Scanning System

We shall implement our coding/decoding scheme
using an optical scanning system shown in Fig. 4.
Figure 4 shows an idealized version of a conventional
laser-scanning image processor [21]. pðx; yÞ is the pu-
pil function located in the front focal plane (or the pu-
pil plane) of lens L with focal length f . The pupil
function, illuminated by a board laser, forms an in-
tensity psf (ipsf), ipsf ðx; yÞ, onto the object I0ðx; yÞ
at the back focal plane of lens L. The ipsf is then
two dimensionally scanned over the object by an
x–y scanner to give a scanned output image Iiðx; yÞ
to be displayed on the 2-D display. In Fig. 4, a photo-
detector accepts the light intensity being transmitted
through the input transparency I0ðx; yÞ and converts
the light energy into a scanned electrical signal to be
displayed on a 2-D display or stored in a computer for
further processing.

The image processor shown in Fig. 4 is an incoher-
ent image processing system that relates the
input intensity Iiðx; yÞ to the output intensity I0ðx; yÞ
by [21]

Iiðx; yÞ ¼
ZZ

ipsf ðx0; y0ÞI0ðx0 þ x; y0 þ yÞdx0dy0

¼ ipsf ðx; yÞ ⊗ I0ðx; yÞ; ð6Þ

where⊗ denotes 2-D correlation defined by the inte-
gral in Eq. (6), and the ipsf is given by the absolute
squared of the Fourier transform of the pupil func-
tion pðx; yÞ, i.e.,

ipsf ðx; yÞ ¼ jFfpðx; yÞgj2 ¼
����P
�
x
λf ;

y
λf

�����
2
; ð7Þ

where Ff:g denotes the Fourier transform operation,
and we denote that Ffpg ¼ P, i.e., the uppercase
function P, is the Fourier transform of the lowercase
function p. λ is the wavelength of the scanning laser
light, and again f is the focal length of the lens as
shown in Fig. 4. It is interesting to point out that
the correlation operation in Eq. (6) can be written
in terms of convolution, because the ipsf, being the
impulse ring according to our scheme, is symmetri-
cal, and hence we can write

Iiðx; yÞ ¼ ipsf ðx; yÞ � I0ðx; yÞ; ð8Þ
which is the type of operation, i.e., convolution,
shown in Eq. (1). Now, to code I0ðx; yÞ according to
our coding scheme discussed in Section 2, we need
to realize a scanning impulse ring at the back focal
plane of lens L. A CDG placed in the pupil plane of
the scanning system would accomplish the realiza-
tion. We shall now briefly discuss the grating in
Section 4.

4. Circular Dammann Grating

A CDG is a phase grating that produces a set of uni-
form-intensity impulse rings at the focal plane [1].
When there is only one uniform-intensity impulse
ring shown in the focal plane, we have a so-called
first-order CDG [4]. The cross section of the first-
order CDG is shown in Fig. 5(a), where T is the per-
iod of the grating. If the CDG is placed on the pupil
plane in the scanning system of Fig. 4, the focal plane
intensity distribution is an impulse ring. Figure 5(b)
shows the focal plane intensity distribution due to
such a first-order CDG. The actual parameters of
the grating and the optical system are T ¼ 80 μm,
f ¼ 75 cm, λ ¼ 0:6328 μm, and the limiting circular
aperture size of the grating is approximately 7mm
in diameter. We put a pinhole of approximately
0:038mm diameter to sample the intensity pattern
in the focal plane, i.e., we let I0ðx; yÞ ≈ δðx; yÞ to sam-
ple the intensity due to the grating placed in the
front focal plane. In Fig. 5(b) we show the measured
ring distribution. The radius of the ring [4] is given

Fig. 3. (a) Original “VT” image, (b) impulse ring as a coding func-
tion, (c) coded image, (d) decoded image.

Fig. 4. Conventional laser-scanning image processor. PD, photo-
detector.
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by r0 ¼ λf =T ≈ 5:6mm. The uniform-intensity im-
pulse ring shown in Fig. 5(b) is called an annular
beam, with which we scan the input image in two di-
mensions to optically code the image. In Section 5 we
show some experimental results.

5. Experimental Results

The input object is a transparency of the letters “VT.”
The letters are approximately 4mm × 5mm and are
transmission on an opaque background. Figure 6(a)
shows the scanned version of the transparency when
it is scanned by a sharply focused Gaussian laser
beam. When the object is scanned by the annular
beam shown in Fig. 5(b), we have the coded output
shown in Fig. 6(b). Note that we have designed the
size of “VT” to be smaller than that of the scanning
annular beam to minimize the circular bump as dis-
cussed in Section 2. Note also that the optical
scanned results are basically identical to the coded
image shown in Fig. 3(c) in computer simulation.
Figure 6(c) shows the self-convolution of the annular
beam, which can be compared with the simulations
shown in Fig. 1(b). In Fig. 6(d), we show the cross sec-
tion of Fig. 6(c) through the peak. And finally, the de-
coded image is shown in Fig. 6(e). This decoded
image is done digitally according to Eq. (3), where
the coding and decoding function is given by Fig. 5(b)
with the coded image given by Fig. 6(b). Again, the
result shown in Fig. 6(e) is basically identical to that
of Fig. 3(d). If preferred, decoding can be done opti-
cally using the same optical system shown in Fig. 4.
The coded image is simply inputted to a spatial light
modulator that is subsequently scanned by the same
annular beam used for coding.

6. Inverse Filtering

In Section 5, we provided experimental verification
of the idea presented in Section 2. In Section 2, we
observed that the quality of the decoded image de-
pends on the size of the coding ring as evident from

comparing the results of Figs. 2(d) and 3(d). The re-
sults indicate that the coding ring should be larger
than the object in order to avoid the effect of the
bump from the psf of the overall system. However,
the larger the ring, the greater the attenuation of in-
formation in the decoded image at high frequencies
will be, as the transfer function of the overall system
will go to zero at a lower spatial frequency when the
radius of the ring increases. To see this explicitly, we
assume the coding ring on the object’s plane is an
ideal impulse ring given by δðr� r0Þ, where
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and r0 is the radius of the ring. Accord-

ing to Eq. (3), the overall system’s psf is given by
psf ¼ cðx; yÞ � dðx; yÞ ¼ δðr� r0Þ � δðr� r0Þ. The sys-
tem’s transfer function is, therefore, given by
HðρÞ ¼ Ffpsfg ¼ Ffδðr� r0Þ � δðr� r0Þg, where ρ is
the spatial frequency associated with the spatial co-
ordinate r. Since Ffδðr� r0Þg ¼ 2πr0J0ð2πr0ρÞ, we
find

HðρÞ ¼ Ffδðr� r0ÞgFfδðr� r0Þg ¼ ½2πr0J0ð2πr0ρÞ�2:
ð9Þ

Assuming the first zero of the zero-order Bessel, J0,
is z1, we therefore find that the spatial frequency at
which it goes to zero is at ρ ¼ z1=2πr0. Hence the lar-
ger the ring radius, the greater the attenuation of the

Fig. 5. (a) Cross section of a first-order Dammann grating and
(b) an annular beam (focal plane intensity distribution due to
the first-order CDG).

Fig. 6. (a) Original “VT” image, (b) optically coded image, (c) self-
convolution of the annular scanning beam, (d) cross section of (c)
through the peak, (e) digitally decoded image.
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information at higher frequencies will be. However,
we can compensate for this attenuation by using sim-
ple inverse filtering:

inverse filtered decoded image

¼ F�1fFfidg=½HðρÞ þ ε�g; ð10Þ

where F�1 denotes the inverse Fourier transform,
and ε is some constant. Since HðρÞ is known, the im-
plementation of the filter is straightforward. We
have prepared a series of simulations to validate
the effectiveness of the proposed inverse filter.
Figure 7 shows the results when a small ring is used
for coding. Figure 7(a) shows the original image. The
coding ring is shown in the center of the figure to il-

lustrate the relative size of the ring and the text to be
coded. Figure 7(b) is the coded image, and Fig. 7(c) is
the decoded image. In this case, the size of the ring is
small, as the ring would overlap any character of
the text and hence the “bump effect” is obvious.
Figure 7(d) shows the result of inverse filtering. ε
is chosen to have a good visual effect on the text. Note
that by no means do we try to optimize inverse filter-
ing here. Figure 8 shows the results when a large
ring is used. Finally, in Fig. 9, we show inverse filter-
ing of the decoded image from Fig. 6(e). In this case,
HðρÞ is computed using the autoconvolution of the
ring shown in Fig. 6(c). We see that the high-
frequency contents of the decoded image have been
restored, as the edges of the image have been
sharpened.

7. Concluding Remarks

We proposed an optical coding system using optical
scanning. The coding and decoding functions are of
the form of an annular beam, which approximately
satisfies the Delta reconstruction condition com-
monly used in aperture coded imaging for x ray or
gamma rays. Computer simulation results have been
verified by optical experiments. We want to point out
that the resolution of the coding/decoding system de-
pends on how good the approximation in Eq. (4) be-
comes after the autoconvolution of the annular beam,
which in turn depends on how thin we can make the
ring in Fig. 5(b). As it turns out, the thinness of the
ring is ∝ λf =r0 and the factor f =r0 is reminiscent of
the numerical aperture of a lens. We found that
the proposed system is an efficient way of performing
optical coding. While planar objects have been used
in the optical experiments, it may be useful to further
investigate this system for three-dimensional coding,
which we plan to do.

This work was supported by the Korea Research
Foundation (KRF) grant KRF-2008-313-D00763.
We thank Shuai Zhao for his help with the use of
the grating.
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