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Here we consider image processing using optical modes of metasurfaces with an angle-dependent excita-

tion. These spatially dispersive modes can be used to directly manipulate the spatial frequency content

of an incident field suggesting their use as ultra-compact alternatives for analog optical information pro-

cessing. A general framework for describing the filtering process in terms of the optical transfer functions

is provided. In the case where the relevant mode cannot be excited with a normally incident plane wave

(a dark mode) high pass filtering is obtained. We provide examples demonstrating filtering of both ampli-

tude and pure phase objects.
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1. INTRODUCTION

Metasurfaces consisting of regular arrays of subwavelength res-
onators are attracting increasing interest as alternative, compact
means to manipulate light in devices including lenses, holo-
grams and polarizers [1, 2]. There is also an emerging realization
that metasurfaces and metamaterials may play a role in optical
information processing to perform mathematical operations on
wavefields [3–8]. The field of optical information processing is
well-evolved, with the classic configuration being a 4-f system
consisting of two lenses and a spatial filter that can alter the
phase or amplitude of the transmitted field (Fig. 1(a)) [9]. Al-
though this configuration is flexible and extremely powerful, the
requirement for lenses, and sufficient propagation length, leads
to systems being bulky and heavy. Photonic crystals have been
demonstrated as alternatives to conventional spatial filtering
for beam cleaning applications [10] and designs for performing
spatial differentiation have been proposed [11]. By tuning the
characteristic geometry of photonic crystals, modulation of the
spatial frequency content of transmitted or reflected optical fields
can be achieved. Other methods proposed for performing direct
spatial-frequency filtering have included phase-shifted Bragg
gratings [12–14], thin-film slab waveguides [15–17] and other
multilayer thin film stacks [18–20]. An analogue computing ap-
proach based on Brewster reflection [21] has been proposed and
most recently, the use of thin metallic films in the Kretschmann
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Fig. 1. The concept of a metasurface as an optical image pro-
cessing element. (a) a standard 4-f imaging system used for
optical information processing; and (b) the concept under con-
sideration here where the spatial filtering properties of the
metasurface alters the image contrast.
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configuration has been demonstrated for wavefront retrieval
[22] and image edge enhancement [5] using the dependence of
surface plasmon polariton (SPP) excitation on angle of incidence.
This approach has the advantage of removing any need for a
Fourier transforming lens, but still requires the use of a prism to
excite SPPs. Metasurfaces exhibit various resonances and have
also been proposed as methods for information processing [3, 5].
Demonstrations, however, have focused on devices that can
be used as spatial filters in a conventional optical information
processing arrangement, albeit one where there is considerable
flexibility in the design of the spatial filter. Metasurfaces consist-
ing of nanoscale gold ‘dolmen’ structures have been shown to
generate an angle-sensitive cross-polarized component in the
transmitted field, enabling phase gradients in an incident field
to be measured experimentally [7, 23, 24] and light fields to be
modulated optically [25]. Most recently, the use of resonant,
subwavelength gratings as spatial differentiators [26, 27] and
their application to edge detection [27] have been demonstrated.

Here we investigate the role of mode resonances in meta-
surfaces for manipulating the angular spectrum content of an
incident field. It is well-known that certain modes of metasur-
faces cannot be excited by a normally incident plane wave. These
’dark’ modes, however, respond to illumination with non-zero
transverse spatial frequencies and it is this approach to optical
information processing that is investigated here (Fig. 1).

Below we develop a general formalism based on optical trans-
fer functions to describe the properties of an angular or spatial
frequency filter and its effect on an arbitrary incident light field.
We demonstrate the use of this formalism utilizing two reso-
nant plasmonic systems, although the method is general and
is applicable to all-dielectric structures or combinations of di-
electrics and plasmonics. Finally, we provide examples showing
its application to high-pass filtering of amplitude and phase
images.

2. THEORETICAL BACKGROUND

We first consider the interaction of an object of interest with
an incident plane wave and decompose the resulting angular
spectrum of the diffracted field into orthogonal polarization com-
ponents. This field then interacts with a metasurface modifying
this angular spectrum and, hence, the intensity of the resulting
reflected or transmitted field.

Specifically, we consider a monochromatic plane wave with
wavelength λ and wavevector k0 = (k0x, k0y, k0z), where k0z =
√

k2
0 − k2

0x − k2
0y and k0 = 2π/λ, incident on an optically thin

object of interest with transmission function t(x, y). In the Kir-
choff approximation, a scalar field transmitted through the ob-
ject is given by the product of the incident field and t(x, y). For
plane wave illumination, therefore, diffraction by the object
produces additional plane wave components with wavevector

k = (kx, ky, kz) where kz =
√

k2
0 − k2

x − k2
y, and a field with an

angular spectrum given by T(kx − k0x, ky − k0y) where T(kx, ky)
is the Fourier transform of t(x, y). This field is then transmit-
ted through or reflected from a metasurface that consists of an
infinite two-dimensional periodic array of subwavelength ele-
ments. We assume the transmission through (or reflection from)
the metasurfaces of only a single propagating diffracted order.
However, the amplitude of this plane wave (in general) depends
on the angle of incidence. As a result, certain angular frequen-
cies (kx, ky) are preferentially transmitted or reflected modifying
the angular spectrum of the scattered field and, hence, the in-

tensity image. However, given the polarization sensitivity of
metasurface modes, we need to also consider polarization in this
analysis. A plane wave can be decomposed into TE (s) and TM
(p) polarized components (or any relevant polarization basis) so
that its amplitude can be written:

Ẽ0 =





E0s

E0p



 , (1)

and the angular spectrum of the field diffracted by the object of
interest (assumed non-birefringent) can then be written in the
form

Ẽt(kx, ky) = T(kx − k0x, ky − k0y)P(kx, ky)Ẽ0, (2)

where Ẽt(kx, ky) is similarly expressed in terms of p and s com-
ponents defined relative to the plane of propagation defined by
(kx, ky). The matrix P(kx, ky) describes changes in polarization
of each scattered plane wave and is of the form, [28]

P(k) =





Ψss Ψsp

Ψps Ψpp



 . (3)

where the elements of P are given by

Ψss = Ψpp =

√

k0z

kz

(k0 · k − k0zkz)
√

k2
0x + k2

0y

√

k2
x + k2

y

,

Ψsp = −Ψps =

√

k0z

kz

ẑ · (k0 × k)
√

k2
0x + k2

0y

√

k2
x + k2

y

.

(4)

These expressions arise because the polarization vector compo-
nents change on scattering and the electromagnetic plane wave
must remain transverse (Fig. 2 b). Note that at normal incidence,
k0x = k0y = 0, k0z = k0, and the polarization matrix takes the
form

P(k) =
1

√

k2
x + k2

y

√

k0

kz





kx −ky

ky kx



 , (5)

and we recover the results of Mansuripur [28] if we take x-
polarization at normal incidence to correspond to p-polarized
illumination and y-polarization to s.

Now that the behavior of the field refracted or scattered by
an object has been decomposed into orthogonal polarization
components, we can consider the action of a spatially dispersive
but homogeneous thin film on the transmitted (or reflected)
field. The influence of the metasurface is characterized by its
optical transfer function (OTF), a tensor H(kx, ky) that maps the
incident field to the transmitted (or reflected) field including the
polarization properties of the light beam:

H(kx, ky) =





Hss(kx, ky) Hsp(kx, ky)

Hps(kx, ky) Hpp(kx, ky)



 , (6)

where the subscripts p and s refer to orthogonal states of inci-
dent and scattered polarization. The off-diagonal elements of H
correspond to cross-polarization terms. The metasurfaces will
modify or filter the spatial frequency components of the incident
field and the transmitted field will take the form

Ẽ f (kx, ky) = H(kx, ky)Ẽt(kx, ky). (7)
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Fig. 2. (a) Concept showing image processing using angular
sensitive surfaces. A plane wave is incident on an object con-
taining information of interest. The scattered field can be ex-
pressed in terms of its angular spectrum which is modified by
a metasurface exhibiting spatial dispersion. Note that the dis-
tances between the object, metasurface and image plane have
been exaggerated for clarity. (b) Schematic showing change in
direction of an angular spectrum component and polarization
on refraction.

Hence the angular spectrum of the final filtered field Ẽ f , can be
simply expressed as the product of terms relating to the incident
illumination Ẽ0, the Fourier spectrum of the object or image and
the properties of the metasurface or other film. This result then
permits determination of the optical field as it propagates away
from the metasurfaces or through a general optical system. If
the transmission through the metasurface exhibits spatial dis-
persion, i.e. a dependence on the angle of incidence, this leads
to Fourier filtering of the incident field providing a mechanism
for direct ‘spatial frequency filtering’ without the requirement
for additional lenses to transform the field to the Fourier plane.
Note that Eq. (7) involves the vector field amplitudes rather than
their intensity and, hence, it would be expected that the trans-
mitted intensity (in the spatial domain, which is proportional
to |E f (kx, ky)|2) could have a dependence on the phase of the

scattered or transmitted field t(x, y). Indeed, such a dependence
leads to phase-contrast in the final image. Note that above we
have precluded any additional phase contributions as a result
of propagation from the object to the spatially dispersive film,
although this could be included if important.

Eq. (2)-Eq. (7) encapsulate the key results from this paper
and below we investigate the role that the excitation of different
modes of metasurfaces could have on the transmitted field. It is
apparent that the calculation of the components of the transfer
tensor H of the metasurface underpins the design of the struc-
ture. To investigate specific metasurface geometries, one can
use full-field solvers such as the Finite Element Method, or the
Finite-Difference Time-Domain Method to determine its angle
and polarization response. There are, however, other methods re-
quiring approximations or limitations in applicability that have
a greater capacity to provide insight into the behavior of the
device under consideration. Here we utilize two of these.

3. METASURFACE TRANSFER FUNCTIONS

The unit cell of a metasurface can be treated as a single reso-
nant element that supports a number of radiant and subradiant
modes. This is true whether the unit cell consists of a single,
continuous entity or an ensemble of elements. In the latter case,
it is also possible to determine the properties of the metasur-
face by looking at the modes of individual particles and their
intra-cell coupling. Here, we use both approaches to study the
response to spatial frequency of different types of metasurfaces.

Note that the approach described below is quite general, but
its validity will depend on the details of the specific modeling
method adopted and its underlying assumptions. In subsequent
sections we use the framework described in Section 3A in con-
junction with the electrostatic approximation and the modal
method applied to a perfectly conducting frequency-selective
surface.

A. General Properties

The response of the metasurface to an incident wave and the
subsequent scattering can be described in general terms using
the natural resonances or modes of the metasurface constituents.
The fields χ in the metasurface or other film are represented by
a linear combination of modes

χ = ∑
n

anψn, (8)

that involves the eigenfunctions ψn describing mode n within
the unit cell. These eigenfunctions may represent the standing
waves within the unit cell of the metasurface, waveguide modes
of apertures in metallic films, resonances within the periodic
region of a diffraction grating or even localized surface plasmon
modes. The expansion coefficient an represents the response of
the modes when the unit cell is placed in an array and therefore
includes the interactions between cells.

In a similar fashion, the fields above the metasurface and in
the supporting substrate can be written as a Floquet expansion
of the form

Φ = ∑
nα

Eα
nφα

n, (9)

where the spatial distributions of the Floquet modes φα
n are char-

acterized by the index n defining the direction of propagation
and the polarization by α. The Floquet modes represent plane
waves constrained by the periodicity of the metasurface.

The expansion coefficient an of Eq. (8) is found using the
usual theory of orthogonal functions. However, it is often more
convenient to first find the amplitude bn of each eigenmode
of an isolated unit cell or resonant component in a unit cell
and then derive an from the inter- or intra-cell coupling. The
overlap between the eigenfunction ψn and the zero-th order
Floquet mode of the incident field φα

0 is related to the input
impedance, where the input coupling factor is γα

I . The coupling
constant is derived from the boundary conditions that relate
the Floquet modes (incident and scattered) to the modes of the
structure. These Floquet modes can then be expanded in terms
of the internal modes or eigenfunctions of the metasurface, with
expansion coefficients given by

bn = ∑
α

Eα
0 C0α

n , (10)

with

C0α
n =

∫

γ0α
I ψ∗

nφα
0 dV. (11)

The integral is over the unit cell of the metasurface and accom-
modates the thickness of the structure.

Each excited mode within a unit cell of the metasurface may
couple to modes within a unit cell or between cells. For example,
a localized surface plasmon (LSP) mode on a nanoparticle in the
unit cell may excite an LSP mode on an adjacent particle. This
coupling is described by a matrix coefficient Gnm coupling mode
m with mode n. When we solve for the amplitudes an in the
coupled system, in terms of the uncoupled mode amplitudes
bn, we find they depend on the inverse of the coupling matrix
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(see for example [29]). Then the resultant excitation leading to
scattering of the incident light is a linear combination of coupled
modes with amplitudes

an = ∑
m
[G−1]mnbm, (12)

which depends on the mode coupling coefficient Gmn. Examples
of how this arises in practice will be given in the following
section. The zeroth-order scattered field with polarization β is
then the contribution of all those modes that couple out of the
metasurface back into free space

E
β
0 = γ

β
0 ∑

n
an[C

0β
n ]∗

= γ
β
0 ∑

mn
[G−1]mnbm[C

0β
n ]∗

= γ
β
0 ∑

mnα

[G−1]mnC0α
m [C

0β
n ]∗Eα

0 ,

(13)

with the out-coupling coefficient γ
β
0 , related to the impedance,

derived again from the boundary conditions. Comparing this
expression with Eq. (7) it is apparent that the metasurface optical
transfer function can then be written as

Hβα = γ
β
0 ∑

mn
[C

0β
n ]∗[G−1]mnC0α

m , (14)

which depends on how the fields external to the metasurface cou-
ple to the resonant elements (C0α

m ), how these elements couple
to each other ([G−1]mn) and how the subsequent modes couple

out again ([C
0β
n ]∗) into free space or subsequent elements in an

optical system.
The details contained in this general formalism depend on

the theoretical formulation used. Two examples of this general
form are discussed below – the Electrostatic Eigenmode Method
(Section B) which has been shown to be a powerful tool in inves-
tigating metasurfaces when the unit cell consists of ensembles of
nanoparticles, and the Modal Method (Section C) that originated
in studies of frequency-selective surfaces. [30, 31] Generally, the
overlap integral contains information about the spatial frequen-
cies of the incident wave and the spatial filtering properties of
the metasurface.

B. Electrostatic eigenmode method

An analysis of the response of sub-wavelength arrays of metal
nanoparticles supporting localized surface plasmon (LSP) res-
onances can be performed using the Electrostatic Eigenmode
Method (EEM) [29]. This approximate algebraic method is based
on a representation of the LSP surface charge in terms of the
fundamental eigenmodes of each metal nanoparticle. For sim-
plicity, we consider only a single LSP eigenmode σn(r) on each
nanoparticle n so that the total LSP surface charge in a unit cell
induced by the incident field is given by

σ(r) = ∑
n

anσn(r) (15)

This is equivalent to Eq. (8) of the previous section. In the ab-
sence of coupling between particles or when there is an isolated
nanoparticle in the unit cell, we have an = bn. A plane wave
incident on metal nanoparticle n located at rn is already in the
Floquet form Eα

0 exp(ik · rn) (compare with Eq. (9)). The surface
charge is found from the boundary conditions on the compo-
nents of the electric displacement and the electric field across the
metal surface, as discussed in [29]. To extract out the coefficient

an = bn in the absence of coupling, we multiply the resulting
expression for the surface charge by the adjoint eigenfunction
ψ∗

n = τn, which, for technical reasons in the EEM is the surface
dipole distribution τn(r) [29]. Then the expansion coefficient is
given by an integral over the nanoparticle surface at rn + r

C0α
n Eα

0 = fn(ω)
∮

τn(r − rn)n̂
α(r)Eα

0 exp(ik · (rn + r))dS, (16)

which is equivalent to Eq. (11). The factor fn(ω) is the dipole
moment per unit volume of the metal nanostructure. It is fre-
quency dependent and determines the shape of the scattering
spectrum and the phase of the LSP oscillation relative to the ap-
plied field. The factor n̂α(r) is the vector component in direction
α of the nanoparticle surface normal at position r. The product
fnn̂α(r) = γ0α

I is the input coupling factor. If the nanoparticle is
much smaller than the wavelength of light, the incident electric
field is approximately constant across its surface and can be
removed from the integral, leaving a term equivalent to the total
dipole moment of the eigenmode of the nanoparticle n,

pα
n =

∮

τn(r − rn)n̂
α(r)dS. (17)

This equation leads to a simplified expression C0α
n =

fn(ω)pα
n exp(ik · rn).

p
n

p
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Fig. 3. (a) The geometry of a unit cell of plasmonic nanoparti-
cles showing the distance vectors rn to two of the nanoparti-
cles, their dipole moments pn and the coupling between them
Gnm; (b) The geometry of the aperture in a thick perfectly con-
ducting film.

When there is more than one nanoparticle in a unit cell
(Fig. 3 a), or if there is coupling between cells, the resonant
modes are altered so that an 6= bn. The new modes can be ex-
pressed as a linear combination of the old modes which takes
the form an = ∑m[G

−1]mnbm where Gnm(ω) is the frequency-
dependent coupling between the LSP on nanoparticle m and
that on nanoparticle n. The sum is over all particles that are
involved in the coupling. Since the derivation is involved we
do not present it here (see Ref. [29] for details) but it can be
shown that the coupled amplitudes depend on the inverse of

Gnm(ω). The resulting dipole moment of particle n is then an p
β
n.

The dipole radiation scattered into the far-field from the LSP
dipole moments of the metal nanoparticles is given by the usual
expression [32]

E
β
0 =

k2

4πǫ0
∑
n

an(p
β
n − n̂β(∑

δ

pδ
nn̂δ))

eikRn

Rn
, (18)

where Rn = |r − rn| is the distance from nanoparticle n to the
point of observation and n̂ is the unit vector in the direction of
scattering. The distance can be approximated by Rn ≈ r − n̂ · rn
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since r ≫ rn. Combining these terms together leads to an ex-
pression for the electric field scattered from the coupled metal
nanoparticles

E
β
0 ≈

k2 exp(ikr)

4πǫ0r ∑
mnα

q
β
n[G

−1]mn fmeik·(rm−rn)pα
mEα

0 , (19)

where for convenience we have written q
β
n = p

β
n − n̂β(∑δ pδ

nn̂δ).
In terms of the general treatment in the previous section (sec.

2) we identify γ
β
0 = k2 exp(ikr)/4πǫ0r, [C

0β
n ]∗ = q

β
n exp(−ik ·

rn) and C0α
m = fm exp(ik · rm)pα

m so that the metasurface optical
transfer function is

Hβα(k) = γ
β
0 ∑

nm
q

β
n[G

−1]mn fmeik·(rm−rn)pα
m. (20)

A metasurface created by an array of these coupled metal struc-
tures (with subwavelength periodicity) will behave like a thin
film with a spatial dispersion described by Hβα(k), where the
spatial-frequency dependence arises from the linear combina-

tion of phase terms eik·(rm−rn). Such a metasurface will modify
the Fourier components of any incident beam leading to spatial
frequency filtering, in amplitude, phase or both. If the configu-
ration of metal structures has a dark mode (i.e. pm = 0), then
this will not be excited at k = 0 since the incident light is pre-
dominantly dipolar in nature leading to no LSP excitation and
no subsequent effect on the undeviated beam. However, light
incident at off-normal incidence has an effective quadrupole
component associated with the phase shift due to the tilt of the
beam. Such a beam can excite dark modes that have a non-zero
quadrupole moment, resulting in a change in the optical transfer
function and therefore spatial filtering. That is, the phase shift
across the structure of the tilted incident beam is sufficient to
excite the mode.

C. Modal methods

The other technique that we will use for illustrating the metasur-
face OTF involves a structure that consists of an array (period
d) of apertures in a thick, perfectly electrically conducting (PEC)
metal film or an array of infinitesimally thin PEC scatterers
(Fig. 3 b). As discussed in detail elsewhere [30, 31, 33–35], we
can write the fields within the apertures, or the currents on the
scatterers, as a sum over the corresponding waveguide (in the
case of holes) or current (in the case particles) modes and the
fields above the structure and in the substrate as a discrete sum
over plane waves satisfying the Floquet condition. The relevant
boundary conditions can then be used to derive a set of linear
equations for the mode amplitude an. These can be found by
solving the set of linear equations of the form given by Eq. (10)
and Eq. (12). In this case G is the matrix that describes cou-
pling of the Floquet to waveguide or scatterer modes and Cα

m
is the overlap integral between the incident plane wave with
polarization α and cavity or scatterer mode m, i.e. it describes
the coupling constant between the incident field and the modes.
For apertures in thick films, two sets of coupled equations are
required to determine the amplitudes of upward and downward
traveling modes in the apertures [30, 31, 34, 35]. The amplitude
of the scattered, zero-th order, plane wave with polarization β is
then given by

E
β
0 = Zβ ∑

n
an(C

0β
n )∗ = Zβ ∑

mnα

[G−1]mnC0α
n (C

0β
n )∗Eα

0 , (21)

with

Zp = Z0
k0z

k0
, (22)

and

Zs = Z0
k0

k0z
, (23)

where Z0 is the impedance of free-space and k0z is the z-
component of the incident wavevector. Note that Eq. (22) is
identical in form to Eq. (13). Hence, the elements of the transfer
function of Eq. (6) are given by:

Hβα = Zβ ∑
mn

[G−1]mnC0α
n (C

0β
n )∗. (24)

In the case where only one mode is resonant, and particularly for
transmission through inductive grids, reasonable convergence
can be obtained by including only this mode in a monomodal
calculation. [36] In this case Hβα ∝ ZβCαC∗

β. This means the

strength of the coupling coefficients Cα provides information
about the elements of the transfer function. As in Section 3B, it
is also instructive to consider metasurfaces where the unit cell
consists of several dipole scatterers. In these cases, the sums
appearing in Eq. (21) and Eq. (24) extend over each scatterer as
well as their modes.

4. CASE STUDIES

A. Plasmonic Wheatstone bridge (dolmen)

Three nano rods can be arranged in a “dolmen” configuration
and combined with crossed polarizers to create a metasurface
high-pass filter. [7, 23] This configuration consists of two parallel
rods and a third rod at right angles coupling the two (Fig. 4
(a)). Since the two parallel rods couple to opposite ends of the
third rod and we assume the coupling magnitude is the same,
we can write G13 = −G23 = G. This structure mimics the
Wheatstone Bridge in electrical systems and responds to the
difference between the light waves incident on the two parallel
rods. Light incident on each of the two rods polarized parallel to
their long axes induces surface plasmons with opposite phases
in the third rod, which subsequently cancel out. An imbalance
between the amplitudes or phases on the two parallel rods leads
to incomplete cancellation and a residual LSP generated in the
third rod, which radiates light polarized perpendicular to the
incident light.

Using crossed polarizers enables the OTF for this configu-
ration to be found by writing the dipole moments of the rods
as p1,2 = pŷ and p3 = px̂ with the two parallel rods located at
r = ±dx̂/2 and the third rod at r3 = hŷ. If we let α, β ∈ {x̂, ŷ},
then the crossed polarizers result in Hyx = Hxx = Hyy = 0
leaving the only term in Eq. (20)

Hxy(k) = γx
0

(

2ip2 f 2(ω)Ge−ikyh

1 − 2 f (ω)2G2

)

sin(kxd/2)(1 − (kx/k)2),

(25)
where all rods have the same magnitude of the dipole mo-
ment p and the same resonance factor f (ω). The various terms
in Eq. (25) relate to those in Eq. (20) after summing over the

nanoparticles as follows: q
β
n → p(1 − (kx/k)2), [G−1]mn →

(2i f (ω)G)/(1 − 2 f (ω)2G2), eik·(rm−rn) → sin(kxd/2)e−ikyh and
pα

m → p. Details on the derivation of the coupling can be found
elsewhere [8, 37]

The expression Eq. (25) shows that the magnitude of the OTF
depends only on kx since the ky dependence only contributes
an irrelevant phase shift. In practice, the first polarizer would
be placed on top of the metasurface so that unpolarized light
incident at any angle always has the Ex component removed.
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Fig. 4. a) The Wheatstone Bridge configuration showing the
relative directions of the induced dipole moments when the
light incident on rods 1 and 2 is unbalanced. The coupling co-
efficient is such that G13 = −G23 = G; b) The magnitude of the
optical transfer function |Hxy| calculated using Eq. (25) and
Eq. (26); c) A microscope image of a metasurface made from
gold WB structures with a period of 400 nm. The scale bar is
100µm; d) Calculated (solid line) and measured (points) of the
magnitude of the optical transfer function of the metasurface
in (c) taken along the dashed line in (b). The experimental data
was adapted from [7].

However, the field that passes through the polarizer will vary be-
tween s polarization and p polarization depending on the angle
of incidence so that the incident amplitude will vary according
to

Et · ŷ = Et

√

k2 − k2
x − k2

y

√

k2
x + k2

y
√

(k2 − k2
x − k2

y)k
2
x + k2k2

y

, (26)

where k2 = k2
x + k2

y + k2
z . Including this factor in the transfer

function of Eq. (25) yields the result in Fig. 4 (b) where d =
140 nm, λ = 700 nm (and therefore k = 8.98 µm−1) and the
magnitude was normalized.

In this instance, experimental verification of the derived OTF
can be obtained from previously published data [7] on the phase
sensitivity of a metasurface created from arrays of Wheatstone
bridge structures made from gold nanorods on glass. A 100 µm
square metasurface (Fig. 4 c) is illuminated at different inci-
dent angles with collimated white light passed through a polar-
izer. The light emerging from the metasurface is filtered by a
cross-polarizer and the intensity I f measured (see [7] for details).

The magnitude of the OTF is proportional to
√

I f as shown

in Fig. 4 (d) where a background offset has been removed. A
one-parameter fit of the theoretical OTF is performed to set the
vertical scale which shows very good agreement with experi-
mental values. As we show in the Appendix, a metasurface with
subwavelength periodicity behaves, to first order in scattering,
like a uniform thin film.

B. Annular apertures in a PEC film

The particular geometry under consideration here (Fig. 5 (a))
has a unit cell containing a coaxial aperture with inner radius
b and outer radius a. Using the modal method described in 3C
above, this structure has been shown to exhibit strong bright,
dipole modes as well as resonances associated with the excitation
of the Transverse Electromagnetic Mode (TEM) which is sub-
radiant. [38] The resonance frequencies of the various modes
can be tuned by modifying the geometry of the aperture and the
thickness of the metal film. In terms of the transport of power
through the structure, the most important modes at normal
incidence are the zero-th and higher order Fabry-Perot (FP) TE11

modes. At off-normal incidence, for p-polarization, the first and
higher order F-P modes of the TEM mode can be excited. This is
a dark (subradiant) mode and cannot be excited with a normally
incident plane wave.

One of us [39] investigated the role that the TE11 and TEM
modes play in the transmission of finite beams through the struc-
ture and the research presented here generalizes these results to
arbitrary incident fields, specifically those arising from diffrac-
tion by an object. In this case the coupling to the modes of
interest, which informs the contribution to transmission through
the structure by each mode, depends on the coupling of the
incident field to the mode of interest as encapsulated in the co-
efficients C0α

n . The relevant coupling coefficients are found by
calculating the projection of coaxial waveguide modes onto Flo-
quet modes and explicit expressions are given in reference [31].
Here we investigate their dependence on the spatial frequencies
of the incident field when the width of the rings (a − b) is small
(a − b) ≪ b/2 and b ≪ λ. In this limit, the coefficient character-
izing coupling between the TEM mode and a p-polarized plane
wave has a magnitude given by

|CTEM(kx, ky)| ≈
πb(a − b)

√

k2
x + k2

y

d
√

2π ln(a/b)
. (27)

In the case of an incident s-polarized plane wave, the coupling
coefficient is zero. From this expression it is apparent that at
normal incidence, a plane wave cannot excite this mode. The
TEM mode is a dark mode. The other mode that makes a signifi-
cant contribution in transporting energy through the structure is
the TE11 mode which has a net electric dipole moment and is a
bright mode. In the same limit, the coupling coefficient for this
mode has a magnitude given by:

|CTE11(kx, ky)| ≈
π(a − b)

d
|Z1(cχ′)|, (28)

where Z1 is a first order combination Bessel-Neumann function
defined for coaxial waveguides [31, 40] and χ′ is the lowest value
satisfying Z1(aχ′/b) = 0. Note that there are two degenerate
TE11 modes with orthogonal dipole moments which are, there-
fore, bright modes. It is apparent that the TEM mode is sensitive
to the transverse component of the incident wavevector. The
transmitted power will therefore be proportional to k2

x + k2
y, pro-

ducing a high pass filter where for a fixed gap width (a − b),
the sensitivity increases with the size of the ring. Note that the
sensitivity to the angle of incidence depends on the geometry of
the apertures. In the limit considered, the coupling to the TE11

mode described by Eq. (6), on the other hand, has no explicit
dependence on the angle of incidence and would produce no
significant spatial filtering. These observations are consistent
with the findings of reference [39].
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Fig. 5. Schematic (a) of the unit cell of an array of apertures in
a perfectly conducting film with period d. The inner and outer
ring radii are 0.40d and 0.45d, and the thickness of the film is
set to 1.5d. Figure (b) shows |Hpp| at a wavelength of 3.167d
corresponding to a resonance of the TEM mode. Figures (c)
and (d) show |Hpp| and |Hss| at a wavelength of 2.650d corre-
sponding to a resonance of the TE11 coaxial waveguide mode.
Normalized spatial frequencies plotted from -1 to 1 in (b), (c)
and (d).

We revisit the specific geometry of [39] with a = 0.45d,
b = 0.40d and thickness h = 1.5d where d is the period of the
array. This geometry was selected to provide spectral separation
of the lowest order Fabry-Perot TE11 and TEM resonances. Fig.
5(b-d) shows the significant, propagating elements of the optical
transfer function at different wavelengths. Fig. 5(b) shows |Hpp|
plotted at a wavelength of 3.167d, corresponding to the first or-
der Fabry-Perot TEM coaxial cavity resonance. Fig. 5(c) and (d)
show |Hpp| and |Hss| at a wavelength of 2.65d corresponding
to a resonance of the TE11 mode. In both cases, the other com-
ponents of the transfer function tensor are much weaker and
are not shown. In the calculations of Fig. 5, 6 TE ((0,1), (1,1-3),
(2,1) and (3,1)) and 6 TM (as per TE) modes were used in the
calculation and plane waves with normalized z-component of
the wavevector up to 10.0 are included.

In Fig. 5(b) at the TEM mode resonance, a strong dependence
on spatial frequency consistent with Eq. (28) is apparent. On
the other hand at a wavelength where the bright mode domi-
nates, Fig. 5(c) and (d) show only a weak dependence on spatial
frequency. As discussed above, this mode is relatively robust
to angle of incidence and there is little sensitivity to spatial fre-
quency.

5. IMAGE PROCESSING EXAMPLES

As an illustration, the formalism of Eq. (1)-Eq. (5) is used to
calculate the intensity of the field transmitted through either
a Wheatstone bridge metasurface placed between crossed po-
larizers, or an annular aperture array illuminated with linearly
polarized or unpolarized light. The characteristic modification

of the resulting intensity produced by propagation through the
metasurfaces of interest is demonstrated. Both amplitude and
pure phase objects are considered.

In the first example, we calculate the effect of a metasurface of
Wheatstone bridge structures on a pure phase image. An image
was created with a range of phase shifts and phase gradients
(Fig. 6 (a)), where the black regions correspond to 0◦ and the
white regions to 180◦. The image was 100 µm square. The OTF
of the metasurface is shown in Fig. 4 (b). With a collimated
beam passing at normal incidence through the phase object,
the resulting image after the metasurface is shown in Fig. 6
(b). Since the OTF is zero at normal incidence, most of the
image is dark. However, regions with large phase gradients
correspond to waves propagating at non-normal angles, which
also have higher spatial frequencies. These pass through the
metasurface creating the edge-enhanced image. If the incident
beam is offset from the normal by 10◦, the result is to add a
bias to the spatial frequencies so that a fraction of the un-phase-
shifted beam passes through. This yields the image in Fig. 6 (c).

(a) (c)(b)

Fig. 6. Examples of imaging a phase object with a metasurface
of Wheatstone bridge structures. a) Simulated phase object.
The image is 100 µm square with a maximum phase shift of
180◦; b) the image after passing through the metasurface at
normal incidence; c) the image with a 10◦ tilt of the incident
beam from normal in the kx direction.

The response of the coaxial aperture metasurface to the light
transmitted through the phase-only object of Fig. 6(a) is con-
sidered in Fig. 7. If light, with a wavelength corresponding to
a TEM mode resonance, is transmitted through the object and
then passes through the aperture array, the intensity image of
Fig. 7(a) is obtained. In the case of horizontally polarized light,
the image of Fig. 7(b), results. As in the case of the dolmen
structure, additional contrast can be obtained by introducing a
phase bias along the direction of polarization. At an angle of
incidence of 10◦ so that k0x 6= 0, the resulting intensity image
shown in Fig. 7(c) is obtained.

To demonstrate filtering of an amplitude image, a gray-scale
image of a cat (Fig. 8 (a)) is passed through the coaxial aperture
array at a wavelength corresponding to a resonance of the TEM
mode and the transfer function of Fig. 5(b). Since only the p com-
ponent of incident light can excite the resonance, the filtering
depends on the incident polarization. For unpolarized illumina-
tion, low spatial frequencies are simply suppressed and edges in
the image enhanced (Fig. 8(b)). For horizontally polarized light
(Fig. 8(c)) only high spatial frequencies along the horizontal are
transmitted. This leads to relatively strong transmission of spa-
tial frequencies carrying information about vertical lines in the
image. This is apparent in Fig. 8(c), where the vertical edge of
the wall and the edges of the cat’s ears are enhanced. For vertical
polarization, the strongest transmission occurs for higher spatial
frequencies carrying information about horizontal lines. Note
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(a) (c)(b)

Fig. 7. Simulated images of a phase object (Fig.6 (a)) with a
π phase excursion produced after transmission via the TEM
mode through the array of coaxial apertures with transfer
function given in Fig. 4 (a). Illumination with normally inci-
dent, unpolarized light produces the intensity image shown
in (a), whereas (b) and (c) show the resulting image obtained
with horizontally polarized light at normal incidence (b) at
an angle of 10◦ to the normal (c). Image size is 500d and the
wavelength is 3.167d.

that no evanescent spatial frequency components are included
in these calculations. We assume that these are unresolvable or
have decayed sufficiently before reaching the detector.

(a)

(c) (d)

(b)

Fig. 8. Amplitude images transmitted via the TEM mode
through an array of coaxial apertures as described in Fig. 4(a).
If unpolarized light is used, the image shown in (b) results,
whereas the images (c) and (d) correspond respectively to the
use of horizontally and vertically polarized light. Image size is
500d and the wavelength is 3.167d.

6. CONCLUSION

In conclusion, we have provided a framework to describe image
transmission through uniform metasurfaces, including those
exhibiting spatial dispersion. In the case where the dominant
mode of interaction is dark or subradiant, the sensitivity to
angle of incidence produces spatial frequency filtering. Analytic
and numerical case studies involving metasurfaces where the
unit cell consists of either an ensemble of metallic nanorods or
an annular aperture in a perfectly electrically conducting film

were presented and aspects of information and image processing
presented. Their capacity to modify or enhance image contrast
was illustrated, demonstrating their potential as elements in
ultra-compact devices capable of on-chip, real-time, single-shot
information processing.

APPENDIX

Metasurfaces by and large consist of periodic arrays of nano-
scale structures that are constructed as identical unit cells re-
peated in two dimensions across the surface. Diffraction can
arise when the periodicity d of the array is of the order of the
wavelength of light. In this supplement we derive the diffraction
condition for a metasurface where λ ≫ d and show that a sub-
wavelength structure with minimal inter-cell coupling behaves
like a uniform thin film with properties determined by the struc-
ture of the unit cells. In essence, this framework excludes the
interaction of diffracted evanescent fields with the metasurface.

In the weak-scattering approximation, the radiation scattered
from each unit cell to another unit cell is weak or the scatter-
ing from all cells to a given cell combine out of phase and de-
structively interfere. The electric field incident on a unit cell at
position rn with an effective polarizability tensor α induces a
dipole moment pn = α · Et exp(ik · rn). The polarizability tensor
accounts for changes in the state of polarization on excitation,
as often arises with plasmonic structures. The electric field of
the radiation scattered from this dipole into the far-field has the
dyadic form En = A exp(ikRn)(1 − n̂n̂) · pn where the direction
of scattering is n̂ and A is a constant. The distance Rn = |r − rn|
from the dipole to the point of observation r can be approxi-

mated by Rn =
√

r2 + r2
n − 2r · rn ≈ r − n̂ · rn when r ≫ rn

where n̂ is the unit vector in direction r. The phase term is then
exp(ikRn) ≈ exp(ikr − iks · rn) where the wavevector in the di-
rection of scattering is ks = n̂k. For identical unit cells, the total
scattered field E = A(1 − n̂n̂) · α · Et ∑n exp(i(k − ks) · rn). We
write the scattering vector as qs = ks − k and assume the array
has periodicity in two dimensions given by rn = ldx x̂ + mdy ŷ
where the sum over n is divided over integers l and m. This
leads to

∑
n

ei(k−ks)·rn =
Nx

∑
l=1

Ny

∑
m=1

e−ilqs ·x̂dx e−imqs ·ŷdy , (29)

where Nx and Ny are the number of unit cells in x and y with a
total N = Nx Ny. The sums are standard geometric series that
can be evaluated

Nx

∑
l=1

Ny

∑
m=1

e−ilqs ·x̂dx e−imqs ·ŷdy

= e−iqs ·(x̂dx+ŷdy)

(

1 − e−iNxqs ·x̂dx

1 − e−iqs ·x̂dx

)(

1 − e−iNyqs ·ŷdy

1 − e−iqs ·ŷdy

)

.

(30)

These terms are very small unless qs · x̂dx = 2nπ and qs · ŷdy =
2mπ are integer multiples of 2π. These two conditions lead
to the diffraction equation in two dimensions. For example,
writing k = k(x̂ sin θI − ẑ cos θI) and ks = k(x̂ sin θs − ẑ cos θs)
with θI the incident angle and θs the angle of scattering, then
qs · x̂dx = kdx(sin θs − sin θI) = 2nπ or on rearranging and sub-
stituting k = 2π/λ we have the condition for strong scattering
sin θs = sin θI + nλ/dx. This is the diffraction equation, which
has recently been confused with a generalization of Snell’s Law
of refraction [41]. For periodicities smaller than the wavelength
of light d ≪ λ, the only solution for strong scattering is when
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n = m = 0 for which qs · x̂dx = 0 and qs · ŷdy = 0 whereupon
ks = k and the incident beam is transmitted through the array
without deviation. (One can show that a specularly reflected
beam also a solution). This demonstrates that, in the weak
scattering approximation, a metasurface formed by an array of
nanostructures with subwavelength periodicity behaves like a
uniform thin film that merely transmits or reflects the incident
beam.
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