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Abstract. The desire for a diagnostic optical imaging modality has motivated the development
of image reconstruction procedures involving solution of the inverse problem. This approach is
based on the assumption that, given a set of measurements of transmitted light between pairs
of points on the surface of an object, there exists a unique three-dimensional distribution of
internal scatterers and absorbers which would yield that set. Thus imaging becomes a task
of solving an inverse problem using an appropriate model of photon transport. In this paper
we examine the models that have been developed for this task, and review current approaches
to image reconstruction. Specifically, we consider models based on radiative transfer theory
and its derivatives, which are either stochastic in nature (random walk, Monte Carlo, and
Markov processes) or deterministic (partial differential equation models and their solutions).
Image reconstruction algorithms are discussed which are based on either direct backprojection,
perturbation methods, nonlinear optimization, or Jacobian calculation. Finally we discuss some
of the fundamental problems that must be addressed before optical tomography can be considered
to be an understood problem, and before its full potential can be realized.

1. Introduction

The clinical potential of optical transillumination has been known for many years (Jöbsis
1977), and stems from the fact that the relative attenuation of light in tissue at some
near-infrared wavelengths is related to the global concentrations of certain metabolites
in their oxygenated and deoxygenated states (Cope and Delpy 1988). Thus an optical
imaging modality offers the promise of functional as well as structural information. Despite
considerable recent interest in the problem (Chance and Alfano 1993, 1995), progress
towards optical tomography has been inhibited by the lack of suitable instrumentation to
acquire sufficient useful data in reasonable times, and an adequate theoretical treatment
of the reconstruction problem. A companion paper by Hebdenet al (1996) reviews the
experimental techniques which have been proposed in order to acquire data suitable for
imaging through tissues, and examines the relative effectiveness of some direct approaches
to imaging. In this paper we examine recent approaches to image reconstruction based on
solution of the inverse problem, and discuss some of the difficulties involved.

The fundamental problem is that biological tissue is a highly scattering medium, so the
transport model deviates highly from the Radon transform. As a consequence, inversion
schemes have depended on one of the following general approaches: (i) restriction of the
domain of measurement to those observables that give rise to straight-line integrals of the
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Radon transform type; (ii) development and inversions of a partial differential equation
(PDE) of diffusion type; or (iii) restriction of the set of scattering directions to allow the
problem to be modelled as a Markov random process with finite state space. In the first case,
the source is assumed to be aδ-function in time, and it is argued that the first photons that
arrive at the measurement site have undergone little or no scattering, so that rejecting photons
that have pathlengths which exceed the source–detector distance leads to a Radon transform
approximation. However, the number of undeviated photons quickly falls to zero as tissue
thicknesses exceed a few millimetres. Meanwhile, the Markov random process transition
probability recovery schemes are at present limited to noiseless data. Consequently, most
practical approaches are of the second type. The severe ill posedness of inverse problems
of diffusion type has to be offset against the favourable signal-to-noise ratio (SNR) of the
data compared to the Radon transform approach, and the computationally efficient methods
available for solution, as described below. It is possible that hybrid approaches, using less
severe restrictions on the measurement domain, may hold the key to more accurate methods.

2. Models of photon transport

The history of the scientific study of optics is characterized by a discrepancy between the
wave and particle interpretations of light. Although in principle Maxwell’s equations can
be solved for complex systems with spatially varying permittivity, in practice most models
are based on a particle interpretation of light. Nevertheless, by interpreting photon density
as proportional to the scalar field for energy radianceI , various differential and integro-
differential equations can be established. In this paper we concentrate on methods that lead
to a computation scheme for complex inhomogeneous geometries. (For a more complete
treatment of theories and models for light transport, refer to the excellent review paper by
Pattersonet al (1992).) The most widely applied equation in optical imaging is the radiative
transfer equation (RTE) (Chandrasekhar 1950, Ishimaru 1978):

1

c

∂I

∂t
+ ŝ · ∇I (r, t, ŝ)+ (µa + µs)I (r, t, ŝ)

= µs
∫

4π
f (ŝ, ŝ′)I (r, t, ŝ′) d2ŝ′ + q(r, t, ŝ) (1)

which describes the change of the radianceI (r, t, ŝ) at positionr in direction ŝ. The
parametersµa andµs are the absorption and scattering coefficients respectively,c is the
velocity of light in the medium, and the functionf (ŝ, ŝ′) is the scattering phase function
characterizing the intensity of a wave incident in directionŝ′ scattered in direction̂s. The
formulation of equation (1) ignores electromagnetic wave properties such as polarization,
and particle properties such as inelastic collisions, but is generally sufficient to describe
the interaction of electromagnetic radiation in tissue for many medical imaging modalities.
Note that an equivalent form for particle radiation is the linear transport equation (Case and
Zweifel 1967, Duderstadt and Hamilton 1976).

The RTE is a balance equation describing the change of energy radianceI (r, t, ŝ) in
time due to changes in energy flow: loss due to absorption and scattering, and gain due to
scattering and radiation sources.I is defined so that the energy transfer per unit time by
photons in a unit solid angle d2ŝ through an elemental area da given by its unit normal̂n,
at positionr, is given by

I (r, t, ŝ)ŝ · n̂ da d2ŝ. (2)
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The exitance0 through a unit area perpendicular ton̂ is obtained by integrating equation (2)
over all angles:

0(r, t) =
∫

4π
I (r, t, ŝ)ŝ · n̂ d2ŝ. (3)

Practical modelling schemes derived from the RTE proceed either stochastically or
deterministically, and these approaches are considered separately in the following sections.

2.1. Stochastic models

Stochastic methods involve modelling individual photon interactions either explicitly (e.g.
Monte Carlo), or implicitly, by deriving the probability density functions for photon
transitions (e.g. random walk or Markov random field).

2.1.1. Monte Carlo methods.Monte Carlo methods have a long pedigree, especially in
transport theory (Duderstadt and Hamilton 1976). The histories of individual photons are
simulated as they undergo scattering and absorption events governed by local values of
optical parameters. Photons are followed until absorbed (or have negligible contribution)
or escape the surface, thus contributing to a measurement (Wilson and Adam 1983). Such
methods offer great flexibility in modelling arbitrarily complex geometries and parameter
distributions, but they are prohibitively costly in computational time. For tissue thicknesses
of several centimetres, typical photon paths are several hundred interactions in length, and
many millions of photons need to be followed to obtain useful statistics. When using Monte
Carlo methods to estimate the signal it is advantageous to use a model with minimum
variance, since then the confidence of the estimate is increased. Analogue Monte Carlo
(AMC) models are those which model both scattering and absorption probabilistically,
since (as the name implies) they are thought to be direct analogues of the real physical
process. Unfortunately AMC methods have the worst statistics, precisely because their
variance is highest, and require very lengthy computation times. Variance reduction Monte
Carlo (VRMC) models have better statistics, but underestimate the variance, which is a
disadvantage if one wishes to have realistic models of noise. Recently Arridgeet al
(1995) compared the statistics of Monte Carlo methods with the diffusion equation and
demonstrated that the latter could model the noise characteristics of the former.

2.1.2. Random walk theory.Random walk theory (RWT) describes the statistical behaviour
of random walks in space, constrained along the elements of a discrete lattice. Although
working within a simple structure, such as a cubic lattice, severely restricts the number
of directions in which motion is possible, a powerful description of photon migration is
achieved using a relatively simple mathematical analysis (Bonneret al 1987, Gandjbakhche
and Weiss 1995). When motion in a homogenous space occurs with each of the lattice
directions having equal probability, RWT can be considered to be equivalent to a finite-
difference approximation of the diffusion equation.

The application of RWT to the study of photon migration in tissue has been pioneered by
investigators at the National Institutes of Health, USA, and at the Bar-Ilan University, Israel.
Expressions for the time-dependent transmittance through homogenous scattering slabs have
been derived by Gandjbakhcheet al (1993) and were shown to be in general agreement with
the results of Monte Carlo simulations and curves calculated from diffusion theory. This
work has also provided a useful analysis of time-gating imaging methods. For example, an
analytical description of the spatial distribution of photons as they cross the midplane of a
finite slab which yielded a simple model for the dependency of spatial resolution on photon
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flight-time was developed by Gandjbakhcheet al (1994). The predictions of this model have
since been validated using experimental measurements (Hebden and Gandjbakhche 1995).
Recently RWT has been used to study the perturbation in the time-dependent transmittance
through scattering slabs produced by an embedded partial absorber (Gandjbakhcheet al
1996). Resulting expressions were used to assess the affects of time resolution on the
detectability of the absorber. This perturbation approach is analogous to the diffusion
theory analysis of Arridge (1995).

2.1.3. The Markov random field method.Professor Gr̈unbaum and coworkers at the
University of California at Berkeley have developed a very different, completely general
stochastic model based on transition probabilities (Patch 1994, Grünbaum 1992, Gr̈unbaum
and Zubelli 1992). The model can recover the internal transition probabilities in the time-
independent case given exact values of the probabilities on the boundary of a domain. Thus
the model expects noiseless data. Despite leading to an exact solution to the non-linear
inverse problem it has never been applied to real data because of the difficulty in relating
the essentially topologically invariant analysis to real conditions.

2.2. Deterministic models

The RTE is a deterministic equation and simpler deterministic models can be derived from
it. The principle of expanding the densityφ, sourceq, and phase functionf in spherical
harmonics and retaining only a limited number of terms is well established (Lewis 1950,
Bremmer 1964). One of the best recent summaries on this topic has been provided by
Kaltenbach and Kaschke (1993) who derive a hierarchy of equations, of which the simplest
is the time-dependent diffusion equation:

(1/c)∂8(r, t)/∂t −∇ · κ(r)∇8(r, t)+ µa(r)8(r, t) = q0(r, t)

J(r, t) = −κ(r)∇8(r, t) (4)

where8 is the photon density

8(r, t) =
∫

4π
I (r, t, ŝ) d2ŝ (5)

andJ is the photon current

J(r, t) =
∫

4π
ŝI (r, t, ŝ) d2ŝ. (6)

Equation (6) uses only spherical harmonics to first order for the expansion ofI and zeroth
order for the expansion ofq, and also ignores temporal variation inJ . Incorporation of
time dependence inJ and anisotropy in the source leads to theP1 approximations:

(∂/∂t)8(r, t)+ µa8(r, t)+∇ · J(r, t) = q0

[3κ(r)/c](∂/∂t)J(r, t)+ J(r, t)+ κ(r)c∇8(r, t) = q1 (7)

whereq0 andq1 are the first two terms of the expansion of the source function and describe
the isotropic and dipole-like anisotropic component of the source, respectively. In the
homogenous case, where∇κ(r) is assumed to be negligible, a single scalar wavefunction
results, which is the so-called diffusive-wave approximation (DWA):

3κ

c2

∂2

∂t2
8(r, t)+ 1+ 3κµa

c

∂

∂t
8(r, t)− κ ∇28(r, t)+ µa8(r, t) = S(0)(r, t)

with S(0)(r, t) = (1/c){q0+ (3κ/c)∂q0/∂t −∇ · q1}. (8)
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Continuing to higher-order terms in the spherical harmonic expansion leads to thePN
approximations. However, by far the most commonly used approximation is the diffusion
equation (DE). Newcomers to the field often find this surprising. For example, it is
immediately clear that the DE is causal (in opposition to the fundamental time reversibility
of light propagation) and in violation of relativity (sources of photons give rise to photon
densities instantaneously). Such factors lead to some difficulties in exact mathematical
analysis of the inverse problem that are often glossed over. The DWA obviates many of
these difficulties yet is not routinely used. This is because for the low modulation frequencies
(<1 GHz) and high-scattering regimes encountered in tissue optics, the difference from the
DE is negligible.

Frequency-domain partial differential equations (PDEs) are easily obtained by Fourier
transforming the time-domain equations. Alternatively they can be derived from first
principles by considering the solution to the RTE with an intensity modulated source. The
frequency-domain analogy to equation 4 is given by

−∇ · κ(r)∇8̂(r, ω)+ (µa(r)+ iω/c)8̂(r, ω) = Q̂0(r, ω) (9)

where it is to be noted that the frequency is incorporated as a complex attenuation coefficient.
Note also that equation (9) iselliptic whereas equation (4) isparabolic—a distinction which
has considerable significance in regard to numerical solutions.

2.3. Solution methods for deterministic equations

2.3.1. Analytical methods.A general method for solving a PDE which involves a source
condition is the application of Green functions. The Green function is the solution when the
source is aδ-function, and the solution for any other source can be obtained by convolution.
However, pulsed sources used in optical imaging are often sufficiently close approximations
to δ-functions that the Green function itself is appropriate. Analytical solutions for the RTE
are scarce and have been obtained for only very simple cases, for example one-dimensional
geometries such as planetary atmospheres. Green functions for various homogeneous
geometries (slabs, cylinders and spheres) have been published, for both the time and
frequency domains (Pattersonet al 1989, Arridgeet al 1992a). Easonet al (1978) provide
analytic forms with more complex source conditions including collimated and distributed
sources. These can be used as the basis for validating other models. Recently the analytic
form for the Green function of a sphere embedded in an infinite scattering domain was
derived by drawing an electrostatics analogy and matching the gradient of8 across the
boundary between surfaces (den Outeret al 1993, Boaset al 1994, Fenget al 1995).

2.3.2. Finite-difference schemes.The finite-difference method (FDM) is a standard
technique to solve a PDE. A regular grid is established in the problem domain and differential
operators are replaced by discrete differences. Then the problem becomes one of sparse
matrix algebra or (for explicit schemes) simply a local convolution. For elliptic equations
(frequency-domain DE) the multi-grid scheme is optimal (Hackbush 1980) and has recently
been applied in optical tomography (Pogueet al 1995). For parabolic equations (time-
domain DE) the alternating direction implicit scheme is optimal (Ames 1977), provided that
the grid is regularly spaced in each of the componentx, y, z-directions. A group led by
Professor Frank Natterer at Westfälische Wilhelms-Universität in Münster has developed
very efficient schemes using this method. The FDM can also solve the transport equation,
provided that the angular integral over scattering directions is discretized (Natterer 1995).
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2.3.3. Finite-element methods.The finite-element method (FEM) is somewhat more
versatile than the FDM, especially in regard to complex geometries and for modelling
boundary effects. The key principle in the FEM as applied to photon transport problems is
the reduction of the general problem to that of finding an approximate solution that lies in
the vector space spanned by a finite number of basis functions. Then the forward problem
is reduced to one of matrix algebra of a finite size for which efficient techniques have been
developed. In principle this method can be applied to any PDE model of the transport
process. An FEM for the transport equation is described by de Oliveira (1986) where the
number of scattering directions was chosen to be 12. The basic application of the FEM to
solving the diffusion equation has been described by Arridgeet al (1993a), who includes a
comparison with Monte Carlo and analytic methods. Its application to the inverse problem
was first introduced by Schweigeret al (1993). Fast methods for deriving measurement
operators are described by Arridge (1995), and boundary conditions for a diffuse source are
discussed by Schweigeret al (1995).

3. Image reconstruction

The formation of an image representing one or more internal optical characteristics from a
series of boundary measurements is an example of a so-called inverse problem. Specifically,
it involves the recovery of the parameters of an appropriate model, such as described in
section 2. The forward problem can be stated as follows:

Given a distribution of light sources{q} on the boundary∂� of an object�, and a
distribution of tissue parameters{p} within�, find the resulting measurement set{y} on∂�.

The solution to the forward problem can be expressed in the form of a general non-linear
forward operator:

y = F [p(r)]. (10)

Similarly, the inverse problem may be stated as follows:

Given a distribution of light sources{p} and a distribution of measurements{y} on ∂�
derive the tissue parameter distribution{p} within �

and this can be represented by

{p} = F−1[{y}]. (11)

3.1. Backprojection methods

Many medical imaging modalities are governed by the same physical process, represented
by the RTE. For example, ifµs andq are zero, and the system is assumed to be at steady
state, then equation (1) in the steady state becomes the differential form of the Radon
transform for x-ray CT:

{ŝ · ∇ + µa(r)}I (r, ŝ) = 0⇒ I (b, ŝ) = I (a, ŝ) e−
∫ 1

0 µa(a+λ(b−a))dλ. (12)

Similarly if µa and µs are zero andq is non-zero and isotropic, we obtain the Radon
transform for SPECT:

ŝ · ∇I (r, ŝ) = q(r)⇒ I (b, ŝ) =
∫ 1

0
q(a+ λ(b− a)) dλ. (13)



Optical imaging in medicine II 847

If both µa andq are non-zero, then the problem becomes the attenuated Radon transform,
with the exponential Radon transform representing the case whereµa is non-zero and
constant.

The Radon transform is invertible in closed form by a variety of methods, such
as resampling in the Fourier domain, convolution backprojection, or backprojection
convolution (Natterer 1986). Thus it is attractive to consider an equivalent form for
optical CT. If an unscattered component of light could be isolated, a Radon transform
in (µa + µs) could be employed. For diffuse light it is commonly suggested (see the work
reported by Chance and Alfano 1993, 1995) that the line integrals in equation (12) could be
replaced by integrals over a volume weighted by the photon measurement density functions
(see subsection 3.4), and that backprojection using the same weighting functions could
replace the convolution filter in the inverse Radon transform. Variousad hocbackprojection
methods have also been postulated and demonstrated (Benaronet al 1994). However, such
formulations have not been proved to solve the inverse problem, and the generalization of
these methods to complex shaped inhomogeneous objects should be treated with caution.

3.2. Perturbation methods

If we have an estimatêp that is close to the ideal solution, then its projectionŷ = F [p̂] is
close toy. We can expand equation (10) in a Taylor series:

y = F [p̂] + F ′[p̂](p− p̂)+ (p− p̂)TF ′′[p̂](p− p̂)+ · · · (14)

whereF ′ andF ′′ are the first- and second-order Fréchet derivatives respectively. In the
discrete case, these derivatives are over a finite number of dimensions and are represented
by matricesF ′ → J, the Jacobian andF ′′ → H, the Hessian. Putting1y = (y − ŷ) and
1p = (p− p̂) leads to

1y = J[p̂]1p+1pTH[p̂]1p+ · · · . (15)

Neglecting terms after the first, linear term constitutes the perturbation approach and the
problem reduces to inversion of the matrix representation ofJ at p̂. This is therefore a
linear problem which may well be ill posed, and is amenable to standard matrix inversion
methods. Its success is largely dependent on how closely the initial estimate is to the correct
solution, and how little effect is played by higher-order terms in equation (15).

The majority of reported results use this approach. Without exception they require, either
explicitly or implicitly, a difference experimentthat measures1y as the difference between
two states. This approach provides a means of imaging which is sensitive to changes in
optical properties, which may be particularly useful for functional imaging of the brain,
for example. Graberet al (1993) derivedJ from a Monte Carlo model, and acquired
the difference data explicitly by performing an experiment with and without embedded
absorbers. Arridgeet al (1991) performed a similar procedure with an analytical kernel and
with experimental data derived by a differencing experiment. O’Learyet al (1995) also
used an analytical kernel, but derived the difference data implicitly by using two sources and
subtracting the measured values. The investigators made the assumption that the resulting
difference is an approximation to that obtained in an actual difference experiment, which is
reasonable given that the image was of a localized perturbation and the sources and detectors
were relatively far away.



848 S R Arridge et al

3.3. Nonlinear optimization methods

If equation (10) is recognized as a non-linear mapping from parametersp to measurements
y then standard non-linear methods may be used. A seminal paper by Singeret al (1990)
introduced this approach using a Markov random field model on a discrete lattice to recover
absorption and directional scattering parameters. The approach employed by Arridge
et al (1992b, 1993b) uses FEM for the forward model and a Newton–Raphson scheme
to iteratively progress towards the minimization of a least-squared error norm. Levenburg–
Marquardt conditioning, together with Tikhonov and Phillips–Twomey regularization, were
used to control the stability of the solution. Recently the same method was applied by Jiang
et al (1995) to frequency-domain data.

3.4. Jacobian calculation

The entries in the Jacobian represent the sensitivity of a particular measurement at a detector
ξk, from a sourceζj , to changes in the image parametersp(ri ). This may be calculated
in many ways. A general framework introducing the term ‘Photon measurement density
functions’ was recently developed by Arridge (1995) and Arridge and Schweiger (1995).

Various methods exist to derive the basic perturbation equations. Arridge (1995) used
a linear perturbation method to derive the change in intensity in the Fourier domain as

10̂(ξk, ω) ' −Ĝ(0)(ξk, ri , ω)α(ri )Ĝ
(8)(ri , ζj , ω)

−ν(ri )∇r Ĝ(0)(ξk, ri , ω) · ∇r Ĝ(8)(ri , ζj , ω) (16)

and in the temporal domain as a convolution:

10(ξk, t) ' −
∫ t

0
dt ′g(0)(ξk, ri , t ′)α(ri )g(8)(ri , ζj , t − t ′)

−ν(ri )∇rg(0)(ξk, ri , t ′) · ∇rg(8)(ri , ζj , t − t ′) (17)

whereα(r) refers to a change in absorption andν(r) to a change in diffusion coefficient,
Ĝ(8)(r2, r1, ω) and g(8)(r2, r1, ω) are the Green functions for equations (9) and (4)
respectively, and the superscript(0) implies taking the normal derivative. The first term
in equation (17) was derived by Schotlandet al (1993) by taking the first term in the
Feynman path integral expression for the Hamiltonian operator. Fenget al (1995) derived
the first term in equation (16) by taking the limiting value of the exact perturbed intensity
of a spherical inhomogeneity as the radius of the inhomogeneity reduced to zero. O’Leary
et al (1995) noted that ifĜ(8)(ri , ζj , ω) is considered as the unperturbed initial field of
a wavelike equation then equation (16) is the Born approximation for a scattered wave.
Sevicket al (1994) derived the first term in equation (16) using a Monte Carlo argument.

Alternatively, instead of considering changes in intensity, changes in some
transformation of the intensity can be used to derive the Jacobian. For example, if we
consider logarithmic intensity then d(log0) = d0/0 so that the expressions in equations
(16) and (17) are normalized by the Green function fromζj to ξk (Schweigeret al 1993,
Schotlandet al 1993, O’Learyet al 1995):

1 log 0̂(ξk, ω) ' − 1

Ĝ(0)(ξk, ζj , ω)
(Ĝ(0)(ξk, ri , ω)α(ri , ζk, ω)

− ν(ri )∇r Ĝ(0)(ξk, ri , ω) · ∇r Ĝ(8)(ri , ζj , ω)) (18)

1 log0(ξk, t) ' − 1

g(γ )(ξk, ζj , t)

∫ t

0
dt ′g(0)(ξk, ri , t ′)α(ri )g(8)(ri , ζj , t − t ′)

− ν(ri )∇rg(0)(ξk, ri , t ′) · ∇rg(8)(ri , ζj , t − t ′). (19)
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The first term in equation (19) is what Schotlandet al (1993) termed the ‘photon hitting
density’ (they consider the measurement to be8 rather than0). Arridge et al (1992b)
compared reconstruction from intensity and log intensity measurements and found the latter
provided considerable improvement. This was later confirmed by O’Learyet al (1995),
who pointed out that the logarithmic intensity is equivalent to the Rytov approximation
whereas absolute intensity is the Born approximation. More generally we can consider the
logarithmic transformation as one example of ameasurement operatoror postprocessing
transformation on the obtained data0(t). The general treatment of any kind of measurement
operation is given by Arridge (1995), where it is proposed that the moments of0(t) give
an improvement to imaging algorithms because the sensitivity functions are maximized at
interior points, rather than by boundary effects.

It may be noted that the Jacobian entries, involving the product (or convolution in the
time domain) of Green functions, may also be considered as the interaction of the photon
density generated from the source and anadjoint density generated from the measurement
position. In a transport model this reciprocity principle derives directly from the temporal
reversibility of this equation. In the diffusion approximation the adjoint formulation is less
intuitive—it requires a measure flux to be used as an intensity source. The use of reciprocity
relations makes the Jacobian calculation very fast (Arridge and Schweiger 1995).

Figure 1. The successive terms in the Taylor series expansion of the forward problem are
determined by the sum of Feynman type diagrams. The straight lines represent Green function
propagators that are the solution to the diffusion equation in the appropriate geometry.

It may also be noted that Feynman diagrams allow computation of Hessian and
higher-order terms in the Taylor series. This is illustrated schematically in figure 1.
Usually classical optimization does not compute the Hessian but may approximate it via
conjugate gradients, for example. Possibly an acceleration is available using Feynman terms
Ĝ(r2, r1, ω)Ĝ(r3, r2, ω) . . . Ĝ(rn, rn−1, ω), but in practice it appears difficult to produce a
computationally efficient scheme.

4. Discussion

The development of image reconstruction techniques for optical imaging through diffuse
media is at a very preliminary stage. The most advanced work is largely being done using
simulated data, which is useful for predicting which instrumentation is worth developing
and what experiments to perform. However, the field will not attract significant attention
until the predictions have been fully validated by experiment. Unfortunately, due to lack of
appropriate instrumentation or of a sufficiently sophisticated model, most experimental data
reported to date have involved geometries or conditions which are very simplistic compared
to what would be encountered for a medical imaging system. We now enumerate some
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of the fundamental difficulties involved in optical tomography. Although these are often
acknowledged, they remain largely unexplored, especially from an experimental viewpoint.

4.1. The intensity matching problem

In theory, the simplest type of data to model and therefore to reconstruct is intensities,
either continuous wave, time dependent, or frequency domain. However, the comparison of
measured intensities to a given model is complicated by the inherent unreliability of absolute
intensity measurements. There are various potential causes of this, including fluctuation in
the power source, unknown losses in fibre coupling, and unknown or variable detector gain.
The problem may be obviated to some extent by employing a reference measurement so that
the model is formulated in terms of relative intensityI/I0. Similarly, using the logarithm
of intensities is helpful. As illustrated in figure 2(a), reference intensity measurements are
easily achieved for laboratory ‘blob-in-a-fishtank’ experiments, but for a general complex
geometry encountered clinically such a measurement is not routinely available. The use
of mean flight time or higher-order moments eliminates this problem and is the reasoning
behind its advocation by Arridge (1995).

4.2. The boundary effect problem

Whereas the Green function formulation is exact for determination of the Jacobian, and is
applicable to any geometry, the precise form of the Green functions cannot be found in
general. However the attraction of this method has led some workers (O’Learyet al 1995)
to propose experiments using ‘embedded systems’. This involves immersing the object, the
source, and the detectors in a tank of scattering liquid. The geometry is one we might call
‘blob-in-an-infinite-fishtank’, as illustrated in figure 2(b). Having essentially disposed of
the boundaries, it is argued that the infinite-space Green functions can be employed to high
approximation. However, the fact that experiments validate the method for small localized
absorbing and scattering objects is not conclusive evidence that it can be applied to medical
imaging situations, as represented by figure 2(c). The alternative is the application of
numerical methods such as finite differences or finite elements which can handle arbitrarily
complex geometries. Their perceived drawback is the high computational cost, although
the advent of increasingly fast computers is rapidly diminishing this obstacle.

4.3. The 2D versus 3D problem

A disadvantage of some iterative approaches using numerical forward models is that they
are modelled in two dimensions. Although the computational cost in 3D is significantly
greater, to apply these methods to real data a 3D model is deemed necessary. Although
this problem must be addressed it is perhaps naive to reject such methods on the grounds
of current computational cost. Fortunately, improvements in computer performance and
more detailed analysis of algorithms has led to a continual reduction in the overheads of
these methods. Furthermore, it is well known that inverse methods are often improved as
the problem increases in dimensionality, owing to fundamental mathematical properties of
partial differential equations.

4.4. Initial estimate problem

Reconstruction procedures which localize perturbing regions generally depend on knowing
the optical properties of the background material. Even more general iterative reconstruction
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Figure 2. A comparison of common experimental configurations with the situation encountered
for clinical applications. The latter involves a complex inhomogeneous region with an irregular
boundary, and thus no reference measurement is available.

processes require some initial estimate of the object properties. Some experimenters
avoid this problem by using embedded systems with liquids of pre-determined scatter and
absorption coefficients. Experiments involving isolated embedded objects in homogenous
media can also make use of measurements made sufficiently far away from the object to
determine the background properties. For a realistic geometry it is necessary to acquire
the initial guess by global fitting mechanisms. However, this problem may be at least
partially alleviated by employing a ‘coarse-to-fine’ image recovery method, which starts
with a random or uniform guess, and uses the result of an iteration with coarse resolution
as the initial estimate for iterations at finer resolution.

5. Conclusions

Optical imaging in medicine presents some challenging problems for both experimental
and theoretical work. To gain an appreciation for the tasks that lie ahead it is essential to
consider the non-linear nature of the forward problem. A wide variety of methods have been
proposed for both the forward and inverse problems, but experimental validation has been
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largely inadequate due to lack of appropriate instrumentation and/or the use of unrealistic
physical conditions and geometries. Although there is clearly much work to do before the
full potential of optical tomography can be realized, the benefits are significant enough to
make the effort worthwhile.
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