
Optical implementations of radial basis classifiers

Mark A. Neifeld and Demetri Psaltis

We describe two optical systems based on the radial basis function approach to pattern classification. An
optical-disk-based system for handwritten character recognition is demonstrated. The optical system
computes the Euclidean distance between an unknown input and 650 stored patterns at a demonstrated
rate of 26,000 pattern comparisons/s. The ultimate performance of this system is limited by optical-disk
resolution to 1011 binary operations/s. An adaptive system is also presented -that facilitates on-line
learning and provides additional robustness.
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1. Introduction

We describe two optical architectures for the realiza-
tion of distance-based classifiers; in particular, radial
basis function classifiers. The first is an optical-disk-
based implementation. The two-dimensional (2-D)
storage format of the optical disk makes parallel
access to data an attractive possibility. The optical
disk can be thought of as a computer-addressed 2-D
binary spatial light modulator (SLM) or storage me-
dium with a space-bandwidth product (SBP) of 1010
pixels. A number of potential applications that take
advantage of these characteristics exist and have been
discussed elsewhere in the literature. 1 2 An optical-
disk-based implementation of radial basis classifiers
is quite natural owing to the large storage require-
ments typical of such pattern-recognition algorithms.
In the system described here the optical-disk-based
radial-basis-function classifier is demonstrated as a
handwritten character recognition system. The sec-
ond architecture is a parallel adaptive neural network
that facilitates on-line learning and offers added
robustness to noise and optical system imperfections.

2. Radial Basis Functions

The radial basis function (RBF) approach to pattern
recognition differs from neural networks that are
based on supervised, output error-driven learning
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algorithms such as back error propagation (BEP) in a
number of respects.3 4 It is typical for RBF-based
systems to incur short learning times while requiring
rather large network realizations. This approach
therefore bears some similarity to memory-intensive
sample-based systems such as K-nearest neighbor
(KNN) classifiers.5 In such systems, learning time
and learning algorithm complexity are traded for
classification time and memory requirements. The
motivation for using a RBF network to perform
pattern-recognition tasks comes from the relatively
well established mathematical framework associated
with regularization theory and hypersurface recon-
struction.6 In hypersurface reconstruction the prob-
lem is to construct an approximate function f(w, x),
which takes a vector x into a prescribed output f(x).
The vector w is a parameter vector used to tune the
estimate f. For simplicity we consider one-dimen-
sional (1-D) outputs only. In order to construct f we
provide a set of training samples {xi -f(xi);
i = 1, . . , M} taken from f(x) (i.e., the underlying
hypersurface to be approximated). The problem then
reduces to the choice of the form of f and the
appropriate parameters w, such that f(w, xi) = f(xi)
for i = 1, . . . , M. This problem is identical to the
pattern-recognition problem in which one is given a
set of training patterns and is asked to find a classifier
f with the appropriate parameters w, such that the
resulting machine classifies the training set correctly.
In both cases we desire that future samples be
mapped correctly and that the system behave well in
the presence of noise. In order to obtain these
desirable characteristics in hypersurface reconstruc-
tion, a criterion of smoothness is often placed on the
estimator f. The RBF approach may be derived as
the optimal solution to the regularized problem for a

1370 APPLIED OPTICS / Vol. 32, No. 08 / 10 March 1993



specific smoothing operator.7 The RBF solution de-
fines an approximating function f(w, x) as a weighted
sum of radially symmetric basis functions in MUN.

Given a training set X = {xi,f(xi); i = 1, . . . ,M}
comprising a set of M points {xi E MN; i = 1, . . . , M}
and the values of the unknown function f(x) at those
points, we see that the RBF approach specifies an
estimator as

M

j'(w, X) = I ai exp(- I x - tiI2/L2)
i=1

(1)

where the centers or templates {ti}, the widths {i},
and the weights ai comprise the parameter vector
w = {t i, i, ai; i = 1,... M} and are determined
from the training set.

The RBF classifier seeks to approximate the under-
lying function as a sum of Gaussian bumps. Accord-
ing to the above expression f comprises M of these
bumps, each centered at ti with width r; and weighted
by ai to form the final output. We may estimate the
parameters w from the training set such that f(xi) 
f(xi) by using any number of supervised and/or
unsupervised algorithms.3 7

The RBF approach may also be considered as a
neural-network architecture, as shown in Fig. 1.
We define the RBF unit shown in Fig. 1(a) as a
neuron, with a response given by

y = exp(- Ix- ti /r2)

where t i is called the neuron center and vi the neuron
width. These units are depicted in the second layer
of Fig. 1(b). The output layer of the RBF network
consists of a single linear unit whose output is simply
the weighted sum of its inputs. The overall network
mapping conforms then to Eq. (1), as desired. In
Fig. 2(a) we show a RBF network for estimating a
function of two input variables, and in Fig. 2(b) we
depict an example of an input space configuration of
the mapping induced by such a network. The dots in
Fig. 2(b) represent the training samples, and the
dashed circles represent the e -1 contours of the four
Gaussian basis functions used to construct the RBF
network. As a specific example of training such a
network, we used a k-means algorithm with k = 4 to
determine the centers of the basis functions.8 This
procedure results in determination of the four cen-
ters, shown as asterisks in the figure. In order to
determine the widths associated with each center, we
used a KNN algorithm. The five nearest neighbors
to each center were chosen, and the average of these
five distances was used as vi for the associated bump.
Note that these procedures result in the determina-
tion of the centers ti and the widths ori in a completely
unsupervised fashion. In this way the first layer of a
RBF network may be trained without using an error-
driven procedure, thereby reducing training time.
Training of the output layer can be accomplished
through the use of either a mean-square error minimi-
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Fig. 1. (a) Definition and schematic of RBF units (top) and linear
units (bottom). (b) General RBF network.

zation procedure (e.g., adaline) or a relatively simple
perceptron learning algorithm.9

3. Radial-Basis-Function-Based Handwritten Character

Recognition

In this section we describe the implementation of the
RBF classifier trained to solve a handwritten charac-
ter recognition problem. We consider the ten-class
problem of identifying handwritten digits 0-9. Us-
ing a SUN3/60 workstation, several authors were
asked to draw the numerals 0-9 on a 16 x 16 grid.
The resulting database of 950 images (95 per class)
was randomly separated into a 300-element testing
set and a 650-element training set, forming our
reference library. Examples of characters from the
training and testing sets are shown in Fig. 3.

In order to provide both shift and scale invariance,
we first preprocessed both training and testing sets so
that each 16 x 16 image was centered (by reposition-
ing each character within the 16 x 16 grid such that
the number of blank rows or columns of pixels was
the same on all sides of the character) and scaled to a
10 x 10 window (by stretching each character such
that its maximum extent is 10 pixels). Following
this preprocessing, we unraster the 10 x 10 pixel
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Fig. 2. (a) RBF network for estimating a scalar function of two
variables. (b) Example input space configuration resulting from
the network shown in (a).

input field to form a 100-bit binary vector, and each
such vector t corresponding to each of the 650
preprocessed training or reference images is stored on
the optical disk as a radial line. For each vector ti we
also store its complement t in the adjacent position.
This method of encoding permits us to simulate
bipolar templates, using disks that store binary,
unipolar reflectivity values. The template pixel size
in this experiment is chosen to be 177 tracks by 116
pixels along the track. Track-to-track spacing is 1.5
pm and pixel separation is approximately 1.0 [um.
This storage scheme permits us to record 1376 tem-
plates per disk.

The architecture we implemented is shown in Fig.
4. The preprocessed 100-bit binary vector x is pre-
sented to the system shown in Fig. 4, and the first
layer of RBF units computes the RBF projectionsyi =
exp(- Ix - tiI2/ci2). We choose to use as RBF cen-
ters {ti} all 650 reference images of the training set.
This choice of centers also facilitated an earlier
KNN-based handwritten character recognition sys-
tem that has been reported elsewhere.10 After the
RBF projections are calculated in the middle layer,
this 650-dimensional intermediate representation is
then transformed by using the interconnection ma-
trix Wto arrive at a ten-dimensional output repre-
sentation as shown. Each output neuron corre-
sponds to one of the ten classes, and a winner-take-all
network then performs the classification. Since we
choose to use the entire 650-template training set as

Fig. 3. Examples of handwritten numerals from the training set
(top) and the testing set (bottom) used in the optical RBF experi-
ment.

RBF centers, the only iterative learning required for
the first layer of this network is for widths {i . Of
course, the second layer must also be trained to
perform the desired classification on the resulting
RBF representations.

There are many potential training algorithms for
{o } and 7 The most successful algorithm we found
for computing the widths {(oi was to make oi propor-
tional to the distance between template ti and its
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Fig. 4. RBF network for handwritten digit recognition.

nearest neighbor. That is,

cri = urmin JtV - t ,

where the proportionality constant is selected a
priori. Training of the output layer was most suc-
cessful when 7was initialized with a binary address
algorithm and then trained by using the perceptron
learning algorithm. The binary address algorithm
does not require specific knowledge of the intermedi-
ate representations generated during training; it only
requires knowledge of the class assignment of each of
the 650 RBF centers. This reduces second-layer
computation time and improves network performance.
The binary address algorithm defines the initial 7as

WiU = 1

if tj E Qi

otherwise-

Following this initialization, we use the perceptron
algorithm to incorporate detailed knowledge of the
training representations into the output-layer weights.

Using these procedures for training the RBF net-
work, we have in computer simulation a best RBF
performance of 89%, as shown in Table 1. Although
the trend with increasing is an improvement in
network performance, in general, we found that the
broader the basis functions, the longer the perceptron
algorithm takes to converge. For this reason, Table
1 does not contain any entries for > 1.2. We note
here that the best RBF network performance of 89%
is substantially better than the best KNN system
performance of 83% obtained using the same tem-
plate library. This performance can also be com-
pared with a single layer of ten neurons, each trained
with the perceptron algorithm by using the 650-
image reference library. The recognition rate in this

case is 75% on the 300-element testing set. In
general, we would expect an improvement in RBF
network performance with variable centers in which
M, ti, and (xi are all optimized. This case is not
studied here since we are interested primarily in the
performance of the optical implementation.

In Fig. 5 we show the RBF widths computed by
using the procedure described above. Each row in
the figure represents the widths associated with
centers in a single class. There are therefore 65
blocks per row and 10 rows in the figure. Each block
is a gray-scale coding of the width associated with the
corresponding template, with dark being zero width.
With this encoding, each row of the figure corre-
sponds to the values of vi for templates in a single
class. Note that the second row in Fig. 5, correspond-
ing to handwritten l's, is particularly dark, which
indicates that these vectors tend to be well clustered
or are in general located close to other vectors. Also
in Fig. 5 we see that the width associated with one
particular template representing a handwritten 6 is
quite broad, indicating that this vector is basically
isolated in the input space. With the same display
format as that in Fig. 5, Fig. 6 shows the ten weight
vectors of the second layer generated for the best RBF
network. The single bright row in each weight
vector indicates that the weight vector is tuned to
intermediate representations from essentially one
class.

4. Radial-Basis-Function Optical Classifier

A schematic of the optical system used to compute the
distance between an unknown preprocessed input
image and each template stored on the disk in the
format described above is shown in Fig. 7. In this

Table 1. Classification Results Obtained with a One-Nearest Neighbor
Rule for Training the Radial-Basis-Fuction Widths

& Training Seta Testing Setb

0.5 650 226
0.7 650 257
1.0 650 266

1.2 650 267

aNumber of elements correct out of a 650-element set.
bNumber of elements correct out of a 300-element set.

Fig. 5. RBF widths
rule with & = 1.2.

computed using the one-nearest-neighbor
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Fig. 6. Second-layer weights computed with the perceptron algo-
rithm after initialization with the binary address algorithm. The
weights for neurons 1-10 appear consecutively from left to right,
top to bottom.

architecture an Epson liquid-crystal television is used
as a 1-D SLM to present the unrastered input charac-
ter to the system. An image of the input vector is
formed as a radial line on the disk as shown, and the
total diffracted intensity is collected by the output
lens and measured with a Photodyne 1500XP detector.
The detector output represents the inner product
between the input vector and the illuminated tem-
plate vector. The postprocessing system for this
experiment consists of two parts. First, a sample-
hold circuit is used to detect the peaks of the raw
detector output. The amplitudes of these peaks
represent the desired inner products. The sample-
hold circuit is clocked by a signal that is phase locked
to the sector markers that are recorded on the disk;
the markers appear as 32 bright radial lines and
provide a strong diffracted signal. The second stage
of postprocessing consists of an analog-to-digital con-
verter board in an IBM PC computer followed by
software that implements the nonlinearity of the
second layer and computes the final output.

The 650 reference images were preprocessed as
described above and stored on the disk along with
their complements as 100-bit binary vectors. With a
disk rotation rate of 20 Hz, these 1300 vectors were
processed at a rate of 26,000 inner products/s, equiv-
alent to 2,600,000 binary operations/s. It should be
pointed out that this relatively slow processing speed
arises from a severe underutilization of disk capacity.
In this experiment a large template pixel size was

used (177 tracks by 116 pixels across track) in order to
provide alignment simplicity. A system that utilizes
the minimum disk resolution of roughly 1 pm pixels,
together with a disk rotation rate of 100 Hz, would
achieve an inner-product rate of 107/s, corresponding
to a raw processing rate of 1011 binary operations/s.
The 300 testing images were preprocessed as de-
scribed in Section 3, and stored in an IBM PC
computer, which drove the liquid-crystal television
and provided input vectors to the system. An exam-
ple of the raw detector output for the all l's input
vector is shown in Fig. 8. The two tallest peaks in
this trace correspond to sector markers on the disk
and represent the inner product between the all l's
vector and itself. From this data we can calculate
the effective brightness per input pixel measured at
the detector as 0.6 nW. This value is in good agree-
ment with the known optical losses in the system.
The other peaks in Fig. 8 provide normalization data
that are stored in memory and read out during
postprocessing. The IBM-PC samples the inner-
product signal once per peak, averages four rotations
worth of data (total acquisition time 0.2 s), and
computes the Euclidean distances from the inner
products as

Ix - til2 = Ix12 + til2 - 2x ti

where x is the unknown input image and ti is a stored
template. Since our optical system actually mea-
sures ti x and ti x, we may form the distance for
binary vectors as

x12 = (x 1)

= x (ti + ti),

so that

Ix -til = 0i2 + X.t -t

Once again, Itij2 for i = 1, .. ., 650 is stored in
normalization memory and read out during the post-
processing stage.

The optical-disk-based inner-product calculations
are collected by the postprocessing system that com-

INPUT SLM

OPTICAL
DISK

INPUT
ILLUMINATION

POTRCSI DETECTOR

Fig. 7. Optical system used to compute the distance between an
input and an array of stored templates.

Fig. 8. Example of raw detector output indicating the optically
computed inner products.
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putes the required Gaussian weighting and simulates
the output layer in which a classification is made.
These postprocessing steps were carried out off line in
software for our experiments. The classification rate
for the optical RBF system was 83%. This is com-
pared with a recognition rate of 79% obtained using
an optical KNN network based on the same template
data. A comparison between the performances of
the optical system and a computer simulation is
shown in Table 2. The table entries indicate the
number of correct classifications out of 30 for each of
the 10 classes of characters 0-9. The various noise
sources in the optical system result in a 6% loss of
recognition rate. In order to better understand the
effect of these imperfections on the RBF network
performance, we constructed a computer model that
incorporates error sources such as finite contrast,
nonuniform illumination profile, detector noise, and
quantization noise. Using values for the error vari-
ables as measured from the optical apparatus, we
found that nonuniformity of the illumination profile
was the limiting factor in our experiment. A plot of
classification rate versus log of the 1/e 2 Gaussian
profile width is shown in Fig. 9. We can see from
Fig. 9 that for the measured profile parameter value
of 1.8, the expected recognition rate drops to 86%.
This rate is then the noise-limited optical system
performance and is close to the experimentally demon-
strated 83%. The cumulative effect of these errors
can be measured a second way; directly from the
distance calculations. In Fig. 10 we show the 650
distances computed for a single input image (a hand-
written 3), obtained by using both the ideal computer
simulation and the optical system. From the figure
we see that there is a substantial variation between
these two plots. This variation can be quantified by
computing the rms distance error over the entire
testing set as

Table 2. Performance Comparison between Optical RBF Classifier
and Simulationa

Class Experiment Simulation

0 25 29
1 28 29
2 28 28
3 25 27
4 28 23
5 20 25
6 25 24
7 23 28
8 24 25
9 22 29

Total 248 267
Overall recognition rate 83% 89%

aThe table elements are the number of correct classifications out
of 30 for each class.

We observe from the previous discussion that the
hardware implementation of a RBF network com-
prises two primary components: the subsystem for
computing M parallel Euclidean distances and the
basis-function evaluation subsystem. Shown in Fig.
11 is an optical system that can be used to obtain the
required parallel distance computation for the case of
binary vectors. A similar system can be used to
compute the distances for continuous-valued vectors;
however, we concentrate on the binary system for
now. In Fig. 11 an N-dimensional binary vector x is
represented as a vertical intensity array in the input
plane, and each center ti is stored in a vertical column
of the t transparency shown. This system is dual rail
since it requires x and t and their complements x and
t, respectively. We now show that by using this

0.90

ADrms =

M 1/2

_q I (d t-sim)2

1 M

is
where disim and dPt are the Euclidean distances
between the 300 input images and the 650 templates
calculated from the simulation and the optical sys-
tem, respectively. There are M = 195,000 such
measurements in our case. For the results pre-
sented here the rms distance error was found to be
ADrms = 28.5%. Although this error is quite large,
the recognition rate obtained by using the optical
system is in satisfactory agreement with the expected
rate, attesting to the robustness of the RBF approach.

5. Parallel Optical Distance Computation

In order to provide additional robustness to the
optical system as well as to increase the computation
speed, we propose a parallel nondisk implementation.

0.80

'K

0.70 F

0.60 -

0.50

Model

1.4 1.6 1.8 2.0 2.2 2.4 2.6

Profile Width

Fig. 9. Predicted recognition rate versus illumination profile
width.
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Input is 3: 3
x SLM

100.0

50.0

0.0 -

0.0

150.0

100.0

50.0

200.0 400.0 600.0

Template Number

(a)

0.0 I

0.0 200.0 400.0 600.0

Template Number

800

(b)
Fig. 10. (a) Experimental and (b) actual distance versus template
number for a single input image (handwritten 3, number three).
Template numbers 195-260 represent the class of handwritten 3's.

representation, we can perform the distance computa-
tion entirely optically.

Given an input x and a center ti, we can write the
Euclidean distance between these two vectors as

N N

d = jx - tit2 = (Xj - ti)2 = j.We1 c r w t m t dcj=1
We can further write the componentwise distances dji

y

4 Z

tV' | V k

Contrast Reversal 11/, t

SLM

\~_ -SLM

Fig. 11. Parallel optical distance computer.

in the binary case as the exclusive or function (XOR) of
the component bits. That is,

i= X + jtj.

Writing dji in this complement form makes the optical
realization more clear. Returning to the system
shown in Fig. 11, we see that light from the x SLM is
collimated in the x direction and imaged in the y
direction so that, immediately to the right of the
transparency t, the componentwise product is formed
between the input and all of the centers. That is, we
generate the array {xjtji; i = 1, . . , M;j = 1, . . . , NJ.
Similarly, in the lower arm of the system the comple-
ment array ITxtji; i = 1, . . . ,M; j = 1, . . . ,N} is
formed, and these two arrays are simultaneously
imaged upon a contrast-reversing SLM. This super-
position combined with the contrast reversal yields
the desired component distances dji to the right of the
contrast-reversing SLM. A good candidate for this
contrast-reversal SLM is the optically addressed ferro-
electric liquid-crystal SLM.'1

Returningoince again to Fig. 11, we see that, after
the bitwise XOR's are computed as described above,
the desired array of distances is obtained by summing
in the y direction with the cylindrical lens shown.
A simple 1-D SLM can be used to represent the
desired widths so that, immediately to the right of the
output plane shown, we obtain the desired terms
{I x- til2/'Ui2;i = ,... Ml.

Although the system described above operates on
1-D arrays of data, a 2-D version, which is better
suited for operating on image data, is also possible.
This 2-D extension is straightforward and involves
the use of lenslet. arrays for accessing the spatially
multiplexed template images stored in the t and t
planes. The details of the 2-D system as well as
those of an extended 1-D system capable of operating
on continuous-valued vectors are the subject of fu-
ture research and are not discussed here; however, in
order to indicate the expected performance limita-
tions of these systems, we consider the 2-D binary
version. If we assume that the inputs to our system
are 100 x 100 pixel images, then the number of
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centers in the RBF network is limited by the SBP of
the optical system. Obtaining 900 centers requires a
template mask with 3000 x 3000 pixels, which in
turn demands an optical system with SBP = 9 x 106.
This would be the largest feasible implementation.
Notice that although the contrast-reversal plane must
have a large SBP, the output plane requires a SBP
equal to only the number of centers. This is an
attractive characteristic of the present system, since
on-line learning will require a programmable SLM in
this plane for vi adaptation. In the present example
this SLM would be required to have only 30 x 30
pixels.

6. Parallel Basis-Function Evaluation

Having defined the optical distance computer in
Section 5, we turn our attention to the second
primary component of the optical RBF implementa-
tion. This component performs the basis-function
evaluation. Notice that the basis-function evalua-
tion requires only point operations in the plane of
distances. Further, if we consider the case of a
single output neuron [i.e., f (x): N -71], then
completion of the RBF computation after the distance
computer requires point operations only, followed by
a global sum. With this observation in mind we
propose the optoelectronic postprocessing chip shown
in Fig. 12.

The chip shown consists of an array of modules,
each module comprising a photodetector to detect the
output of the optical distance computer, analog multi-
pliers to realize the required width and output weight-
ing, and an exponentiation unit to realize the basis-
function evaluation. The output of each such module
is summed on a common line to generate the network
response. We should note here that all the required
functions in a module are compactly achievable by
using analog very-large-scale integration (VLSI) or, if
more precision is required, the photodetector may be
followed by an analog-to-digital converter, and then
each module could be implemented in digital electron-
ics. The 2-D extension of this postprocessing chip is
once again straightforward, and, since there are no
intermodule communication requirements, connectiv-
ity issues in the 2-D arrangement do not arise. All
computation in this postprocessing chip is local,
excepting the final sum. Also note that this imple-

I I
I I
I I

l I

l l

l l

l l

l l

_ _ Mo l 1{ 1
MS~l M Module I

Fig. 12. Optoelectronic postprocessing chip.

mentation has the flexibility to permit the realization
of a variety of different basis functions as well as to
support a useful on-line learning algorithm, which is
discussed further in Section 7.

The above all-electronic postprocessing chip is par-
ticularly well suited for the case of a network with one
output only. For the case of multiple outputs we
have two alternative systems. If the number of
outputs is relatively small (- 10), then the most
attractive alternative is simply to use multiple postpro-
cessing chips. This approach retains the simplicity
and the flexibility of the VLSI implementation.
Alternatively, if the number of outputs is large, we
may consider a hybrid approach wherein each e -x box
in Fig. 12 is followed by a light-modulating element,
permitting the exponentially weighted distances to be
read out optically, with liquid-crystal modulators, for
example.12 In this way an efficient optical implemen-
tation of the output layer is facilitated. This ap-
proach has the advantage of providing scalability in
terms of output units while retaining much of the
convenience of the VLSI implementation. In this
system, update of the output weights during a learn-
ing cycle is done optically through the use of photore-
fractive holograms in the output layer. 13

7. Learning

The effective implementation of iterative learning
algorithms is a common stumbling block in both
electronic and optical neural-network architectures.
Here we suggest a learning algorithm for RBF net-
works that is suitable for implementation with the
optoelectronic hardware we described. Associated
with each of the postprocessing stages (i.e., all-
electronic and hybrid) is an implementation of the
on-line learning algorithm. We describe the all-
electronic single-output implementation here.

Referring to Eq. (1) for the RBF network response
function, we can define a criterion function for the
goodness of an RBF network as

M M

E = [W Xi) -f(x])] 2 = E2
i= i=

where Ei is the error between the actual and desired
network responses in the presence of training vector
xi only. E is the conventional sum-of-squared-error
function evaluated over the entire training set. If
we assume that the training set T is fixed and that
each training vector is used as a single RBF center as
before, then the learning procedure reduces to finding
{vi } and {ai to minimize the error E. A simple
gradient descent procedure is a candidate algorithm
for the minimization of E. Using this procedure, we
can write expressions for the update of the network
parameters up and a in response to the error mea-
sured for a single-input training vector x. These are

\(1/qrP)2= -c:,EIIx - tPI2ap exp(-Ix' - tp12/rP2)

(2)
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Fig. 13. On-line learning postprocessing module.

- tp F/o, 2,A(ap = a-aE, exp(- I x P (3)

where a, and eta are acceleration constants for the
width and output weight updates, respectively.14
Notice that these expressions define a backward error
propagation type of rule for RBF networks. In this
learning algorithm, however, no special backward
response function is required for the RBF units owing
to the fact that the exp(x) function is its own derivative.
All signals required to compute the updates defined in
Eqs. 2) and 3) above are present in the forward path
of the network. Furthermore, we observe that all
required learning signals are present in the electronic
portion of the proposed implementation and that no
intermodule communication is necessary. The impli-
cation of these observations is that rapid, parallel
update of all network parameters can be realized with
a simple modification of the postprocessing module
presented earlier. In Fig. 13 we show a block dia-
gram of th� modified postprocessing module. By
incorporating the additional local connections shown
and by adding accumulation registers to the (J/U,)2

and ai blocks, we can implement the on-line parallel
RBF learning algorithm with little increase in overall
circuit complexity over the nonadaptive system. In
this way a 30 X 30 element adaptive postprocessing
array, capable of facilitating on-line learning in a
900-center RBF network, should be possible.

8. Conclusions

We have demonstrated an o tical system that can
implement a RBF pattern classifier. The experimen-
tal system achieved a processing rate of 2,600,000
binary operations/s, corresponding to the computa-
tion of 13,000 Euclidean distances/s. The capability
of the optical-disk-based system is limited by the

maximum length of template vectors (_ 104 bits), the
maximum number of template vectors (_ 105), and
the maximum disk rotation rate (- 100 Hz). These
upper bounds correspond to a processing rate of
- 1011 binary operations/s.

This system was trained off line with the handwrit-
ten numerals 09, and it achieved a recognition rate
in a computer simulation of 89% on a 300-element
testing set. Similar performance 91% recognition
rate) was achieved by using the same off-line training
procedure in an RBF network with 2000 centers; the
network was trained on segmented zip-code data
obtained from the U.S. Postal Service database. The
optical-disk-based 650-center system achieved a recog-
nition rate of 83%. In this study it was found that
factors such as nonuniform disk reflectivity, nonuni-
form illumination, and finite contrast were all signifi-
cant contributors to a 28% rms error in the optical
distance computation. Furthermore, since this large
distance error resulted in only a 6 degradation in
recognition performance, the RBF approach was seen
to be robust in the presence of such errors.

We might expect an on-line learning scheme in
which optical system imperfections are present during
the learning phase to provide compensation for those
imperfections and to result in a recognition rate
closer to the simulation value. We have described
such an adaptive optical RBF hardware implementa-
tion. If on-line learning, more careful system de-
sign, more powerful learning algorithms for learning
the optimal center and width values, and a larger
hidden layer (- 2000 units) are combined, the optical
system should be able to approach the 91% recogni-
tion rate obtained in simulation for the zip-code data.
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