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We introduce a new type of optical isolator based on
breaking time reversal symmetry in dissipative finite
Su–Schrieffer–Heeger (SSH) waveguide arrays that support
topological edge states at one end of the structure. In the
forward propagation direction, light is launched into the
edge waveguide to excite the localized topological midgap
state. As a result, most of the input optical power is trans-
mitted to the output port. On the other hand, backward
reflected light encounters a propagation constant mismatch
in that same channel which shifts the otherwise midgap
state into one of the bands and hence becomes delocalized
over the whole array. We show that under these conditions,
a judicious spatial distribution of the optical dissipation
across the structure can produce an isolation ratio of
−50 dB. The required nonreciprocal phase shift is intro-
duced by depositing a magnetic garnet film only on the edge
waveguide and, thus, the required magnetic field can be
generated by an integrated micromagnet. Similar concepts
can also be applied to SSH arrays made from optical
resonators. © 2015 Optical Society of America

OCIS codes: (230.3240) Isolators; (230.7370) Waveguides;

(230.3810) Magneto-optic systems.
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Topology is a branch of mathematics that studies certain gen-
eral properties of objects, rather than their geometrical details.
In particular, it deals with those features that do not change
under a certain class of continuous deformation [1]. The dis-
covery that certain condensed matter materials can support
topologically protected defect states has launched an intensive
research program that focuses on investigating these structures
and their potential applications [2]. In two important papers by
Haldane and Raghu, this work was extended to optics where a
photonic realization of quantum edge Hall states was theoreti-
cally proposed [3,4]. Shortly after, these predictions were
theoretically extended and experimentally verified by using
photonic crystals operating in the microwave regime [5,6].
This work has stirred intensive activities in the field of topo-
logical photonics [7–12]. An important feature of topological
states is their robustness against disorder. This allows for

building photonic devices that are more immune to fabrication
errors. We note, however, that due to the relative weak mag-
netic effects at optical frequencies, work on magneto-optical
topological structures has been very limited. Given that a true
breaking of time reversal symmetry in optics is usually achieved
by using magneto-optical effects, it is important to explore this
domain.

Here we consider a certain class of defect states in one-
dimensional waveguide arrays with interleaving coupling coef-
ficients, as shown schematically in the top panel of Fig. 1. This
structure, also known as Su–Schrieffer–Heeger (SSH), has been
investigated before in the context of polymer science [13]. It
has also been shown that localized edge states can be engineered
by terminating the array with weak coupling, as shown in the
middle panel of Fig. 1. On the other hand, defect bulk states
can be created by the arrangement shown in the bottom panel
of Fig. 1. More interestingly, these states have been proven to be
of topological nature and to be immune against off-diagonal

Fig. 1. Schematic of the coupling profile in an infinite SSH lattice
(top panel), topological edge state in semi-infinite SSH array (middle
panel), and topological bulk state in a hetero-structure SSH configu-
ration. The red circles represent waveguides or cavities, while the
strong and weak coupling links are represented by solid (short) and
broken (long) arrows, respectively. The mode profiles in the middle
and lower panels are indicated schematically by the halos around
the circles with a darker halo equivalent to stronger amplitude.
Note that the modal amplitude is zero at each second site (counting
from the site of maximum field).
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perturbation, namely perturbation introduced to the coupling
coefficients between the waveguides [14]. We note that
Hermitian [15], non-Hermitian [16–18], and PT symmetric
[19] SSH optical structures have been recently investigated
by different research groups.

In this Letter, we focus on a waveguide array similar to the
schematic arrangement shown in the middle part of Fig. 1.
Furthermore, we assume that a magnetic garnet film is depos-
ited on top of the leftmost waveguide element [20]. By apply-
ing an external static magnetic field in the transverse direction
and by considering only TM waveguide modes, it is straight-
forward to show that the propagation constant of that
edge waveguide will have different forward and backward
values [20]. Within the formalism of coupled mode theory
(CMT), the system can be described by
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In Eq. (1), z is the propagation distance, and the elements of
the vector a⃗ � � a1 a2 � � � aN �T represent the optical field
amplitude in the individual waveguides with the superscript T
indicating matrix transpose and N being the total number of
waveguides. The first waveguide exhibits different propagation
constants βf ;b in the forward and backward propagation direc-

tions, respectively, while all other waveguides have a fixed
propagation constant β in both directions. In addition, we
assume that all waveguides, except the first one, also exhibit
optical loss that can be characterized by the coefficients γn
where n � 1; 2; 3;…N are the waveguide numbers from left
to right. The weak and strong values of the coupling coeffi-
cients are represented by κw;s. Note that, if the semi-infinite
array satisfies the conditions βf � β and γn � 0 for all n, then

the field amplitude associated with the topological edge state

can be expressed analytically as a2m−1 � �−r�m−1
ffiffiffiffiffiffiffiffiffiffiffi

1 − r2
p

and
a2m � 0, where r � κw∕κs and m � 1; 2; 3;…. Interestingly
these field amplitudes vanish at each second waveguide. As
we will see, this feature persists, even when the array is finite,
and will be very crucial for the proposed optical isolator
structure.

For illustration purposes, we consider the specific case of
seven waveguides, and we assume κw∕κs � 0.2. We also
assume that βf � β, γn∕κs � 0.3 for n � 2; 4; 6 and zero oth-
erwise. The losses can be introduced by depositing periodic
metallic stripes on top of the waveguides, and the average loss
can be tuned by engineering the duty cycle of these periodic
stripes. Absorption losses can also be introduced into silicon
waveguides by implantation doping [21]. A schematic of opti-
cal implementation of the photonic structure under investiga-
tion is shown in the top panel of Fig. 2. It consists of
evanescently coupled waveguide channels with an interleaving
channel-to-channel separation to produce the strong/weak cou-
pling profile. A magnetic garnet film is deposited only on the

first waveguide element. Under the application of a transverse
external static magnetic field, the TM optical mode of this
waveguide will experience different propagation constants in
the forward and backward propagation directions [22]. The
eigenvalue spectra of forward and backward propagating modes
in the absence of any optical absorption are depicted in the
lower panel.

Based on our discussion and, since the field amplitudes of
the topological edge mode have small values (almost zero) in
the even waveguide channels, these optical losses are not ex-
pected to have a significant impact on the forward propagating
light. Figure 3(a) confirms this prediction, where 92% of the
optical intensity launched in the leftmost waveguide can propa-
gate intact to the output with most of the missing 8% coupled
to the odd channels with minimum impact from the even
waveguide elements.

We now consider the backward propagation dynamics, and
we assume that the gyrotropic effects are engineered [22] such
that βb � β − κs. The eigenvalue spectrum is shown schemati-
cally in Fig. 2. Note that now the otherwise midgap state is
pushed into the discrete band. As a result, the corresponding

Fig. 2. Schematic of the photonic structure under investigation is
shown in the top panel. It consists of evanescently coupled waveguide
channels with interleaving coupling strength channel-to-channel
separation to produce the strong/weak coupling profile. A magnetic
garnet film is deposited only on the first waveguide element.
Under the application of an external static magnetic field, the optical
mode of this waveguide will experience a different propagation con-
stant in the forward and backward propagation directions. The losses
can be introduced by depositing periodic metallic stripes, and the aver-
age loss can be tuned by engineering the duty cycle of these periodic
stripes. The eigenvalue spectra of forward and backward propagating
modes in the absence of any optical absorption are depicted in the
lower panel. In the forward direction, the topological state (shown
in a blue dotted line) is localized, and its field amplitude vanishes every
second channel. In the backward propagation direction, time reversal
symmetry is broken due to the gyrotropy of the magnetic garnet film,
and the eigenvalue of the otherwise midgap state is now pushed toward
the lower band. As a result, the corresponding mode is delocalized and
suffers losses.
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state is no longer localized. Thus, any backward propagating
light into the leftmost waveguide interacts with the collective
delocalized optical modes of the array and suffers significant
optical losses. This is demonstrated in Fig. 3(b). Figure 3(c)
depicts the dynamics of the backward propagation only in
the left-most waveguide in logarithmic scale. Evidently, isola-
tion ratios better than −50 dB between forward and backward
propagating light can be achieved after a propagation distance
of 24∕κs. Interestingly, we also observe from Fig. 3(c) that the
isolation ratio (as a function of propagation distance) has a
sharp dip, after which it decreases again briefly before it starts
to rise again. This interesting behavior can be attributed to
interplay between interference effects and optical absorption.
More specifically, the intensity profile resulting from discrete
diffraction will maximize the concentration of the optical
intensity at the lossy waveguides at this specific length where
the dip is observed, leading to higher isolation ratios. In addi-
tion, interference effects due to the finite array size can also be
observed for long enough propagation distances.

To confirm our results obtained by using coupled mode
analysis, we employ beam propagation method (BPM) simu-
lation to examine a realistic structure made up of a seven-
waveguide array consisting of 300 nm thick 1 μm wide silicon
waveguide channels on insulator (SOI). Figure 4 depicts one of
these channels.

The leftmost waveguide contains a cerium-substituted
yttrium iron garnet (Ce:YIG) cover layer, which yields a non-
reciprocal phase shift Δβ�nr� � βb − βf � −35 cm−1 at a tele-
com wavelength of 1.55 μm [22]. This, however, will introduce

a phase mismatch between that first waveguide and the rest of
the channels, even in a forward propagation direction. To
maintain the phase-matching condition βf � β, one can either
optimize the dimensions of the other guiding channels or
deposit on each of them a nonmagnetic cover layer that is index
matched to Ce:YIG to equalize the forward propagation con-
stants. Note that there are a number of compounds with refrac-
tive indices close to Ce:YIG, such as titanium dioxide (rutile)
and tellurium dioxide. Moreover, the garnet index can also be
tuned by adjusting the Ce substitution level. In our simula-
tions, we assume that each of the nonmagnetic waveguides
is covered with one of these phase-matching layers.

To adjust the strong coupling between the waveguides to be
κs � −Δβ�nr� � 35 cm−1, their center-to-center separation is
chosen to be 1.97 μm. On the other hand, the weak coupling
κw∕κs � 0.2, can be satisfied with a center-to-center separation
of 2.42 μm.

Figures 5(a) and 5(b) depict the propagation dynamics in
both the forward and backward directions for such an array,
respectively. The simulations are performed by using semi-vec-
torial beam propagation simulation for an input TM mode at
1.55 μm. The absorption losses corresponding to γ2;4;6∕κs �
0.3 were introduced into waveguides 2, 4, and 6, by adding
a 3.5 × 10−4 imaginary component to the silicon channel refrac-
tive index. Clearly, the results obtained by analyzing this real-
istic structure using the BPM are in excellent agreement with
the conclusions of our coupled mode analysis. In particular, we
find that an isolation ratio (defined as the power ratio between
the return power into waveguide 1 and the forward transmis-
sion of the device) of −50 dB can be achieved for a device
length of z � 7.35 mm.

Note that, in general, the device length can be reduced by
further increasing the coupling strength between the waveguide
elements. However, this would require a stronger gyrotropy.
Thus, it is clear that the same configuration can be scaled de-
pending on the application. We note that our simulations in-
dicate that the isolation ratio drops to −15 dB if the backward
propagation constant deviates by 0.1κs from its ideal value for
the same device length. This drawback can be overcome either
by fabricating a longer device to allow for the signal to attenuate
further or by adjusting the applied magnetic field to tune the
backward propagation constant to its optimal value.

Finally, we compare the isolator structure proposed in this
Letter with that introduced in [23,24]. While the coherent

Fig. 3. Numerical simulations of the field amplitudes associated
with light propagation in a truncated magneto-optical SSH photonic
array similar to that described in Fig. 2 when (a) light is launched in
the leftmost waveguide in the forward direction and (b) same as in (a)
but for backward propagation where βb � β − κs . The total number of
waveguides in the array is seven. The backward transmission as a func-
tion of the array length is depicted in (c). Evidently, isolation ratios
better than −50 dB can be achieved after a propagation distance of
24∕κs .

Fig. 4. Waveguide structure of an individual channel of the array.
The leftmost waveguide has Ce:YIG as a cover layer. Its magnetization
vector is denoted by M. All other waveguide channels have the same
structure, except for an index matched nonmagnetic cover layer having
a similar refractive index to Ce:YIG.
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transport and surface Bloch oscillations in the magneto-optical
array presented in [23,24] allows for higher isolation ratios, the
design and fabrication of that array requires a careful tuning of
the coupling coefficients that vary from one adjacent waveguide
pair to another. In addition, the gyrotropy must be introduced
on all waveguides. In contrast, the isolator proposed in the
current work provides a smaller isolation, but offers a more
straightforward design and implementation. Even more impor-
tantly, the gyrotropy is introduced only on the first guiding
channels which can be achieved by integrating a small
micro-magnet on the same chip [25].

In conclusion, we have proposed a new type of optical iso-
lator based on breaking time reversal symmetry of topological
defect states in dissipative SSH photonic arrays. In particular,
we have shown that when light propagating in the forward di-
rection is launched into the leftmost waveguide, the intensity
transmission is about 92%. On the other hand, a judicious de-
sign of the nonreciprocal phase shift and the optical absorption
of the array can result in a high isolation ratio for backward
propagating light. These nonreciprocal effects can be intro-
duced by using magnetic garnet films on top of the leftmost
waveguide while the optical losses can be controlled by depos-
iting lossy metallic layers on top of the guiding channels. Our

numerical results based on the coupled mode theory and BPM
are in good agreement and predict that for realistic values of the
nonreciprocal phase shift of −35 cm−1, an isolation ratio of
−50 dB can be achieved when the device length is ∼7 mm.
Moreover, since the magneto-optical effects in our proposed
structure are introduced only on the leftmost waveguide, they
can be generated by using integrated micromagnets. It is note-
worthy that similar concepts to those proposed here can also be
applied to SSH photonic arrays made of optical resonators.
Finally, we note that the isolator proposed here functions only
for TM waves, whereas TE waves will experience identical for-
ward and backward propagation dynamics.
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Fig. 5. Field amplitudes of forward (a) and backward (b) propaga-
tion dynamics in a waveguide array similar to that depicted in Fig. 2
when the individual channels are made of waveguides similar to that
described in Fig. 4. The center-to-center separation between the wave-
guides is alternating between 1.97 and 2.42 μm to adjust the strong
and weak coefficients to κs � 35 cm−1 and κw∕κs � 0.2. The simu-
lations are performed by using a semi-vectorial BPM and indicate that
an isolation ratio of −50 dB is possible after a propagation distance of
7.35 mm. This in good agreement with the results obtained from the
coupled mode theory which predicts the same behavior after a propa-
gation distance of ∼6.8 mm. This small discrepancy is due to the fact
that the BPM accounts for more realistic effects that are not considered
in CMT.
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