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Optical magnetic near-field intensities around nanometer-scale surface structures
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Recently, local probes used in optical experiments added a new dimension to the study of the optical
properties of small particles lying on a surface. Until now, several theoretical frameworks, developed to
understand the interaction of optical fields with mesoscopic and nanoscopic objects, emphasized mainly the
prediction of theelectric near-field distributions generated by these structures. This paper demonstrates how
such subwavelength dielectric surface structures also produce a particular confinement of thenagtiegic
near field when the sample is illuminated by a surface wgs@163-18207)06824-Q

I. INTRODUCTION scanning tunneling microscod®STM) with a bright con-
trast when the surface wave wagolarized and with a dark

Current progress in nanofabrication techniques enablesontrast when it was polarized*® In this particular case,
one to build well-defined low-symmetry surface structureswhere the NFO image was recorded using a purely dielectric
Since the first development of the near-field optib§-O) detector, precise theoretical modelings established a direct
instrumentation, the imaging of such small material particleselation between the NFO image and the electric near-field
lying on a surface or occurring in the vicinity of nanometer-intensity map computed a few nanometers away from the
size structures became an active research ‘afedlence- sample'®t’
forth, the NFO local probe techniques offer a vast array of On the other hand, when the detector extremity is either
interesting opportunities, i.e., detecting evanescent fields inompletely or partially covered with a thin metallic coating,
guiding structures imaging and exciting localized plas- both theoretical modelings and experimental measurements
mons over a metallic surfa¢é, mapping the structure of the supply NFO images that do not follow the optical electric
optical electric field inside two-dimensional resonators tunedntensity anymore??*14The contrast appears to be signifi-
by adjustable mirror8,and performing subwavelength near- cantly modified by the presence of the metallic coating and
field optical holography® the information contained in the images must be reexamined

In the past three years, different self-consistent studieby considering other optical effects. These results raise once
indicated unambiguously that the individual structures lyingagain a fundamental problem in NFO, namely, the precise
on the surface distort the optical electric near-field intensityunderstanding of the tip-sample coupling in the near-field
established by the self-consistent interaction between the surone. Some time ago, Barchiesi and Van Labeke pointed out
face roughness and the incident light* It was demon- this serious problem using a reciprocal space perturbative
strated that when the lateral dimensions of tiny objects arenethod specially developed for NFO computatiéhb this
significantly smaller than the incident wavelength, the inter-paper, the possible role played by the optical magnetic field
ference pattern collapses and the optical electric near-fieldias brought to the fore. More recently, the consequences of
intensity distribution tends to be fairly well localized around metal coatings deposited on NFO probes was also discussed
the objects®>~17 Under well-defined conditions on the inci- by Courjonet al?
dent field(polarization, wavelengjha highly localized elec- In order to provide more insight into this complicated
tric near-field intensity occurs just above the subwavelengtiproblem and thereby to get a better control of the imaging
protrusions. In fact, when we deal with subwavelength obprocess in NFO, three important questions should be consid-
jects, the importance of retardation effects decreases dramagfed.(1) what kind of optical magnetic near-field maps can
cally, so that the symmetry of the field distribution is gov- we expect around dielectric surface structures of subwave-
erned only by the polarization of the incident field and thelength sizes?2) How can one explain these nanometer-scale
profile of the object itself. Recently this simple picture facili- optical magnetic near fieldg3) How is it possible to detect
tated the interpretation of this peculiar NFO phenomenonthem?
For example, a simple dielectric cube of cross section The main purpose of this paper is to address the two first
100X 100 nn? was imaged with the dielectric tip of a photon questions theoretically. By using the same three-dimensional
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test objects that were used in Refs. 16, 18, and 20 we will B. Integral equation for the optical electric field

compare the optical magnetic near-field intensities issued The vectorial wave equation for the electric field is
from two accurate Maxwell’s equation solvefa) the direct readily obtained by taking the curl of EqL). After some

: : 7,23
space integral equation mettiéd J(DSIEM) and (b) the  gyaightforward algebra, one gets the well-known result
differential theory of gratingsDTG).

This paper is organized as follows: In Sec. Il, we present ) 4w
a brief overview of thdield susceptibilityor Green’s dyadic AE(r,0) +koE(r,0) =47 Vp(r, o) —iko—~j(r, ),
technique, which allows us to obtain general solutions of
. O : 5
both electric and magnetic fields through two different vector _
Lippmann-Schwinger equations. In Sec. Ill, these integraivherek, = w/c represents the wave vector associated to the

equations will be solved by using the DSIEM already dis-frequencyao.

cussed in the NFO literaturé.In particular two generalized =~ We express now both charge and current densities in
field propagators, independent of the illumination mode, willterms of the local polarizatioR(r, ») of the material system:
be introduced and applied in Sec. IV to systems of experi-

mental interest. Finally, we shall conclude our study by com- p(r,0)=—V-P(r,0) (6)
paring the DSIEM numerical results with those issued fromgpg
the DTG Maxwell's equation solver.

j(r,w)=—iwP(r,w). )

Il. INTEGRAL EQUATION FORMALISM We now rewrite the nhonhomogeneous equatienas

In this section, we present a brief overview of the con- 9 2
cepts of both electric and magnetic field susceptibilities in AE(F@)+KoE(r, ) =—4a{V[V-P(r,0)]+kP(r,®)}.
the presence of a three-dimensiofD) system of arbitrary (8
shape and size. Starting from the microscopic Maxwell'sThis differential equation can be converted into its integral
equations expressed in terms of both charge and current deform by using the standard Green’s-function technique and
sities, we express the response of a localized physical systeme usual constitutive relation between the electric polariza-
submitted to an external electromagnetic excitation. tion inside the surface defect and the local electric field

E(r,w). This leads to
A. Basic equations

We begin now our detailed study of these optical fields by E(r,w)= Eo(r,w)+f Sy(r,r' o) x(r',w)E(r’,w)dr’,
considering a spatially localized dielectric system of arbi- v
trary shape characterized by its charge densftyt) and its ©)
current densityj(r,t).2%3%2In NFO experimental circum- where the integral runs over the volume occupied by the
stances, we can assume a monochromatic field with a timsurface defect. In Eq9) Eq(r,w) represents the solution of
dependence of the form'“. Anyway, because Maxwell's the homogeneous equatidior example, the incident optical
equations are linear equations, the response of a given systectric field andy(r’,) is the linear electric susceptibility
tem to an arbitrary wave packet can be obtained from thef the surface defect.
superposition of the responses of this system to the indi- Sy(r,r’,0) is the free-space dyadic propagattalso
vidual plane waves forming the original wave packet. Withcalled electric field susceptibilitywhich can be found to be
this assumption, Maxwell's equations read in cgs units

. So(r,r @)= (K3+VV)Go(r I, o), (10)
)
V/\E(r,w)z?B(r,w), 1 where the scalar Green’s functigh(r,r’,w) has the form
of a spherical wave:
V-B(r,0)=0, 2 eikolr—r'|
Go(r,1',0)= ——. 11
V-E(r,0)=47p(r,0), 3) ° [r=r']
) The integral equatiori9) is very general. Indeed, if we in-
VAB(r,w)=— l—wE(r,w)+4—7Tj(r,w). (4) troduce an addition_a_l pe.rturbation due to, f_or example,.the
c c presence of a semi-infinite surface supporting the localized

defect[characterized here by its optical responge,w)],
e only need to replace the free-space dy&lic,r’, o) by
e following one

It is well known that all far- and near-field optical phenom-
ena are contained in these four equations. Nevertheles
when dealing with the complex optical geometries currently
investigated in NFO, the solution of these universal equa- PN / ,

tions needs some specific care. Recently, we have demon- St @) =S(rrw) + K(rre), (12
strated how the numerical difficulties inherent to the lowwhere the additional contributidB(r,r’, ) accounts for the
symmetry of the subwavelength objects may be overcome bglynamical response of the plane surface.

solving directly the integral equation associated with these Before extending this procedure to the calculation of the
equations in direct spac¢é31121513n the following subsec- magnetic near field and discussing various efficient numeri-
tion, we give a short survey of this technique. cal procedures to solve the resulting integral equation, let us
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recall that such response functions reveal howdipolar  According to a standard procedure in mathematical text-
source field is modified at the proximity of the surface lim- books, we can solve this partial differential equation by add-
iting this system. This dyadic tensor has already been defineidg to the solution of the homogeneous equation
in the literature. For example, its retarded form is given in
the Appendix of Ref. 16.

ABqy(r,w)+kaBo(r,w)=0, (17

C. Integral equation for the optical magnetic field . . .
a particular solutionB,(r,w) of the complete equation.

Applying the same steps for the magnetic field equationThanks to the Green's-functions technique already used to
(4), we can write solve the electric field, one finds that this additional contri-
bution originates from the current density source term. After
some algebra, ones obtains

4
V/\[V/\B(r,w)]z—ikOV/\E(r,w)+T7TV/\j(r,w).

(13
Bm(r,w)z—ikoj' V. Go(r,r" ) \P(r’,w)dr’. (18
Using then some standard vector analysis procedure, we can ’

progress further,
We now have all the ingredients needed to write the general
solution

5 47 .
V[V-B(r,w)]—AB(r,w)=kgB(r,w) + ?V/\j(r,w),

(14) B(r,w)=BO(r,w)—ikoj V. Go(rut @) AP(r,w)dr’ .

v

which leads to (19

At this stage, in the same way as it was done with the electric
Aqr field, it is worthwhile to rewrite this equation in terms of the
AB(r,0) +k3B(r,0)= - TV/\J(f,w)- (159  field propagator. Moreover, by applying the usual linear re-

lation betweerelectric polarizationandelectric field we get

Let us note that, in the absence of any optical magnetic sushe following general result:

ceptibilities inside the perturbation, the source term occur-

ring in this last equation is just proportional to the electrical

polarizationP(r,w). Substituting Eq(7) into Eq.(15), leads

to
B(I’,w)ZBO(r,w)-I—fQo(r,r',w)X(r’,w)E(r',w)dl”,
(20)
AB(r,w)+Kk3B(r,w) =47k VAP(r, ). (16)  with
0 =V Go(r,r",0) V,Go(r,r',w)
Qo(r,r,,a)): Vzgo(r,l”,w) 0 ngo(r,r',w) . (21)
=VyGo(r,r',w)  V,Go(r,r", ) 0

This tensor can be elaborated further by using the free-space Green’s fupaftidgq. (11)]. In fact, after derivation,
Qu(r.r’,w) can be split into two contributions: a far-field te®@’(r,r’, ) and a near-field terr@{"**\r,r’, w).
The first contribution with a global spatial variation proportiona¥ td is given by

0 —ki(z—=2") Ki(y—y")
ekalr=r’| k3(z—2') oO —Ez(x—x’)
an”(r,r',w):mf o2 ) 0 _ (22)
—ka(y—y")  ko(x—x") 0

The near-field contribution varies with 2. It may be deduced from E¢21):
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— 0 —iko(z=2")  iko(y—y")
glkolr—r ) , ) ,
(nead . 1 0\ — ikg(z—2") 0 —ikg(x—x")
QO (rar ,(1)) |r_r/|3 r o . o (23)
iko(y=y")  iko(x=x") 0
|
The two different powersr ! and r~2 explain that As detailed in Ref. 15, the dyadik(r,r’,w), also called

Ql@(r,r’,w) is dominating in the far field. This first contri- generalized electric field propagatocan be expressed in
bution is thus related to the energy radiated far away fronterms of the optical field susceptibility tens8¢r,r’, ) as-
the sample, Whi|@gnear)(r'r’,w) is responsible for most of sociated with the entire systefiocalized surface defect plus
the confinement of the optical magnetic field around subsSurrounding:

wavelength dielectric structures. . , , ,

Before discussing some numerical strategies able to solve Krr' o)=&r=r)+Sr,r’,o)x(r',»). (26
simultaneously the two integral equatiof® and(20), itis  The dyadic tenso8(r,r’,w) in this equation can be derived
important to comment on these first analytical results. numerically by using the Dyson's equation

(i) First, it is obvious from Eqs(20) and(23) that even a
free magnetic susceptibility dielectric structure is able to .o , , , , ,
deeply modify the optical magnetic field distribution in the S(F:F" @) =S(r,r",w)+ US(” ;@) X(r', @)S(r,r',w)dr’.
near-field zone. (27)

(if) Second, the magnitude of this effect depends linearly i . ) . 1215
on the self-consistent optical electric-field distribution exist-AS already discussed in previous published W‘-'?'lkjé ’
ing inside the dielectric materigicf. Eq. (20)]. Conse- such developments performed in the real space instead of the
quently, from a computational point of view, very stable so-'€ciprocal  space, for both low-symmetry and low-
lutions for thevector fieldsB(r,w) can be deduced from the dimensional systems, are well suited to cope with complex

knowledge of thevector fieldsE(r, w) inside the surface de- geometries. Furthermore, the numerical procedure derived
fect. from this methodologysee Ref. 1bhas proven to be very

(iii) Third, in the near-field region the optical magnetic Stable even with large-scale computational systems. Back-
topography will be governed mainly by the symmetry prop_substltutlon of Eq.25) into Eq. (20) then yields a general
erties of the propagatd@{™™Xr,r',»). This dyadic tensor solution for the optical magnetic field. In a consistent way
with its simple analytical form, will then be a precious tool with the linear response hypothesis introduced above, this
to properly interpret numerical outputs. solution is linearly related to both incident electg(r,w)

(iv) Finally, we have to mention that in the same manne2Nd magnetic fieldSy(r, «):

as for the electric field equation it is a simple matter to en-

large the application range of E(RO) by introducing a ref- B(r,w)=Bo(f.w)+f f Q(r,r',w)x(r',w)

erence system different from vacuum. Indeed, if we want to v

introduce a somewhat more complicated surrounding located roen " '

in the vicinity of the surface defect under study, we just need KR I, @) Bo(r, w)drdr”, (28)

to replace the tensdy(r,r’, ) by At this stage it may be worthwhile to note that, in the same
manner as we have done with the optical electric field

Q(r,r',®)=Qq(r,r',®)+Qqr,r',w), (24) Eqg. (25)], we have also the opportunity to define from Eg.

(28) a mixed generalized propagatable to couple electric

where the additional contributio®(r,r’,w) accounts for and magnetic field distribution. Using E@}), we can write

the dynamical response of the dielectric surrounding. An ex-

ample is detailed in the Appendix. B(r,w)=f L(r 1", @)-Eo(r,w)dr’. (29)

ll. GENERALIZED PROPAGATOR AND REAL-SPACE The dyadic operatof(r.r',) is defined by
VOLUME DISCRETIZATION SCHEME T
o(r—r’)

A. Analytical solution procedure L0rr w)= ™
0

A
As demonstrated in Sec. Il, solving EQO) requires the
solution of Eq.(9) inside the surface defect. To realize this

first step, we can use the generalized field propagator tech- +f Q(r,r", ) x(r", ) K(r",r", w)dr”,
nigue described in Ref. 15. This method enables us to trans- Y
form the implicit Lippmann-Schwinger equatidf) into the (30

following explicit integral relation: where A, labels the matrix form of theurl operator. The

useful property ofC(r,r’,w) is that it only depends on the
E(r,w)= f K(rr' ) Eo(r',a)dr’ (25) geometry of the scattering system,; it does not depend on the
’ v o ' incident electric field.
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B(r,w)ZBo(r,w)JrE(w—)_lE > WQ(r,r, )
4 i=1j=1

XIC(ri,rj,w)EO(rj,w), (31)

where W, represents the volume of tli¢h discretized ele-
ment andm is the total number of volume element constitut-
ing the surface defect. The numerical precision of the data
supplied by this method is directly related to the density of

FIG. 1. Perspective drawing of a square-shaped SUlb\,\,a\,e|emggr,lpe dlscretlzat_lon grl_d. As recer_1tly established in Ref. 17 its
surface defect lying on a flat surface. Defect and support have theonvergence is particularly rapid for subwavelength surface
same optical indexr(=1.458). The system is illuminated in total Structures. We have now all the ingredients to investigate
internal reflection and the incident wavelength in vacuum is equafome specific systems of experimental interest.
to 633 nm. The object height ls=40 nm and the side of its square
sectiond; =100 nm;k|, represents the surface wave vector associ-
ated with the excitation field.

IV. OPTICAL MAGNETIC NEAR FIELDS AROUND
NANOMETER-SCALE STRUCTURES EXCITED
B. Numerical method BY SURFACE EVANESCENT WAVES

Although Eqg.(29) establishes a direct relation between The surface waves generated by total internal reflection at
B(r,w) and Ey(r,w), for computational purpose, we prefer the surface of a transparent material may be viewed as quasi-
starting with the less elaborate E&8). In scattering theory, two-dimensional, because they decay exponentially in the
the first termBg(r,w) is referred to as the incident field direction normal to the sample surface. These waves are ap-
while the second term is called the scattered field obtaineg@ropriate to analyze polarization effects associated with light
from the integration over the domain where (r’,») is  confinement phenomerid;® Indeed, the polarization state
nonzero. In the present study, defines the volume of the of such surface optical waves can be controlled and tuned
localized surface defect supported by a plane dielectrigvith high precision. The surface defects scatter these waves
sample(an example is depicted in Fig).1Electromagnetic parallel to the surface and significantly distort the initially
theory traditionally qualifiess as the source regiols.We  spatially homogeneous electromagnetic near field.
will discuss in this subsection how the discretization of Eq. In this section, applying the numerical scheme described
(28) allows one to obtain the numerical outputs for the mag-above, we will investigate this problem with two classes of
netic field outside the source region. For an isotropic andocalized surface defects lying on a flat transparent surface.
homogeneous surface defect of dielectric constefb), Our first example considers a 3D glass defect of parallelepi-

such a procedure leads to pedic shape lying on a perfectly flat surfaeé Fig. 1). The
1000 1000
800 E 1 800 E 2
T 600 T 600
£ E
> -
400 Al FIG. 2. Gray scale of both field intensities dis-
™ 200 tributions| E(X,Y,Zy)|? and|B(X,Y,Zg)|? calcu-
lated above the topographic object described in
0 3 Fig. 1. The intensity is computed in a plane par-
0 200 400 600 800 1000 0 200 400 600 800 1000 allel to the surface bearing the defect and located
X(nm) X(nm) at a heightZ,=50 nm. The scanned area is
1080x 1080 nnt and the incident wavelength
633 nm. The two maps, labele&{) and E2),
1000 1000 describe the optical electric intensities
B |[E(X,Y,Z,)|? computed respectively for the
300 1 300 and p polarized modes. The map81) and
(B2) represent the opticahagneticintensities
T 600 E 600 [B(X,Y,Z,)|? calculated respectively fos and
= = p polarized modes.
400 400
200 200
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000

X(nm) X(nm)
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optical indexes of both the protrusion and the supportingBorn approximation to Eq(20), the magnetic near field

surface are equal to that of glass={1.458), and all the spawned by the object reduces to

numerical applications have been made with an incident

angle 6. = 60°. B(r,)=By(r, )+ as(@) Q" (r—r,,w)En(ra,0),
Figure 2 presents four different near-field maps of the (32

object depicted in Fig. 1. The inte_nsities are computed in § here for thep-polarized mode we have

plane parallel to the surface bearing the surface defect and

located at a heightZ,=50 nm. The scanned area is Eox(r,)=0,

1080x 1080 nnt and the incident wavelength 633 nm. The

analysis of these results raises the following comments. Eoy(r,®)=AgTpd;, (33
(i) The two first maps, labeledE(l) and E2), describe

the opticalelectricintensities| E>(X,Y,Z,)| computed in the Eour, @) =AgT 55,

s andp polarized modes, respectively. As already predicted
from previous numerical simulations, whigepolarized sur- an
face waves lead to a strong confinement of the total electric
field intensity above the surface defedgolarization gives

rise to large electric field intensity gradients at the vicinity of

Box(r,w)=— AOTpSin( 0c),

the pads with the well-known dark contrast phenomena re- Boy(r,®)=0, (34
cently observed in near-field optical microscdfylhese ef- _
fects are consistent with previous calculations performed Bo.(r,)=0,
near 3D surface protrusioﬁ@:. with
(ii) The two last mapsB1) and B2) gathered in Fig. 2
represent the opticahagneticintensities|B(X,Y,Z)|? cal- Sin( Gjnc)
culated with the same polarization statesapd p). In this 5™ sin(6,) '’
case we observe a drastic change of the near-field image. The
most impressive effect is the occurrence of a bright contrast i[ SIM( Binc) — SIM( 6) 142
when working with ars-polarized wave and an obvious dark = Sin(0y) (35

contrast in thep-polarized case, always accompanied of two
enhancements of the magnetic field just above the two edgea Eqgs.(33) and(34), A, is a scalar parameter proportional
perpendicular to the direction propagatiddX axis). Aswas to exp{—ikHy—[sinz(einc) — sir?(6) 1Y%z}, whered, represents
done in the case of the electric figfi:®the phenomenon of  the critical angle for total reflection of the material, and the
contrast reversal observed in FigB2) can be simply ex- factorT, is the usual transmission coefficient fopolariza-
plained by examining the structure of the dominating shorttion. Finally from Egs.(23), (32), (33), and (34), we can
range termQ{"®*Xr,,r,) composing the free space mixed easily verify that when the observation poinpasses just
propagatoiQ, [cf. Eq. (23)]. For this purpose, let us replace above the surface protrusidne., whenr=(0,0,Zy)], Eq.
our isolated pad by a single system of polarizabilitf w) (32 produces a total magnetic field directed along @
located at the position, = (0,0,z,). Applying then the first  axis

AOTpkOaa(w) [Sinz( Oinc) — Sinz( 06)]1/2

B(r,w)=| —AgT,sin 6+ — 7> Sin(0) e

(36)

whereu, labels the unit vector associated with & axis.  of the total intensity for an incident angt,. = 60°.

The first term of this relation represents the value of the \ith this first simulation, we have proven that, first, the
magnetic excitation field associated with the surface wavegielectric structures on a surface can produce a specific con-
while the second one accounts for the presence of the surfagi@ement of the optical magnetic field and, second, that the
defect. When the incident angl,. is greater tharf., this  relation between the object profile and the resulting magnetic
additional contribution due the intrinsic form of the mixed map depends strongly on the illumination mode. Let us now
propagatorQ{™®® is always in the opposite direction with see what happens with the more elaborate localized surface
respect to the magnetic excitation fieB}. Consequently, structure described in Fig. 3. In this second application we
when the observation point is located on the top of the surhave considered seven identical square-shaped pads and the
face protrusion, we observe in this polarization mode a sigfour typical electric and magnetic intensity maps correspond-
nificant decrease of the total magnetic field intensity as preing to this object are gathered in Figs. 4 and 5. Note that the
dicted by the self-consistent calculation described in Fig. 2electric maps(Fig. 4) are just given here for comparison
Moreover, Eq.(36) indicates thaB(R,w) depends critically purposes, because they were already discussed in a work
on the angle of incidencé,,.. In the example reported in published previously® In this application where each dielec-
Fig. 2(B2), the magnetic intensity decreases by about 15%iric structure displays subwavelength lateral dimensions, the
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FIG. 3. Top view of a spatially localized dielectric system com- 1400
posed by seven identical square shaped protrusions lying on a per-
fectly plane surface. The center of each pad is located at the nodes 1200
of a hexagon with sidel,. The dimension of each individual pro-
trusion isd, andk| represents the projection of the incident wave 1000
vector on the surfaceXOY). For the applications of Figs. 4, 5, and _
6, the following input parameters are uset]=90 nm,d,=375 5 800
nm, and the pads’ height is 45 nm. =
600
magnetic intensity patterns display variations that are local-
ized around the tops of the protrusions and slightly modu- 400
lated by fringes due to a surface wave. Figure 6 shows two

scan lines of these two magnetic maps, calculated along a 200
line passing over the middle of three lined up pads. In the
p-polarized modddashed lingwe observed once again the

contrast reversal phenomena predicted by the analytical Eq.

0 200 400 600 800 1000 1200 1400

(36). X(nm)
V. COMPARISON WITH NUMERICAL RESULTS ISSUED FIG. 4. Gray scale field diStI’ilﬁ)UtiOl’iE(X,Y,ZO)|2 describing
FROM THE DTG METHOD the evolution of the optical electric field around the topographic

objects described in Fig. @ntensity growing from black to whije
In this section, in order to assess the reliability of ourThe same incident wavelengih=633 nm is considered for the two

numerical analysis, we report a careful comparison betweesuccessive images and the observation plane is located at 58 nm
magnetic field calculations performed with the DSIEM de-from the pads’ top. Two polarizations are considerdd)
scribed above and with those issued from the DTG Max-s-polarized mode antb) p-polarized mode.
well's equation solver. By starting from the test object de-
picted in Fig. 1, we will discuss and compare the numericakyis well-established technique, we will only summarize the
solutions for different polarizations of the incident wave andgggential steps of the computational procedure.

different scan lines directions. Basically, as exposed in previous sections, we are inter-

ested by the electromagnetic near-field diffracted above an
object engraved on a flat glass-air interface illuminated by

The complex problem related to the field distribution cal-total internal reflection. When using the DTG metiféd
culations near complex surface profiles or inside NFOnonperiodic isolated scattering object is viewed as an infinite
device$® can also be investigated with theories based ordiffracting grating built with a very large periodic spacing
diffraction gratings’*=2® The DTG method was originally between each surface structure. Consequently, the first step
developed twenty years ago to predict the efficiencies of ongn the calculation of the field diffracted by a nonperiodic
and two-dimensional diffracting gratings. Based on a rigor-sample is related to the choice of a period sufficiently large
ous treatment of Maxwell’s equations, this method can bdo prevent all overlapping effects between the near field
also efficiently used to determine the optical near-field scatspawned by each indivual pattern of the grating. The electro-
tered by three-dimensional periodic samples. In the follow-magnetic field diffracted above the grating can then be ex-
ing subsection, in order to avoid a complete presentation gbpanded in Fourier series

A. The differential theory of gratings
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FIG. 5. Same situation as in Fig. 4, but for the optical magnetic

field distribution|B(X,Y,Z)|2.

+ oo + oo

2 E A(r’s)eiy(r,s)zeik”(r,s)w,

=—o §=—

All,z)= (37)

r
wherel = (x,y), A(l,z) represents either the electric field
E(l,z) and the magnetic fiel&(l,z). The 3D wave vectors
k(r,s)=[ky(r,s),y(r,s)], associated with the harmonic
(r,s) obey the well-known dispersion equation

kf(r,s)+92(r,s)=n2%kq?. (39)

The set of wave vectok(r,s) parallel to the surface are
simply defined for each couple of integer numbarss) by

2

Uy + nkOersd )uy, (39
y

2
k|(r,s)=(nk0X+rd—

whered, andd, denote, respectively, the period of the grat-

ing along theOX andQY directions. From Eq(38), it may
be seen that the coefficient(r,s) may be either real or
purely imaginary. The real values of(r,s) correspond to

GIRARD, WEEBER, DEREUX, MARTIN, AND GOUDONNET

) M
175 /
s polarization

12.5

10

Magnetic Field Intensity (arb. units)

p polarization

75

RN

5 ~ \/

-0.2 0
Y (pm)

—_— —~—
\./
0.4

0.2 0.6

FIG. 6. Variation of the magnetic field intensitB(X = 750
nm, Y,Zy)|? along a scan line parallel to th®@Y axis over the
middle of three lined up dielectric pads. These cross sections, issued
from the maps of Fig. 5, have been calculated for the same ap-
proach distanc&,=58 nm. The solid and the dashed lines repre-
sent, respectivelys- and p-polarized modes.

radiative harmonics while imaginary values introduce eva-
nescent components in expansi@T).

In a general way, the six components of the electromag-
netic fieldA(l,z) can be deduced from a couple of indepen-
dent parameters usually naméte principal components
Let us choose, for example, theé components,(l,z) and
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e
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FIG. 7. Comparison of relative magnetic field intendi$/ B,?
scans obtained with the DSIENtontinuous ling and the DTG
(dashed ling in the s-polarized mode. The scans are performed
along the center of the square-shaped surface protrusion depicted in
Fig. 1:(a) The calculation is performed along tleX axis; (b) same
calculation along th®Y axis.
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FIG. 10. Gray scale optical magnetic images calculated above
the 3D object described in Fig. 9 from the DTG Maxwell's equation
solver. The scanned area is 1250250 nn?, the incident wave-
N\ length 633 nm, and the calculation is performed at 50 nm from the
A W flat sample. Two polarizations are consider@l:s-polarized mode
I Y and (b) p-polarized mode.
L, - _ _
y: e By(l,2) asprincipal componentdt is then a simple matter to
! - show that their Fourier coefficients can be expressed as a
i n linear combination of th& component of the incident field:
S E,(r,)=TE(r,5)Eqy+ T5(r,S)Byy, 0
L
x By(r,s)="TE(r,S)Eoy+ TH(r,5)Byy .
o X The transmission coefficien=, 75, 78, and 75 describe

the coupling between the electric and magnetic harmonics
composing the scattered and the incident field. These coeffi-
_FIG. 9. Top v_iew_of the 3D dielectric pattern used i_n the simu- ¢ients depend both on the geometry of the sample and on the
lation presented in Fig. 10. We have considered a |&tith a 40-  54jar conditions of incidence but not on the polarization of
nm thickness and an index of refragtmr* 1.458 identical to that the incident light. The polarization of the incident plane
of the substrate. The other geometrical parameters\aré0 nm, wave is controlled by the values ‘EOy and EOy- From a

L=200 nm, and., =350 nm'.The projection of the incident wave numerical point of view, the computation of the transmission
vector on the XOY) surface is represented Iy .
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coefficients begins with the inversion of a complex squareelectric field inside the object. It results that, in well-defined
matrix whose dimensions areNg X 2Ny [whereN; is the  conditions of illumination that have been quantitatively ana-
total number of harmonics used to describe the scattered fielgized in this paper, aanoscopidielectric structure without
in Eq. (37)]. A detailed description of the calculation of the any magnetic property perturbs strongly the incident optical
matrix elements can be found in Refs. 24—-26. If all the Fouimagnetic field.
rier components oE,(r,s) andBy(r,s) are known, then all Numerical simulations using two different computational
the components of the electromagnetic field can be calcumethods indicate that a surface wave incident on a nano-
lated at each point located above the object. In a second stegcopic surface defect is scattered differently according to the
the values of the field above the object can be used as initidhcident polarization. The map of the optical magnetic near-
conditions to integrate numerically Maxwell’s equations infield intensity computed at constant height close above the
order to obtain the field inside the diffracting object. The surface defect exhibit a bright contrast in theolarization
propagation of this field outside the object provides simulta-and a dark one in thp polarization. These contrasts appear
neously the numerical values of the electric and magnetito be reversed compared to the ones observed for the optical
optical field anywhere. electric near field®
These results not only illustrate the properties of electro-
magnetic near field, but also may help to interpret near-field
optical images that cannot be understood from the map of the
B. Comparison of the numerical solutions electric near-field intensity. By these, we mean particularly

The cross check of the results obtained with different ap—m Zr:g dNV\I/:itCr)m ﬁ}iﬁg{'?i?iisgxm;ii g:g]ulglilee;:gﬁ t?\:ao?)iss-

proaches is important because many fundamental_ r.‘ear‘f'e@i)le detection mechanism of optical magnetic near field
optical phenomena are extremely subtle and difficult toWith such a local probe

model. Therefore, in order to strengthen the reliability of our '

numerical analysis we propose in Figs. 7 aff@ & compari-

son of the relative total magnetic field intens|®|%/|B|?

obtained with the DSIEM(continuous ling and the DTG

(dashed ling The scans are performed along the center of ACKNOWLEDGMENTS

the structure sketched in Fig. 1, at a heiglgt=50 nm and The Laboratoire de Physique Malgaire is UMR CNRS
normalized to the valugBy|® of the magnetic field intensity 624. The Laboratoire de Physique is UPRESA CNRS

computed for a perfectly flat surfad@vithout protrusions Q5027 and benefited from the financial support of the Re-
We note the extremely good quantitative agreement betwee@on of Burgundy.

both methods. The small differences in the solution origi-
nates from residual collective effects generated by the infi-
nite array of localized surface defects investigated with the
DTG method.

For s polarization, the increase of intensity occurring
above the single pad is well restored by both methg.
7). For p polarization, the magnetic field depletion is also  This mixed surface propagator converts the retarded re-
well reproduced(Fig. 8). These last results emphasize thesponse electric field of a fluctuating dipole moment into a
ability of these two methods to accurately reproduce subtlgnagnetic response field. Consequently, it can be simply de-
phenomena associated with optical magnetic confined fieldsived by taking the curl of the electric surface propagator
To conclude this section, we have tested the numerical st&(r,r’,») available in the literature. In the case of a plane

bility of the DTG method on the very low symmetry object semi-infinite dielectric surface, such a calculation leads to
depicted in Fig. 9. For this last simulation, we have consid-

ered a letteE of 40 nm in thickness with an optical index of
refraction n=1.458, identical to that of the substrate. The i
other geometrical parameters aNe=50 nm, L,=200 nm, Qs(r.r’,w)=ZJ fdkf(r,r’,w)Q(k,w), (A1)
Ly=350 nm.
The optical magnetic field maps resulting from the inter-
action of this object with a polarized surface wave is reported
in Fig. 10. This figure emphasizes once again the influencehere 7(r,r’,w) is a spatial function that connects two
of the illumination conditions on the imaging properties of pointsr andr’ above the surface:
such subwavelength objects.

APPENDIX: RETARDED ELECTRIC-MAGNETIC
MIXED SUSCEPTIBILITY (EMMS) ASSOCIATED
WITH A BARE PLANE DIELECTRIC SURFACE

Frr',ow)=exdik-(I=1")+iwqy(z+2zp)], (A2)
VI. CONCLUSION

Using scattering theory, we have investigated the distri-
bution of the optical magnetic field around nanoscopic di-with r = (1,2), r’ = (I',2"), k = (ky,ky), andwj = k3—
electric objects. Inspection of the analytical expression of th&? [with Im(w,)=0]. The factorQ(k,») is a second rank
electromagnetic propagator shows that the magnetic fieltensor directly related to the optical response properties of
scattered by a dielectric object depends on the self-consistetite surface:
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—kykykg —kq —kyko
— @ Ao A S {AK-AKS A,
Ko kykyKg kyko
Ak, w)= F{Apki_Asks} ng {Ap+As} XO Ap (A3)
kyk —kk
yho . X 0AS 0
Wo Wo

In this equation, the two refection coefficientg and A are functions of the optical dielectric constagfw) of the surface

W= es(@)Wg
o7t ey -
and
W— W,
s W+ WO ] (AS)
with
w=] ecki—k?]2. (AB)

Note that the retarded character of the information is implicitly contained in the two fagtarsedw,, via the wave vector

ko- When such effects are assumed to play a minor role, i
vanishes, as expected.

.e., for example, in the electrostatic approximati@tktagn
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