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Abstract 

Imaging methods are proposed for the characterisation of liquid flows through transparent 

porous media of matched refractive index. The methods are based on the analysis of 

laser-illuminated slices, and specialized for the case in which the porous medium is composed 

of irregularly packed spheres. They include algorithms for the automated reconstruction of the 

three-dimensional spheres arrangement based on a laser scan of the packed bed, particle 

tracking velocimetry applied to the motions of micro-tracers in a laser-illuminated plane, and 

techniques for the co-registration of geometry and velocity measurements acquired from 

different slices. The methods are applied to a cylindrical flow cell filled with mono-sized 

spheres and operated at Reynolds number Re = 28. The data produced include the full 3D 

geometry of the packed spheres assembly, the 2D fluid velocity field in the axial centre-plane 

of the flow cell, and the corresponding porosity and velocity distributions.  
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1 Introduction 

Liquid flows through packed beds of spherical particles are of interest for applications such as 

chemical reactors and separation columns (Hlushkou and Tallarek 2006), and for their role as 

simplified analogues of flows in natural porous media (Bear 1988). Increasingly, theoretical 

and empirical efforts are focused on characterizing these flows on the scale of individual 

pores and the intricate networks that they form. There is therefore a need for measurement 

techniques that can extract detailed pore-scale geometry and velocimetry data from flow cell 

experiments. The two main families of techniques suitable for this purpose are tomographic 

and optical techniques. Tomographic techniques such as Magnetic Resonance Imaging (MRI) 

and Particle Emission Tomography (PET) rely on specialized apparatus often developed for 

medical applications to obtain volume images of complex media. An important advantage of 

these methods is that they do not require transparent materials. Measurements of structure and 

flow in opaque porous media have been obtained using MRI by Baldwin et al. (1996), 

Sederman et al. (1997; 1998) Ogawa et al. (2001) and Suekane et al. (2003), and using PET 

by Khalili et al. (1998). Disadvantages of these techniques include their limited spatial and 

temporal resolution (for a discussion of the state of the art, see Gladden et al. 2006), 

susceptibility to certain reconstruction artefacts (Kutsovsky et al. 1996; Chang and Watson 

1999), and high equipment costs.  

 

Optical techniques, on the other hand, rely on refractive-index-matched transparent materials 

(RIM) to gain optical access to the interior of mixed solid-liquid media. This access then 

allows application of standard flow measurement techniques such as Laser Doppler 

Anemometry (LDA) and Particle Imaging or Particle Tracking Velocimetry (PIV or PTV). In 

refractive index-matched porous media, point-wise LDA measurements have been obtained 

by Johnston et al. (1975) and Yarlagadda and Yoganathan (1989), two-dimensional 

displacements of advected micro-particles have been acquired by Stephenson and Stewart 
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(1986), Saleh et al. (1992), Northrup et al. (1993) and Peurrung et al. (1995), while 

three-dimensional trajectories have been tracked and analysed by Moroni and Cushman 

(2001). Illuminated slices of porous media, with or without the aid of dyed liquid, have also 

been used to estimate porosity in transverse cross sections (Stephenson and Stewart, 1986; 

Peurrung et al. 1995; Rashidi et al. 1996). In the present work, we use optical methods to 

obtain simultaneous reconstructions of velocities and three-dimensional pore geometry. Both 

geometry and velocity measurements are extracted from laser-illuminated slices through a 

liquid-saturated bed of mono-sized spheres. The three-dimensional geometry of the packing is 

deduced from laser-illuminated halos of the spheres imaged during a vertical scan of the bed. 

Liquid velocities, on the other hand, are obtained by tracking the motions of laser-illuminated 

micro-tracers in the axial centre-plane of the flow cell. The resulting two-dimensional velocity 

field is then put in precise spatial correspondence with the three-dimensional geometry data. 

 

The paper is structured as follows. In section 2, the experimental set-up and conditions are 

first described. Section 3 then presents the original method developed to reconstruct the 

three-dimensional arrangement of the spheres based on a laser scan of the porous bed. In 

section 4, the more conventional approach used to track micro-particles illuminated in a 

vertical slice of the flow is outlined. The special techniques used to co-register the geometry 

and velocity data in a common frame of reference are then detailed in section 5. The resulting 

joint measurements of pore geometry and flow velocity are presented in section 6, before 

closing with conclusions in section 7.  

 

2 Experimental set-up and conditions 

Experiments are conducted in a small darkroom at the Hydrotech Research Institute of 

National Taiwan University, using the apparatus illustrated in Figs 1 and 2. The flow cell 

consists of a cylindrical tube having an inner diameter of 5 cm and a height of 40 cm, fed with 
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liquid from a constant head tank. The tube is encased in an enclosure of square cross section, 

also filled with liquid, to alleviate light distortion through the curved tube surface. The inside 

of the tube is filled with a loosely-poured static packing of spheres, all having the same 

diameter D = 7 mm. To avoid trapping air bubbles, the spheres are pluviated into the 

liquid-filled column and form a random, irregular array constrained by the tube walls. To 

allow unhindered visual access and light passage through the saturated porous medium, the 

refractive index-matched materials proposed by Haam et al. (2000) are adopted. The 

transparent solid spheres are made of polymethyl methacrylate (PMMA), and the fluid used is 

the liquid para-cymene (benzene, 1-methyl-4-(1-methylethyl)-; Millenium Specialty 

Chemicals), which has density ρ = 860 kg m
−3

 and viscosity µ =1.02 × 10
−3

 Pa s. The solid 

and liquid materials share the same index of refraction, with the best transparency obtained at 

a temperature of around 15°C (Teng 2003). 

 

Digital footage of the flow cell is acquired using an AVT-Marlin F-145B2 charge-coupled 

device (CCD) camera, operated with a personal computer through the IEEE1394 port. The 

camera has a resolution of 1392 by 1040 pixels, yielding a pixel size of approx. 0.1 mm for 

the field of view chosen. It is operated at a frequency f = 10 frames per second. To allow both 

vertical and horizontal slices of the flow to be imaged under the same viewpoint, the camera 

is oriented at a downwards angle of 45 degrees (Figs 1 and 2). A liquid-filled triangular prism 

is placed between the camera and the flow cell, and optically coupled to the plane wall of the 

cell by a liquid layer enclosed by an O-ring. This arrangement allows the inside of the cell to 

be viewed through a plane window normal to the optical axis of the camera, minimizing 

optical distortion (Klar et al. 2004). 

 

To permit camera calibration, a frame with marked dots of known 3D positions is placed in 

the liquid-filled rectangular cavity. Once camera adjustments (orientation, zoom, focus and 
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aperture) have been frozen, an image of these dots is used to establish the correspondence 

between the (column, row) pixel coordinates (c,r) and the 3D positions (x,y,z) of points within 

the viewing volume (Fig. 3). This correspondence is modelled by the ray equation (see Tsorng 

et al. 2006) 
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where vector p denotes the 3D position of the projection centre of the perspective, parameter 

λ  codes the position of a 3D point along a ray through p having direction q, and where 

screen matrix S relates this ray direction to the pixel coordinates (c,r) of the point of interest 

on the image. This relation can be inverted to yield 
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where 1−= SA  and pSb
1−−= . The coefficients of matrix A and vector b (as well as 

parameter λ ) intervene linearly in Eq. (2). They can thus be retrieved using least squares 

from a set of corresponding points of known image and 3D coordinates, as explained in 

Spinewine et al. (2003). In the present work, 11 calibration marks are used for this purpose. 

Once the viewpoint has been calibrated, translation from spatial to image coordinates involves 

two steps: obtain first the left-hand-side vector in Eq. (2), then divide its first and second 

components by the third.  

 

After the cell and camera have been set up, a laser light sheet is used to illuminate plane slices 

through the flow cell. The laser used is an Argon Ion laser producing continuous illumination 

at a power of approximately 250 mW. An optical fibre conveys the laser beam to a headpiece 

where a cylindrical lens spreads the beam into a light sheet having a thickness of 
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approximately 0.5 mm. In order to acquire both geometric and velocimetric data, the light 

sheet is used in two different ways (Fig. 3). To construct a volumetric image of the packed 

bed of spheres, the headpiece is first mounted on a screw-driven railed carriage. The laser 

sheet translates vertically at constant speed, illuminating as it travels successive transverse 

cross sections of the porous column (Fig. 3a). To obtain velocimetric data, on the other hand, 

the laser sheet is mounted on a static tripod and used to illuminate the axial centre-plane of 

the flow cell (Fig. 3b). Fluid motions are made visible by seeding the liquid with tracer 

micro-particles (Polyamide Seeding Particles; Dantec Dynamics; diameter 50 µm, density 

1.03 kg m
−3

). These micro-particles are introduced in the constant head tank, where mixing is 

enhanced by an agitator.  

 

For the velocity measurements, steady downwards flow is induced under constant head 

conditions, and the flow rate is measured by collecting the discharge at the outlet. For the 

experiments reported below, the flow rate through the column was =Q 4.60 ml s
−1

, 

corresponding to a Reynolds number Re = 28, with the Reynolds number defined by 

 
εµ

ρ
A

DQ
=Re , (3) 

where D is the diameter of the spheres, A is the cross-sectional area of the flow cell, and =ε  

0.48 is the porosity of the granular assembly. This places the flow in the viscous-inertial 

regime (see Hlushkou and Tallarek 2006), a steady laminar flow regime intermediate between 

creeping flow (for which fluid inertia can be neglected) and turbulent flow (for which the 

fluid motions become unsteady at the pore scale). 

 

3 Three-dimensional geometry scan 

As the laser light sheet traverses the liquid-saturated bed of spheres, light diffraction occurs at 

the intersections between the laser plane and the surfaces of the spheres. Bright circular halos 
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are therefore generated in the laser plane, with halos taking variable diameters depending on 

the relative position of the spheres. Such halos were recently used by Hsu and Capart (2007) 

to track the motions of immersed spheres. In the present work, the halos are observed under 

an oblique angle and adopt elliptical shapes on the raw digital footage (Fig. 4a). We exploit 

these halos as follows to reconstruct the three-dimensional arrangement of the irregularly 

packed spheres. For the geometry measurements, the laser light sheet is given a horizontal 

orientation and scanned vertically at the constant speed W = 2.5 mm s
−1

. Each frame k of the 

corresponding image sequence is then associated with the horizontal plane 

 khzzz k +== 0 , (4) 

where == fWh /  0.25 mm is the displacement between successive slices. Defining 

 ihxxi += 0 ,     jhyy j += 0 , (5,6) 

a volumetric image ),,( kjiJ  composed of cubic voxels of side h is constructed by stacking 

together transformed images ),( jiJ k  obtained by rectifying the raw frames ),( rcI k . The 

position of each point ),( ji yx  of the slice is first converted to image coordinates ),( ijij rc  

using Eq. (2): 
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The transformed image ),( jiJ k  is then obtained by sampling the original image ),( rcI k  at 

sites ),( ijij rc  by bilinear interpolation. In practice, this procedure must be modified slightly 

to alleviate optical distortion and retrieve an upright flow cell. This is done by adding a 

quadratic correction term to Eq. (5): 

 γβα ++++= kki zzihxx 2
0 . (8) 

The resulting volumetric image ),,( kjiJ  is composed of a stack of ortho-rectified slices in 

which the laser-illuminated elliptical halos of the spheres are deformed back to their circular 
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shapes (Fig. 4b). Upon stacking these pixel rings on top of one another, each sphere is imaged 

as a spherical shell of bright voxels, where all shells have the same diameter D. 

 

The procedure used to identify spheres in the three-dimensional voxel image can be more 

easily explained by considering first the analogue two-dimensional case illustrated in Fig. 5, 

in which spheres of uniform size are modelled by circles of constant diameter. Assume then a 

2D image ),( jiJ  defined on grid ),( ji yx  and featuring irregularly positioned circles of 

diameter D imaged as rings of bright pixels (Fig. 5a). To identify these circles, a discrete filter 

approximating a ring of diameter D is scanned over the whole image, yielding convolution 

peaks where the centre of the filter coincides with the centre of a circle. To construct the filter, 

we represent a circle of diameter D centred at (0,0) as the zero level set of function 

 222 )2/(),( Dyxyx −+=φ , (9) 

and sample this function on grid ),( nm yx  to obtain the array ),(, nmnm yxφφ = . We then use 

the discrete delta function approach of Smereka (2006) to construct the discrete filter 

 ),(),(),(),(),( )()()()( nmnmnmnmnmF yyxx −+−+ +++= δδδδ , (10) 

where  
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and likewise for the other components. In the above expressions, 

 εφφφφφε +−+−=∇ −+−+
2

1,1,
2

,1,1, )()(
1

|| nmnmnmnmnm
h

, (13) 

where ε  is a small number introduced to avoid division by zero. The resulting filter ),( nmF , 

illustrated in Fig. 5b, models a ring of pixels of well-balanced illumination. We now 

convolute the image ),( jiJ  with filter ),( nmF  to obtain a transformed image 
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 ∑∑ −−=
m n

nmFnjmiJjiK ),(),(),( . (14) 

The convolution response is the strongest at the centres of the circles, where localized 

illumination peaks are obtained in the transformed image (Fig. 5c). The peak locations can 

finally be retrieved to sub-pixel accuracy using standard methods (see e.g. Capart et al. 2002), 

yielding the desired set of centres and circles (Fig. 5d). Although the notations become more 

complicated, the above method is straightforward to generalize to three dimensions. As 

illustrated in Fig. 6a, the objective is to identify shells of bright pixels in the laser-scanned 

volumetric image of the porous column ),,( kjiJ . Convolution with a three-dimensional 

version of the discrete filter of Eq. (10) yields the transformed volumetric image illustrated in 

Fig. 6b, where illumination peaks indicate sphere centres. To obtain this stack of 300 

convoluted slices shown, 336 rectified video frames were used. As in the two-dimensional 

case, the locations of the peaks can then be identified and refined to sub-pixel accuracy. The 

spheres of positions ),,( ZYX  extracted in this fashion from the three-dimensional laser scan 

are illustrated in Fig. 6c. The method above is specialized for the identification of mono-sized 

spheres in volumetric images of their laser-illuminated shells. A more general method 

applicable to spheres of arbitrary size is the Hough transform approach described in Cao et al. 

(2006).  

 

4 Micro-particle velocities 

Upon seeding the liquid with micro-particles, the flow is imaged in the laser-illuminated 

vertical centre-plane. Various methods are available to extract velocity measurements from 

images of moving micro-particles. For refractive-index-matched flows, both particle tracking 

velocimetry (PTV; e.g. Moroni and Cushman 2001) and particle image velocimetry (PIV; e.g. 

Zachos et al. 1996) have been used by previous researchers. Unfortunately, these automated 

techniques are subject to requirements which are not met by our footage. Unsupervised PTV 
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relies on minimum displacement, path regularity, or pattern coherence to establish particle 

correspondences between frames (see e.g. Capart et al. 2002). The interrogation windows 

used by PIV methods, on the other hand, must include a sufficient number of particle images, 

which cannot undergo excessive shear (Huang et al. 1993). Complicating features in the 

present experiments include irregular pore space, steep gradients and changes of directions, 

and particles moving in and out of the laser light sheet. Furthermore, the temporal and spatial 

resolution of our camera did not permit us to compensate for these difficulties by reducing 

inter-frame displacements or increasing the seeding density. A supervised, semi-manual 

particle tracking procedure was therefore adopted.  

 

To facilitate visual inspection, colorized images are assembled in the following way (see Fig. 

7a). After subtraction of the averaged background, multiple exposures are assembled from 

four successive frames using a blue-red-green-blue coding scheme. Let ),( nmR , ),( nmG  

and ),( nmB  denote the RGB layers of the colorized image. To retrieve displacements from 

frame k to frame k+1, these layers are set to 

 ),(),( nmInmR k= ,  ),(),( 1 nmInmG k+= , (15,16) 

 )),(),,(max(),( 21 nmInmInmB kk +−= , (17) 

where ),( nmI k  is the k-th frame of the monochrome video sequence. Red and green 

particles can be identified at (column,row) pixel coordinates ),( )()( k
i

k
i rc  and ),( )1()1( ++ k

j
k

j rc , 

respectively. Particle tracking then amounts to establishing the matching j(i) between red and 

green particles most likely to correspond to one and the same physical particle. This is done 

using manual mouse clicks, aided by the visual clues provided by the blue-red-green-blue 

alignments, sizes and illumination intensities of the micro-particles. Pairings are recorded 

only when they can be ascertained with a sufficient degree of confidence. Illustrated in Fig. 7b, 

the procedure was checked to yield consistent results when performed by different operators. 
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To capture particles that are moving more slowly, the procedure is repeated using frames 

}4,2,,2{ ++− kkkk  instead of }2,1,,1{ ++− kkkk . Overall, 40 colorized multiple 

exposures were used to obtain a total of 3757 individual velocity vectors. Manual 

mouse-clicks are also used to retrieve points along the elliptical intersections between the 

laser plane and the sphere boundaries. The pixel coordinates (c, r) of micro-particle positions 

and contour points are then transformed to spatial (y, z) coordinates by seeking intersections 

of rays qpx λλ +=)( with vertical centre-plane x = 0. Parameter λ  is first determined from 

linear equation 

 0)( 1312111 =+++= SrScSpx λ , (18) 

where αp  and αβS  are the components of vector p and matrix S in Eq. (1). The remaining 

two lines of this linear system are then used to retrieve coordinates y and z of point 

),,( zyx=x . After transformation, circles are fitted by least squares to the contour points. 

Velocity vectors in the plane are estimated from 
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where ft /1=∆ , and where v, w are the velocity components in the y, z directions. These 

vectors are assigned to the midpoint positions 
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Results from this procedure are shown in Fig. 7c. Under the assumption of steady flow, raw 

velocity vectors obtained at different times 2/1+kt  can finally be pooled together into a single 

two-dimensional velocity field (v, w). Prior to statistical analysis, raw velocity vectors are 

binned into small square cells of dimensions =∆=∆ zy 1 mm, averaging together vectors 

falling within the same cell. Velocity profiles and distributions are then constructed from the 

resulting cell averages (see section 6). This is needed to counter the possible sampling bias 

associated with the semi-manual tracking procedure, which could select higher numbers of 

vectors in certain zones. It is also possible to gauge errors on individual velocity vectors by 
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looking at differences v∆ , w∆  between the raw velocity vectors and those interpolated 

from the binning grid at raw vector positions. The resulting error estimates are 

 =
∆−∆

=
2

)()( 2575 vv
vε 0.6 mm/s,   =

∆−∆
=

2

)()( 2575 ww
wε 1.0 mm/s, (23, 24) 

where indices 25 and 75 denote the first and third quartile of the corresponding distributions. 

Compared to the velocity range of approx. 2 cm/s, this amounts to relative errors of 3 to 5 %. 

As a second check on the accuracy of the velocity measurements, the overall mean axial 

velocity (averaged over the binning grid) || w = 0.491 cm/s can be used to estimate the liquid 

discharge through the cell. The resulting estimate AwQ ε||= = 4.63 ml/s is within 1 % of the 

value Q = 4.60 ml/s measured at the outlet of the flow cell. 

 

5 Co-registration of velocity and geometry data 

Because of imperfect light sheet alignment and perspective distortion due to refractive effects, 

the velocimetry plane is not yet in precise spatial correspondence with the geometry scan. A 

correction procedure is therefore needed to adjust the two sets of spatial data with each other. 

This spatial co-registration problem is commonly encountered in medical imaging 

applications when seeking to fuse measurements from different sensors. In the present work, 

the following two-step procedure is adopted: first, a 3D translation and rotation adjustment of 

the velocimetry plane is made to bring its circular halos in closer correspondence with the 

scanned sphere array; secondly, in-plane deformations are applied to make halo centres 

coincide. The first step is performed using a variant of the Iterative Closest Point (ICP) 

procedure widely used in machine vision (Besl and McKay 1992). On the one hand, let 

),( ii zy  and id  denote the centre positions and diameters of the circular halos identified in 

the velocimetry plane x = 0. The apparent diameter provides a measure of the sphere offset 

relative to the plane, but it is unclear whether this offset is positive or negative. The 

corresponding sphere positions relative to the plane are thus known except for the ambiguity 
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of their relative placement to the front or back of the plane (see Fig. 8a). Possible sphere 

positions are given by 

 ),,( 22

2
1)(

iiii zydD −−=−x   or  ),,( 22

2
1)(

iiii zydD −+=+x , (25) 

where the true relative sphere position belongs to either one of the two sets. On the other hand, 

let ),,( jjjj ZYX=X  denote the full set of sphere positions extracted from the geometry 

scan. A pairing j(i) between the two sets of spheres can be established by finding which of the 

candidate sphere positions )(−
ix  and )(+

ix  lie closest to which sphere positions jX . The 

pairing is given by 

 )}||||||,||{min(argmin)( )()( +− −−= ijij
j

ij xXxX  (26) 

where })(argmin{ jg  returns the argument j which minimizes function g(j). The most likely 

sphere position ix  relative to the plane is further given by  
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Once this correspondence between spheres ix  and )(ijX  of the two sets is established, the 

quaternion-based algorithm of Horn (1987) is used to determine the translation vector t and 

rotation matrix R that will bring transformed positions ix′  closest (in the least squares sense) 

to positions )(ijX , where 
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The matching operation of Eq. (26) can then be performed again on the basis of the 

transformed positions ix′ , and the procedure iterated until convergence, following the 

Iterative Closest Point algorithm (ICP) of Besl and McKay (1992). In the present case, the 

initial mismatch (Fig. 8b) is relatively small, and 2 to 3 iterations are sufficient. The halo 

correspondences after optimal translation and rotation are illustrated in Figs 8c and 8d, 
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respectively. Substantial improvement is obtained compared to the non-adjusted halos (Fig. 

8b), but the fit is not yet perfect. A second adjustment step is therefore needed, for which 

in-plane deformations are applied to the velocimetry plane data. After optimal translation and 

rotation, the 3D position of a point having original position ),,0( zy=x  in the velocimetry 

plane becomes 

 )3()2(
RRtx zy ++=′  (29) 

where )2(
R  and )3(

R  have unit lengths and represent the mutually orthogonal second and 

third column vectors of rotation matrix R. To perform the in-plane deformation, it is 

convenient to project the scanned 3D positions of the spheres onto the same plane to obtain 

 )3()2( RRtX jjj ζη ++=′ , (30) 

where the projected coordinates of the centres of the spheres ),( jj ζη  are given by  

 )2()( RtX ⋅−= jjη ,  )3()( RtX ⋅−= jjζ . (31) 

A deformation field )),(),,(( zyzy τσ  can then be defined which brings the circle centres and 

projected sphere centres in perfect spatial correspondence with each other, i.e. 

 iijii yzy −= )(),( ησ    and   iijii zzy −= )(),( ζτ . (32,33) 

This deformation field can be extended to the whole plane by Delaunay interpolation, after 

mirror reflection about the left and right tube boundaries to deal with near-wall zones. One 

can therefore obtain translated, rotated, and deformed coordinates of any point in the 

velocimetry plane using 

 )3()2( )),(()),(( RRtx zyzzyy τσ ++++=′′ . (34) 

In particular, the transformation can be applied to the successive positions of the 

laser-illuminated micro-tracers, yielding a transformed velocity field that is precisely 

co-registered with the 3D sphere positions of the geometry scan.  
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6 Results and discussion 

Figures 9 to 12 present the measurement results. Results for the packing geometry of the 

spheres are first shown in Fig. 9. Panel 9b shows the porosity distribution obtained by 

averaging a sequence of horizontal cross-sections through the reconstructed sphere 

arrangement of Fig. 6c. For qualitative comparison, an oblique long exposure view 

constructed from 50 frames of the geometry scan is shown in Fig. 9a. The porosity 

distribution exhibits a clear annular structure, with spheres located preferentially within 

concentric rings. Rings are most distinct near the outer perimeter, and gradually lose their 

coherence towards the central axis of the tube. To a lesser degree, some granularity can also 

be observed within each ring, reflecting the internal organization of the spheres within each 

annulus.  

 

Figure 10 shows the co-registered fluid velocities and packing geometry in the axial plane, 

along with a long exposure view constructed from the video footage. Panels 10a and 10c 

show this laser-illuminated long exposure, constructed by registering at each pixel the 

maximum illumination experienced during a sequence of frames. In panels 10b and 10d, the 

circular contours represent the intersections between the velocimetry plane and the 

three-dimensional packing of spheres reconstructed from the geometry scan. The vectors, on 

the other hand, represent the velocity field deduced from micro-particle displacements, after 

adjustment to the geometry data using the co-registration procedure of the previous section. 

Panels 10a and 10b present an overview of the flow cell axial plane, while panels 10c and 10d  

zoom in on a local window. In Fig. 10, the irregular positions and diameters of the sphere 

halos reflect the constrained random arrangement of the spheres within the flow cell. During 

the reconstruction procedure, spheres were not constrained to avoid inter-penetrating each 

other. As seen in Fig. 10, the results nevertheless satisfy this rigidity constraint (spheres 

overlap at certain points of contact by at most 0.7 mm), providing some confidence in the 
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reliability of the method.  

 

The local pattern adopted by the porous flow through the irregular pore space is shown in 

close-up in Fig. 10d. The complicated flow pattern features a set of stagnation points along 

the upper portions of the spheres (facing the mean downwards current), where the flow 

bifurcates left and right into different threads. In the wakes of the spheres, localized zones of 

separation are observed, with certain recognizable whirls of vorticity. At this Reynolds 

number Re = 28, the flow pattern around individual spheres is not symmetric in the 

upstream-downstream direction, reflecting the influence of liquid inertia. Nevertheless, 

vectors acquired at different times during the video sequence align into coherent streamlines, 

illustrating the steady nature of the flow. The close-up also exhibits a good correspondence 

between the flow pattern and the sphere boundaries, indicating that the spatial co-registration 

procedure was successful. The data produced can thus be exploited to validate direct 

numerical simulations of the porous flow, with the full 3D geometry of the packed bed 

provided as input.  

 

Transverse profiles across the flow cell are plotted in Fig. 11. Figure 11a shows the radial 

profile of porosity obtained by averaging the porosity map of Fig. 9b along concentric annuli. 

As observed previously by Mueller (1997) and Spinewine et al. (2003), spheres tend to 

organize into layers in the vicinity of solid boundaries, leading to a set of regularly spaced 

porosity troughs (solid fraction peaks), with the spacing corresponding approximately to the 

particle diameter D = 0.7 cm. The peaks and troughs are sharpest next to the tube wall, and 

become gradually less sharp as one moves inward. Figure 11b shows the corresponding 

transverse profile of axial velocity, averaged over vertical slices of the plane velocity field. 

Like the porosity profile, the velocity profile exhibits a series of peaks and troughs. These 

peaks and troughs are not perfectly aligned with those of the porosity profile, partly because 
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the velocity is averaged from a single axial plane, whereas the porosity is averaged from fully 

three-dimensional data. Nevertheless, the velocity and porosity profiles are roughly in phase 

with each other indicating that, on average, the liquid tends to flow faster where the porosity 

is higher. Similar relationships between porosity and axial velocity have been observed 

previously in both computations (Magnico 2003) and experiments (Ren et al. 2005). 

 

Statistical distributions of the transverse and axial velocity components are presented in Fig. 

12. They were obtained by distributing the gridded velocity measurements into 

non-overlapping bins of width 1 mm/s, and counting the resulting frequencies. The 

corresponding histograms are presented in physical units in panels 12a and 12b. To facilitate 

comparison with results by other researchers, distributions are plotted in normalized forms in 

panels 12c and 12d. Figure 12c normalizes the distribution of transverse velocity by its 

standard deviation. For this component of the velocity field, the distribution is highly 

symmetric around a mean close to zero, and is reasonably well approximated by a Gaussian 

normal distribution. As in the measurements by Moroni and Cushman (2001, not shown) the 

Gaussian profile nevertheless slightly underestimates the central peak of the transverse 

velocity data. Figure 12d shows the distribution of axial velocity normalized by its mean 

value. In this normalized form, our measurements for Reynolds number Re = 28 (black dots) 

can be compared with the data of Moroni and Cushman (2001) obtained at lower Reynolds 

numbers in the range Re = 0.05 to 0.13 (open symbols). In this relatively narrow Reynolds 

number range, Moroni and Cushman noted a high degree of similarity between normalized 

axial velocity distributions. We find in the present study that this similarity is preserved up to 

the higher Reynolds number Re = 28. Although this Reynolds number already lies in the 

viscous-inertial regime, our velocity distribution closely matches the distributions obtained by 

Moroni and Cushman (2001) for creeping flow.  
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Axial velocity distributions in porous media flow have been obtained in various earlier studies, 

from both Nuclear Magnetic Resonance (NMR) experiments (e.g. Kutsovsky et al. 1996; 

Lebon et al. 1996) and hydrodynamic computations (e.g. Maier et al. 1998; Magnico 2003). 

The shapes of the corresponding curves differ from the shapes obtained by particle tracking 

velocimetry (PTV) in our work and that of Moroni and Cushman (2001). In particular, they 

tend to feature sharp peaks at velocities near zero, whereas the PTV results (see Fig. 12d) 

exhibit smoother peaks located to the right of the origin. This may be because PTV results do 

not sample liquid velocities in certain low velocity regions like the immediate neighbourhood 

of the sphere surfaces. Moroni and Cushman filter out the tracer bubbles which have 

deposited on the sphere surfaces, and we likewise filter out micro-particles close to the sphere 

halos or sedimented on the sphere surfaces by subtracting background images prior to particle 

tracking. Moreover, low velocity dead zones of the flow may fail to be reached by tracer 

particles injected into the cell (see Fig. 10). As a result, velocities near zero may be 

under-sampled in comparison with NMR and computational data. Alternatively, velocities 

near zero may be over-sampled by NMR, due to partial volume effects associated with voxels 

that are only partly occupied by liquid along solid particle boundaries (Tang et al. 1993; 

Elkins and Alley 2007).  

 

7 Conclusions 

In this paper, methods for the analysis of pore-scale flows in packed beds of spheres were 

presented, relying on the imaging of laser-illuminated slices through a 

refractive-index-matched flow cell. The methods include automated techniques for the 

reconstruction of the three-dimensional sphere arrangement, and methods to bring plane 

velocimetry data in precise spatial correspondence with the arrayed spheres. Applied to a 

cylindrical cell filled with loose-poured spheres and subject to a downwards liquid flow, the 

methods were used to obtain a variety of data. A map of the average porosity distribution over 
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the tube cross section was derived from the geometrical scan, and used to highlight the 

annular structure of the bed of packed spheres. Comparison of transverse porosity and axial 

velocity profiles show that the fluid tends to flow faster in the high porosity bands located 

between rings of spheres. In the axial centre plane, a detailed view of the liquid flow field and 

its relationship with the boundaries of the spherical particles was obtained. Some 

upstream-downstream asymmetry of the flow around individual spheres was interpreted to 

reflect the influence of fluid inertia. Nevertheless, comparison of velocity distribution results 

with the data of Moroni and Cushman (2001) obtained at lower Reynolds numbers suggests 

that normalized distributions remain highly similar in shape at least up to the Reynolds 

number Re = 28 attained in the present experiments. Distribution shapes obtained by particle 

tracking velocimetry, however, differ from those obtained in nuclear magnetic resonance 

experiments and hydrodynamic calculations. Because the data produced in the present 

experiments include the full 3D geometry of the porous medium as well as co-registered 2D 

velocities, they are suitable for comparison with direct numerical simulations of the flow, and 

for statistical analysis of structure-flow correlations. Since they may help resolve 

discrepancies between approaches, and shed further light on the dynamics of liquid flow of 

porous media, these two avenues are considered for further work.  
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Figure legends 

Fig. 1. Schematic of the experimental set-up: a overview of the flow cell; b close-up of the 

measurement volume 

Fig. 2. Photograph of the experimental set-up, showing the laser light sheet lens fed by an 

optical fibre link, to the left, and the CCD camera in the foreground of the flow cell 

Fig. 3. Illumination and imaging configuration: a horizontal laser light sheet scanned at 

constant vertical speed used for the three-dimensional geometry measurements; b fixed 

vertical light sheet used for velocimetry measurements. The resulting laser-illuminated 

slices are viewed by the camera under the same oblique viewpoint 

Fig. 4. Geometrical scan: a raw image sequence as acquired during the scan; b volumetric 

voxel image constructed by rectifying and stacking the raw image frames 

Fig. 5. Sphere capture method illustrated on a two-dimensional analogue: a synthetic image 

composed of a set of circular halos; b pixel mask representing a discrete ring; c 

transformed image obtained by convoluting image a with mask b; d captured circles 

obtained by locating the intensity peaks of transformed image c 

Fig. 6. Sphere capture method applied to the volumetric image obtained by laser scan: a 

cut-away through the voxel image; b cut-away through the transformed voxel image 

generated by convoluting volumetric image a with a voxel mask representing a discrete 

spherical shell; c spatial arrangement of the spheres obtained by locating the intensity 

peaks of transformed voxel image b 

Fig. 7. Particle tracking velocimetry applied to laser-illuminated centre-plane: a close-up of 

background-subtracted colorized multiple exposure (with distinct gray levels representing 

blue-red-green-blue particle tracks); b close-up of micro-particle positions retrieved from 

four successive frames (each circle-square-triangle-diamond sequence represents a 

blue-red-green-blue track), with red-green particles paired manually using mouse clicks; c 

close-up of velocity vectors and sphere halos transformed back to spatial coordinates 
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Fig. 8. Procedure used to refine the spatial correspondence between the velocimetry and 

geometry data: a possible sphere positions with respect to the velocimetric laser plane, 

ambiguous as to whether spheres are to the front or back of the plane, b velocimetric 

plane halos (thick circles) and plane cross-section through the laser-scanned geometric 

packing of spheres (thin circles) before adjustment; c halos and cross-sections after 

optimal translation, and, d after optimal rotation adjustments of the velocimetric laser 

plane 

Fig. 9. Observation and measurement results for the sphere packing geometry: a long 

exposure oblique view constructed from 50 frames of the scanning sequence; b 

vertically-averaged distribution of porosity over the tube cross-section 

Fig. 10. Observation and measurement results for Re = 28: a long exposure image of the 

velocimetric plane resampled in spatial coordinates; b two-dimensional velocity field 

plotted jointly with the corresponding axial cross-section through the three-dimensional 

sphere packing. Square outlines indicate areas zoomed in for the close-ups shown at 

bottom; c close-up of the long exposure image; d close-up of the velocity field and sphere 

boundaries 

Fig. 11. Transverse profiles across the flow cell: a radial profile of porosity obtained by 

averaging the porosity data of Fig. 9b along concentric annuli; b transverse profile of 

vertical velocity obtained by averaging over vertical bands the velocity field of Fig. 10b. 

Fig. 12. Measured velocity distributions: a distribution of transverse velocity; b distribution 

of vertical velocity; c distribution of transverse velocity normalized by its standard 

deviation (dots), compared with the Gaussian normal distribution (line); d distribution of 

vertical velocity normalized by its mean value (black dots and lines). Our data (Re = 28) 

are compared with the data of Moroni and Cushman (2001) obtained at the Reynolds 

numbers Re = 0.049 (diamonds), 0.085 (squares), 0.105 (triangles) and 0.129 (circles) 



 26

Figures 

 

 

Figure 1 

 

 

Figure 2 

 



 27

 

 

 

 

Figure 3 

 

 

 

 

Figure 4 



 28

 

 

 

 
Figure 5 



 29

 

 

Figure 6 

 

 

 

Figure 7 



 30

 

Figure 8 

 

Figure 9 

 



 31

 

Figure 10 



 32

 

Figure 11 

 

Figure 12 


