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Optical measurements of the
core radius of high- D fibers with 1-nm resolution

Peter N. Saeta

An optical technique for measuring the core radius of high-D optical fibers is described. Variations in the
core radius of step-index fibers can be measured down to a scale of 1 nm.
Key words: Index profile, angular scattering, precision measurements.

Introduction

Step-index single-mode optical fibers with small core
diameters and large relative index differences, D,
suffer from abnormally high loss. The loss is propor-
tional to the inverse fourth power of the wavelength1,2
and hence can be described by a Rayleigh scattering
coefficient. This coefficient is an increasing function
of D,3 which rises sharply for D * 0.02.2
Although this phenomenon has been recognized for

many years, the origin of the excess loss remains
unknown. Recent angularmeasurements show, how-
ever, that the light is scattered primarily in the
forward direction.4 These results agree qualita-
tively with a theory of scattering loss that arises from
random core-radius fluctuations in step-index fibers.5,6
This theory predicts that radius fluctuations that
have an amplitude of only 1 nm can cause scattering
losses approaching 100 dB@km,6 and that fluctuations
of quite long spatial periods 110–100 µm2 can
contribute to strong scattering. Such fluctuations
might arise from a thermomechanical instability dur-
ing the draw at the interface between the core and
cladding glasses, which, of necessity, have quite differ-
ent compositions in a high-D fiber. Direct confirma-
tion of this loss mechanism would require sensitive
measurements of the core radius with high spatial
resolution along the fiber axis.

Here a technique for making such measurements is
described. The method consists of the scattering of a
focused laser beam off the core of the fiber and an
analysis of the fringes of the scattering pattern away
from the forward direction. It is similar to a conven-
tional light-scattering technique7–9 used to provide
real-time feedback to control the fiber diameter dur-
ing the draw. In that technique, the backward-
scattering pattern of a He–Ne laser beam from the
fiber is dominated by the high-contrast air–cladding
interface. Although the core significantly perturbs
the scattering pattern,8 the form of the perturbation
is not simple, and it is not straightforward to deduce
changes in core radius from changes in the observed
scattering pattern. Much more direct information
about the core can be obtained when the air–cladding
interface is removed by immersion of the fiber in
index-matching fluid. Analysis of the resulting scat-
tering pattern and, in particular, the position of the
regularly spaced minima permits nanometer-scale
fluctuations of the core radius to be observed.

Theory

Light scattering from fibers has been used for many
years to monitor the fiber diameter during the draw
and to provide feedback tominimize diameter fluctua-
tions.8,9 The theory for scattering plane electromag-
netic waves off infinite homogeneous dielectric cylin-
ders has been discussed by many authors.10,11 It has
been extended to concentric homogeneous infinite
cylinders12 and infinite cylinders of arbitrary radial
index profiles in a perturbative treatment.7 Com-
putationally it is perhaps most straightforward to
model the index profile of the core as a piecewise-
constant function inside radius b and constant with
value nclad outside this radius 1inside the cladding
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layer and index-matching fluid2. We assume, there-
fore, an index profile of the form

n1r2 5 5nm for rm21 # r , rm
nclad for r . rM ; b

, 112

which consists of a central region inside r0 of index n0
and M annuli of constant index surrounded by a
constant-index region, with the understanding that
r21 5 0. Below we quote Marcuse’s essential results
and specialize the expressions to the choice of a
piecewise-constant-index profile for the core.
Following Marcuse and Presby,7 we assume that

the electric field of the incident wave is aligned with
the fiber axis 1z axis2 and express the total field E as
the sum of an incident plane waveEinc and a scattered
wave Esc:

E 5 Einc 1 Esc. 122

Inside annulusm the field can be expressed as

Em1r2 5 e o
n52`

`

3An
mJn1nmkr2 1 Bn

mYn1nmkr24exp1inf2,

132

where Jn1x2 and Yn1x2 are the Bessel and the Neumann
functions of order n, respectively, k 5 2p@l is the
vacuum wave number of the incident light, An

m

and Bn
m are coefficients to be determined by applica-

tion of boundary conditions, and e will turn out to be
the amplitude of Einc. For the solution to remain
bounded at the origin, we must have Bn

0 5 0. At the
interface between successive annuli, Ez and Hf ~
≠Ez@≠r are continuous. This leads to the following
pair of equations at each boundary rm:

where pm 5 nmkrm and Pm 5 nm11krm. Primes
represent derivatives with respect to the entire argu-
ment of the various functions. These expressions
permit the solution for a given angular order n to be
propagated from an unknown normalization constant
An

0 at r5 0 out to the boundary at r5 b, whereAn
0 can

be fixed by continuity with the incoming wave.
Outside the core 1r . b2, the incident field and the

total field can be expressed in terms of the Hankel
functions Hn

1121x2 5 Jn1x2 1 iYn1x2 and Hn
1221x2 5 Jn1x2 2

iYn1x2 as

Einc 5 e exp1ikx2 5
e

2 o
n52`

`

in3Hn
1121kncladr2

1 Hn
1221kncladr2exp1inf2, 162

E 5 e o
n52`

`

CvHv
1121kncladr2 1 DnHn

1221kncladr2, 172

where an exp12ivt2 time dependence is assumed and
the incident wave travels along the f 5 0 direction.
Then the outgoing wave is proportional to Hn

1121x2,
and, from Eqs. 122, 162, and 172, the scattered wave is
given by

Esc 5 e o
n52`

`

1Cn 2
in

22Hn
1121ncladkr2exp1ivf2. 182

Applying the boundary conditions at r5 b permits the
coefficients Cn to be expressed in terms of An

M and
Bn

M, giving

The detector is placed in the far field, where the
asymptotic expansion of the Hankel function,13

Hn
1121x2, 12@px21@2 exp3i1x2 pn@22 p@424, 1102

allows one to simplify the expression for the scattered
field, giving

Esc5 2e1 2

pnkr2
1@2

exp3i1nkr2 p@424o
n50

`

cncosnf, 1112

where

cn 5 en exp1ian2cos an, 1122

en 5 2 for n fi 0 and en 5 1 for n 5 0, n 5 nclad in the
cladding and the index-matching fluid, n 5 1 in the

Cn 5
ncladHn

12281P23An
MJn1pM2 1 Bn

MYn1pM24 2 nMHn
1221P23An

MJn81pM2 1 Bn
MYn81pM24

nclad3Hn
1121P2Hn

12281P2 2 Hn
11281P2Hn

1221P24
. 192

An
m11 5

nm11Yn81Pm23An
mJn1pm2 1 Bn

mYn1pm24 2 nmYn1Pm23An
mJn81pm2 1 Bn

mYm81pm24
nm11Yn81Pm2Jn1Pm2 2 nm11Yn1Pm2Jn81Pm2

, 142

Bn
m11 5

nmJn1Pm23An
mJn81pm2 1 Bn

mYn81pm24 2 nm11Jn81Pm23An
mJn1pm2 1 Bn

mYn1pm24
nm11Yn81Pm2Jn1Pm2 2 nm11Yn1Pm2Jn81Pm2

, 152
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air outside the cell,

tan an 5
ncladFn1pM2Yn81P2 2 nMFn81pM2Yn81P2

ncladFn1pM2Jn81P2 2 nMFn81pM2Jn81P2
, 1132

Fn1pM2 5 AMJn1pM2 1 BMYn1pM2, 1142

pM 5 nMkb, and P 5 ncladkb.
Although the sum in Eq. 1112 is infinite in the order

parameter n, the coefficients cn fall off rapidly for n :
P because the divergence of the Neumann functions
sends an = p@2. Hence the scattered field is a cosine
series with complex coefficients that have approxi-
mately P 5 ncladkb terms. As nclad < 1.46 for silica
fibers, the number of terms, P, and consequently the
spacing of nodes in the scattering pattern, is propor-
tional to the radius b, beyond which the index of
refraction remains constant, for a given laser wave-
length. In the conventional case of scattering from
the fiber in air by the use of a He–Ne laser 1l 5 0.6328
µm2, P < 620. This leads to a pattern of very high
angular frequency that depends extremely sensitively
on the fiber radius and the radial index profile. The
portion of this pattern near the backscattered direc-
tion has recently been used to measure cladding
diameters to <10 nm.14 In the present case of a
nominal step-index fiber with b < 1.2 µm, P is
approximately 15 so the fringe spacing is roughly
180°@15 5 12°.
The discussion thus far has assumed infinite plane

waves. In practice, it is necessary to maximize the
signal with respect to stray light and to scattering at
the cell boundaries and in the index-matching fluid.
It is furthermore desirable to focus the light to obtain
resolution along the fiber axis. A lens was therefore
used to focus the laser beam at the fiber core, taking
care that the beam waist, w, satisfied w : b. The
power detected in an angle Df in the far field is then
given by

P

Pinc
5

lDf

2p2w 0o
n50

`

cn cos nf02 , 1152

insofar as the deviations of the incident wave from
plane can be ignored. Figure 1 shows the scattered
power calculated with Eq. 1152 for l 5 0.5145 µm, D 5
2.3%, and b 5 1.2 µm 1heavy curve2, assuming Pinc 5 1
W, Df 5 0.25°, and 2w 5 40 µm. The fine curve
shows how the pattern changes for a 1% increase in b.
Clearly, if stray light can be suppressed and the
pattern around f 5 90° can be measured with even
modest sensitivity, a resolution of better than 12 nm
can be achieved in these fibers.

Experiment

The experiments were performed on optical fibers
with their polymer jackets removed. The setup was
a slight modification of one previously described in
detail15 and illustrated in Fig. 2. The fibers were
held vertically in a chuck with xyz and two-axis tilt
adjustment and suspended in a 2.3-cm-diameter silica

cell filled with index-matching fluid. Either the
0.488- or the 0.5145-µm beam of an Ar1 laser was
focused by a 13.5-cm focal-length 1spherical2 lens into
the center of the scattering cell, and the transmitted
beam in the forward direction was dumped into a
calorimeter to minimize stray light. The beam was
vertically polarized 1parallel to the fiber axis2 and
chopped to permit lock-in detection. Typical beam
power was 1 W. The scattered light was detected
with an unamplified Si photodiode mounted upon an
optical rail atop a computer-controlled rotation stage
at a distance of ,20 cm from the fiber. The accep-
tance angle of the detector was determined by an

Fig. 1. Calculated scattering pattern for a step-index fiber
1D 5 0.023, b 5 1.2 µm2 with 1 W of 0.5145-µm light focused to
2w 5 40 µm. A slit width of 0.25° is assumed. The fine curve
shows the modified pattern for a 1% increase in core radius b.

Fig. 2. Experimental setup. The polarization of the incidentAr1

laser beam is out of the plane of the figure, parallel to the fiber
axis. The incident beam is focused at the fiber core as illustrated
in the expanded view at lower left. The scattered light lies in the
plane of the figure, peaked strongly in the forward direction, as
shown schematically in the figure. The He–Ne laser is used for
alignment; it is switched off during measurements.
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adjustable-width vertical slit mounted 10 cm from
the fiber on the rotating rail; typical acceptance
angles were 0.1°–0.3°. To facilitate alignment, a
He–Ne laser was mounted on the rail opposite the
detector and positioned so that its beam passed
through the center of rotation of the stage and was
centered on the detector. Care was taken to center
both the cell and the fiber about the rotation axis of
the stage and to adjust the tilt of the fiber to produce
a horizontal scattering pattern.

Results and Discussion

The high-D fiber used for most of the scattering
experiments 1fiber A2 had a silica cladding layer and a
germanosilicate core 118% GeO22, yielding a nominal
Dn of 0.030 1D 5 2.1%2 and core radius of 1.2 µm.
When the fiber was immersed in index-matching fluid
and illuminated with either Ar1 line, the scattering
pattern was easily visible by eye through angles
exceeding 90° from the forward direction and was
symmetric about the forward direction. The inten-
sity of the scattered light dropped rapidlywith increas-
ing azimuthal angle f and exhibited a sequence of
roughly equally spaced minima, as expected from the
theory. When the index-matching fluid and the clad-
ding had slightly different indices of refraction, the
pattern was modulated by a shallow high-frequency
interference pattern with a line spacing of a fraction
of a degree. The absence of such a high-frequency
pattern confirmed the proper choice of matching fluid.
Further proof that the core was the scattering object
came from the translation of the fiber through the
beam waist, in which case strong scattering was
observed over a range roughly equal to the beam
waist and appreciably less than the 125-µm diameter
of the fiber.
The measured scattering pattern from fiber A is

shown in Fig. 3 for the range 35° # f # 90°. On the
vertical scale of diode voltage, the background level
detected when the fiber was removed from the cell
was between 1027 and 1026 V over this range. The
data agree qualitatively with the calculated pattern of

Fig. 3. Observed scattering pattern for fiber A, a nominally
step-index high-D fiber. The solid curve is the best fit to the
bi-Fermi functional form 1see Table 12, giving a core diameter of
2.44 µm.

Table 1. Index Profile Functions Used to Fit Scattering Data a

aIn these expressions, Dn 5 ncore 2 nclad, b is a radius beyond which n 5 nclad, and a is the radius that satisfies n1a2 5 1⁄21ncore 1 nclad2.
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Fig. 1, having roughly the same fringe spacing, al-
though the successive maxima fall off more rapidly
than in the calculation for the idealized step-index
core profile. Ideally, one would like to deduce the
index profile directly from the measured scattering
pattern. Unfortunately, this inversion problem is
numerically unstable. Instead, an attemptwasmade
to fit the data by the use of a core index-profile
function with a smoothed transition from ncore to nclad.
Several forms were tried, as shown in Table 1. The
curve in Fig. 3 shows the best fit obtained, which used
the bi-Fermi functional form. The fit follows both
the spacing of the minima and the decrease in the
maxima with f fairly well; the discrepancy at the
minima results from the finite slit width.
The index profile that corresponds to the fit of Fig. 3

is compared in Fig. 4 with measurements made by the
use of the refracted near-field method with a York
Model S14 fiber profiler. The profile obtained from
the fit has an approximate transition width of 0.1 µm,
whereas the measured one is roughly eight times
broader. The broadening is primarily due to the
,0.5-µm spot size of the laser used to make the
measurements, which necessarily broadens abrupt
index changes. The scattering pattern calculated
from the measured profile shown in Fig. 4 falls off
much more rapidly with f than the data and, unlike
the data, shows minima of quite variable depths.
It is likely, therefore, that the fit gives a much more
accurate picture of the index profile.
Simulations with the functions of Table 1 showed

that the pattern is much more sensitive to the core
radius, b, than to D. They also displayed the com-
mon features that, for small changes in b,

db

b
~ 2

dfmin

fmin

, 1162

where fmin is the position of a local minimum in the

scattering pattern. This suggests that even if a
satisfactory fit cannot be made to the data, useful
information about changes in the core radius can be
obtained by the accurate measurement of the position
of one or more minima in the pattern as a function of
distance z along the fiber.
To investigate the sensitivity of this information, a

segment of fiber A was laser heated under tension,
which caused it to neck down to a point and break in
the heated region. Scattering measurements were
then made of this tip, starting in the region of the
fiber that had not been heated. Four of these mea-
surements are shown in Fig. 5. As expected, the
minima shift to larger values of f as the core radius
decreases from the unmodified portion of the fiber
1z 5 0 µm2 into the neck-down region 1z . 02. With
expression 1162, the relative change in radius, db@b,
was calculated based on the minima near 44° and 53°,

Fig. 4. Index profile of fiber A as measured with the refracted
near-field method with a York Model S14 fiber profiler 1heavy
curve2 and as obtained from the fit shown in Fig. 3 1thin curve2.
The difference illustrates the broadening introduced by the,0.5-µm
focal spot of the profiler.

Fig. 5. Four scattering patterns obtained from the neck-down
region of a tip made from fiber A. The trace labeled 0 µm
corresponds to a position just outside the heated region and
matches the pattern of the unmodified fiber. With an increase in
coordinate z along the fiber, the minima shift to larger f, as
expected for a decreasing core radius.

Fig. 6. Plot of the relative change in core radius along the length
of the fiber in the neck-down region. The filled diamonds were
taken from a digitized micrograph; the open symbols were obtained
from the relative shift in the position of minima near 44° and 53°.
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and the results are shown as a function of z in Fig. 6.
These are compared with a profile deduced from a
micrograph taken of the neck-down region of the fiber,
based on the assumption that the relative change of
the core is equal to the relative change of the outside
fiber diameter. The agreement between the two
curves calculated from the shift in minima is excel-
lent, better than a part in 1000 in the unmodified
region 1z , 100 µm2 and quite good throughout. As b
< 1.2 µm, this implies that the technique can resolve
fluctuations in a core radius smaller than 1 nm.

Conclusions

The angular scattering pattern produced fromahigh-D
nominally step-index fiber immersed in index-match-
ing fluid has been measured and shown to provide a
sensitive measure of the core radius. Although at-
tempts to deduce the exact index profile from the
scattering pattern were unsuccessful, small varia-
tions in core radius produce proportional shifts in the
angular position of sharp minima in the scattering
pattern. These shifts were used to profile the neck-
down region of a fiber tip with a resolution of better
than 1 nm in the core radius.

I thank W. A. Reed and L. R. Copeland for help in
setting up the experiment, B. I. Greene, D. M. Krol,
and S. L. McCall for stimulating discussions, D. J.
DiGiovanni for the fiber samples, R. E. Betzig for
preparing the fiber tips, and C. R. Kurkjian for
micrographs of the tips.
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