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Abstract: Additive Manufacturing (AM) has been a growing industry, specifically when trying to
mass produce products more cheaply and efficiently. However, there are too many current setbacks
for AM to replace traditional production methods. One of the major problems with 3D printing is the
high error rate compared to other forms of production. These high error rates lead to wasted material
and valuable time. Furthermore, even when parts do not result in total failure, the outcome can
often be less than desirable, with minor misprints or porosity causing weaknesses in the product. To
help mitigate error and better understand the quality of a given print, the field of AM monitoring in
research has been ever-growing. This paper looks through the literature on two AM processes: fused
deposition modeling (FDM) and laser bed powder fusion (LBPF) printers, to see the current process
monitoring architecture. The review focuses on the optical monitoring of 3D printing and separates
the studies by type of camera. This review then summarizes specific trends in literature, points out
the current limitations of the field of research, and finally suggests architecture and research focuses
that will help forward the process monitoring field.

Keywords: additive manufacturing; 3D Printing; artificial intelligence; optical monitoring;
literature review

1. Introduction

Additive manufacturing (AM) is one of the fastest-growing industries in our mod-
ern tech world. In particular, parts with complex internal geometries can be built in a
single unit, simplifying productions that traditionally required multi-step manufacturing
methods [1]. AM’s printing process typically stacks material layer-by-layer to construct
three-dimensional products based on 3D CAD models [2]. Due to the advantages of low
production lead time and the ability to create complicated geometries and shapes, the pro-
cess has uses in various industrial applications [3]. AM witnessed its first development
in the mid-1980s, where it was solely capable of processing polymers using technologies
such as stereolithography (SLA) [4]. Since then, this manufacturing process has produced
multiple disciplines and categories. There are generally seven AM categories: Photopoly-
merization, extrusion, sheet lamination, beam deposition, direct write and printing, powder
bed, binder jet printing, and powder bed fusion [1]. The main types of AM this review will
focus on will be extrusion and powder bed fusion, as they are some of the most prevalent
types of AM used in the industry [5].

One key barrier that prevents extrusion-based AM from being applied to more in-
dustrial applications is the relatively low fabrication quality in dimensional accuracy and
mechanical strength [6]. For instance, fused filament fabrication (FFF) has significantly
lower reliability levels than other manufacturing processes, with research estimating 20%
printing failure rate by unskilled users. A process that exists to monitor a print, notice
when an error is occurring, and know what parameters to fix in the system to correct the
mistake would be cost-effective in money and time. Achieving high levels of quality and
repeatability of AM parts is a highly challenging task due to many factors. Such factors
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include the complexity of the underlying physical phenomena and transformations during
part production and the lack of formal mathematical and statistical models needed to
control the build process and ensure the quality of the parts [4]. Based on the need for
better quality products produced by AM processes, the field of AM process monitoring
developed. The ultimate goal of additive manufacturing process monitoring is to create
effective real-time, closed-loop feedback control of the additive process [1].

While relatively young (only really taking off in the past two decades), the field of
research monitoring and controlling AM manufacturing has branched off into many areas.
First and foremost, the areas branch off depending on the type of AM manufacturing
process. As stated before, the focus of this paper will be on FFF, a.k.a. FDM printing and
laser bed fusion printing (LBFP), as these are some of the most common forms of AM
manufacturing and have the most extensive wealth of material on AM monitoring.

FFF is an AM process in which a workpiece is manufactured by depositing progres-
sive layers of extruded molten material. Among AM technologies, the most widespread
process is Fused Deposition Modeling (FDM), patented initially by Stratasys company [7].
In FFF, a thermoplastic material is typically heated past its glass transition temperature
and extruded through a nozzle in a controlled manner [8]. For this type of print, there
are generally two ways to monitor AM processes: monitoring the printer’s health state
and detecting product defects. In terms of tracking the printer, the significant places to
observe for FFF are first the hot end(the part of the extruder that heats the thermoplastics)
and the second most prevalent monitoring spot is the cold end (the part that feeds the
thermoplastics to the hot end) [3]. See Figure 1 to see a diagram of the extrusion drive of an
FDM printer [9].

Figure 1. The extrusion drive pushes filament into the extruder, which liquifies the plastic. The molten
plastic is deposited as a fiber that is approximately the diameter of the nozzle. The cold end and heat
break localize the heat to the hot end [9].

Laser PBF (L-PBF) machines (also known as selective laser melting (SLM) machines)
spread a thin layer of metal powder, typically 20–120 µm thick, across a substrate often
referred to as a “build plate”. After spreading the powder layer, one or more laser beams
are used to selectively melt the powder in the shape of a 2D slice of a 3D part. After the
lasing is complete, the build plate lowers, another layer of powder deposits on the powder
bed, and the process repeats until the end of print [10]. Defects and flaws in powder-bed
AM appear within the layer. A common and critical form of defect is the formation of pores
in part. Porosity can reduce the part density and the structural and mechanical properties
such as tensile strength and fatigue properties [11]. Research generally categorizes LPBF
monitoring methods into two main groups: built surface monitoring and melt pool mon-
itoring. The melt pool monitoring has attracted much attention as the melt pool status
directly determines built quality [12].
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To accurately correct and locate error detection, understanding the underlying mechan-
ical properties and how changes in the mechanical properties affect the print is necessary.

One of the major parameter structures is the build orientation. Build orientation refers
to how and in which direction a sample is placed on the 3D printing platform. This is often
observed in the form of anisotropically printed objects, making structural performance
highly dependent on build orientation similarly to composite laminates [13]. Hambali et al.
noticed that in physical testing of FDM parts, when pulling direction is parallel to build
direction, the parts are stronger but they tend to crack in a specific place where shear
occured. They also found that different oriented parts can show different deformation
behaviours so orientation direction of the parts should be chosen according to boundary
conditions [14]. Harris et al. found that inter-layer fusion and trans-layer failure was greatly
affected by build orientation. Inter-layer fusion is the bond of the lower layer with the
one currently being extruded and the trans-layer fusion bond is the fusion roads of the
same layer [15]. In vertical samples, inter-layer fusion bond broke due to the applied load
parallel to the extruded layer.

The deposited layer bore the whole force instead of individual beads leading to low
strength causing interlayer failure. While the load applied perpendicular to the deposited
layer, in flat and on-edge samples, made the beads bear the applied load, resulting in
high strength. The literature consensus shows that the most robust printing orientation
is when fused filament deposition coincides with the pull direction. However, a range of
orientations may be found along this pull direction [13].

Feed rate also known as scanning speed is the speed of the nozzle motion. This can be
divided into two profiles of scanning speed and filling speed. Directly tied to filament speed
is extrusion speed that refers to the speed of filament extrusion from nozzle [16]. Lower
scanning speed causes processing inefficiencies, the layer processed will be burned and
destroyed by the hot nozzle. Higher speed produces mechanical vibrations, detrimental to
parts accuracy and if scanning speed is much greater than extrusion speed, filament will
be pulled to be too fine. In terms of material properties, an increase in feed rate shows a
decrease in tensile and flexural strengths [17]. Feed rate is also directly related to build time
and therefore manufacturing cost [5].

Layer thickness seems to show a disparity in results as it seems coupled to other
process parameters. For instance in a study by Chacón et al. [13], with build orientation,
in upright samples, tensile and flexural strengths incereased as layer thickness increased.
Where layer thickness had little effect on flat or on-edge orientations.

Other things of note with process parameters include that structural parameters have
a greater influence on the mechanical properties of FFF components than manufacturing
parameters. The Ishikawa Diagram in Figure 2 shows examples of what these parameters
would be [5]. Also, the material in the FDM printer greatly affects the material properties
and thus studies on how the process paramaters affect each individual FDM material have
been undergone [15,18,19].

As far as take away points to understand when monitoring part faults a couple of
observations were found [5]:

• Design of Experiments(DOE) is useful for multi-parameter studies. However, individ-
ual contributions of parameters are hidden because of the number of variables and
unknowns that are tied to the process

• A need for uniform testing standard for AM manufacturing is evident by reviewing
the experimental studies done on the matter

• For modelling real prints, it is beneficial to characterize the process and build pa-
rameters along the boundary conditions that best describes the heterogeneity of the
printed part

• Little research has been done on mechanical properties of FFF parts with low densities
with different loadings
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• Low porosity static samples resulted in highest mechanical properties. Meanwhile,
dynamic properties had improved damping behavior when increasing porosity in
a print

• Properties that are sensitive to processing parameters like inter-layer bonding should
be included to accurately model print failure.

Figure 2. Ishikawa Diagram showing the different causes of different mechanical properties in
a print [5].

LPBF studies investigating how process parameters affect the print have also been
reviewed. A study done by Galy et al. [20] showed that the principle defects of Al alloyed
parts are porosity, hot cracking, anisotropy, and surface quality. They also show of that the
specific SLM process parameters as well as laser beam energy loss due to Al reflectivity are
the main causes of porosity and hot crack formation. Meanwhile Kleszczynski et al. [21]
cited typical process errors and mapped them to possible causes seen in Figure 3.

Figure 3. Typical Process Errors in Laser Beam Melting categorized by influence, type and cause [21].

In terms of process parameters for LPBF most of the controllable process parameters
are tied together by a function called energy density [22]. The energy density function is
defined by the equation below where E is the laser energy density, P is the laser power, S is
the scanning speed, T is the layer thickness, and H is the hatch distance [23].

E =
P

S × T × H
(1)

Some of the conclusion that can be drawn from the process parameter of LBPF
printing include:

• Al alloys have a spherical partical shape mixed with a large percentage of elongated particle
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• Energy density largely affected relative density and the formation of pores ins prints.
High energy density rates contribute to large hydrogen spherical pores forming, while
lower rates created keyhole pores

• Scan speed and laser power have a close relationships where the highest relative
density was achieved at low scan speed and power and lower density values

• Surface topology was signficantly affected by energy density
• Best surface flatness could be obtained with higher hatch spacing and scan speed for

certain Al alloys
• For certain Al alloys, contraction of part dimension was observed at lower energy

densities and oversized part dimension was detected at higher energy densities.

There have been a fair amount of literature reviews on AM monitoring, generally
focusing on a specific type of printer or error. However, there has been little focus on
specific setups of monitoring systems, reviews on which designs work for certain printers,
or specific errors trying to be detected. Creating a study that shows which architectures
work for a given error detection will enable researchers to find the particular area of AM
process monitoring that they want to improve upon quicker and quickly jump into creating
their setup. Researchers use multiple sensors to monitor AM processes; however, this
literature review will focus primarily on the optical sensor types. The review covers the
kind of optical detection used to detect errors. Many of the studies reviewed also have
multi-sensor setups. Within each area, the systems will differentiate the printer being used
(LBFP or FFF) and the errors that the architecture focuses on detecting. After a quick review
of the different optical methods, the study will discuss trends on what architectures are
helpful for given errors. Finally, the study will mention the given error and detection
architecture intended to be used by the author’s research.

2. Camera Setups

This section goes through the most commonly used cameras in AM optical monitoring.
The unit will briefly describe what the camera does and what specific errors and uses the
camera tackles.

2.1. CCD (Charge Couple Device) Camera

A CCD camera is a solid-state electrical device that converts light input into an elec-
tronic signal. The term charged-coupled refers to the coupling of electrical potentials within
the silicon material’s chemical structure that comprises the chip’s layers [24]. The main
advantages of state-of-the-art CCD detectors and digital imaging are high time resolutions
and a good linear dynamic range of up to 16 bits, which ensures high accuracy for signal
variations [25]. In Figure 4 below you can see a schematic of a CCD camera.

Figure 4. Schematic of CCD camera [26].
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Optical monitoring of LBPF printers often utilizes CCD cameras. In a study by
Kleszczynski et al., the team creates an optical architecture to detect irregularities in the
print. The camera was mounted in front of the printer window and captured images of the
build platform from an observation angle. A tilt and shift lens helped to reduce perspective
distortion by shifting the camera back and allowed placing the focal plane on the build
platform without stopping down using its tilt ability [21]. Figure 5 shows the architecture
of the LPBF printer and camera.

Figure 5. Architecture of Kleszczynki et al. [27].

The team created prints with severe overhang without support and other geometries
they knew would be prone to failure and manually documented and processed common
process errors (see Figure 3). Different scanning methods that depended on changing
scanning speed were utilized for the geometries that studied support structures to see
the effects. Meanwhile, for overhang, the different overhanging angles were tested with
different process parameters as a critical overhanging angle was prominent no matter what
strategy was used to print. In their other works, they used their optical architecture to
detect super-elevation [27,28]. Super-elevation occurs when a part warps or curls upward
out of the powder layer, typically a result of buildup residual thermal stresses [29]. Super-
elevation of parts during the LBM fabrication poses a large problem to process stability
as collisions between coater mechanism and part can lead to damage of both part and
machine. They then created a way to auto-segment their images taken [30].

Zeinali and Khaajepour [31] developed a closed-loop control system for an SLM printer
using a CCD camera to monitor the height of any printer layer. The study created a control
law based on the following model.

τḣ + h =
3
2

ṁ
ρw0

(
db
dp

(
1 +

h
db

tanα

)
cosα

)n k
v(t)

(2)

where h is the clad height in mm, ḣ is the derivative of the clad height, ṁ is the powder flow
rate, ρ is the powder density, w0 is the steady-state values, dp is jet diameter, db is the laser
beam diameter, α is the angle between nozzle and laser beam, v(t) is scanning speed, and τ,
ν, and k are unknown parameters that are identified experimentally offline. Therefore the
data from the CCD camera helps inform the model of the printer and thus better tunes the
closed-loop control. The image processing algorithm (IMPA) was installed on the CCD
camera to attenuate high intensity and eliminate flare and noise. See the experimental
setup in Figure 6. The adaptive sliding mode of control contributed to process monitoring
by eliminating chattering (high-frequency oscillations) and being able to estimate lumped
uncertainty as an uncertain part of the dynamic model instead of having conservative
estimated uncertainty bounds.
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Figure 6. Laser Cladding Setup [31].

Although not technically FDM fused deposition of ceramics (FDC) is an extension of
FDM and has a similar style of operation. A group of studies by Cheng and Jafari used a
CCD camera to minimize assignable defects in print [32]. The study built on the work of a
study done in 1998 that also used FDC but utilized a stereotype camera setup instead [33].
Assignable defects have defect patterns linked to a given cause. An example of such a
defect is inappropriate parameter settings. These defects can then be eliminated or reduced
with control parameters. The group applied a 2-D profiling algorithm to find representative
figures of both underfill and overfill. Signatures, a simple representation of an object or a
process in the form of a mathematical function, a feature vector, a geometric shape, or some
other model, were used to create the representative figures. Figure 7 shows a visual of the
experimental setup [34].

Figure 7. Machine Vision system of FDC machine [34].

In layered manufacturing applications, a single layer is a set of a boundary and several
interior regions. Therefore, the defect detection problem breaks down into two issues:
partitioning the image into regularities or homogeneous regions and detecting abnormal or
unexpected signatures, which could indicate defects. Using the signature for each uniform
part, an image, which is called the ideal image, can be reconstructed. Detecting defective
areas is done by comparing the original and the perfect image. An FDC image processing
and defect detection software package, FipSoft 1.0, has been developed using Visual C++
on the Window NT 4.0 platform to perform online image processing and defect detection
software packages. It provides a friendly user interface and many modules to implement
the signature analysis methodology and integrate the machine vision system with the FDC
control system. The system spots the error, classifies underfill or overfill based on surface
texture, validates the data, and creates a control model. The road width is affected by many
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process variables, including flow rate, roller speed, head speed, temperature, and distance
between the head and part surface. In their specific control model, roller speed was the
process parameter used as the control variable.

Shen et al. changed the end effector of a MITSUBISHI six degrees of freedom (DOF)
robot to include a nozzle, heat block, cooling fan, photoelectric switch, filament extruding
motor, CCD camera and light system to capture in-situ images of a print bed [35]. Their
setup can be seen in Figures 8 and 9.

Figure 8. Principle of multi-view vision detection system [35]. The numbers represent the different
camera angles the CCD camera is positioned.

Figure 9. Hardware system structures of robot FDM system (a) Control components (b) Physical
Platform [35].

A vision detection system was created based on Visual C++ Integrated Development
Environment and Open Source Computer Vision Library. The team roughly classified
defects into three typical types according to aspect ratio and area distribution. The three
defects are transverse defects, longitudinal defects, and localized defects. A transverse
defect is when the aspect ratio of the major defect is larger than 3. This defect occurs
when their is either excessive or insufficient extrusion. This causes a mismatch of motion.
A longitudinal defect occurs when their is a low aspect ratio that is generally less than
0.4. Longitudinal defects are mainly caused by the mechanical structure and mechanical
motion. The other defects are defined as localized defects, including defects with scattered
area distribution. A table showing the conclusions of defects found and possible causes are
seen in Table 1.
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Table 1. Possible causes of three typical types of defects [35].

Defect Type Judgement Some Possible Reasons

Transverse defect Excessive estrusion The temperature of the nozzle is too high;
Static flow beading and dynamic flow beading

Insufficient extrusion The nozzle is blocked;
The temperature of the nozzle is too low;
The filament is used up;
The extruding motor does not work;
The thickness of the layer is too large

Mismatch between motion
and extrusion

The communication failure between Atmega2560
and robot controller;
The velocity of movement is too fast

Longitudinal defect Mechanical structure It is located in the turning point of the robot motion

Mechanical motion The acceleration at the start or end point of each
layer is too small

Localized defect Unreasonable temperature It can’t cool quickly for excessive melting;
The temperature fluctuaion

Mechanical problem The excessive vibration caused by loosening and so on

Multi-Sensor CCD Camera Systems

Many studies also employed a multi-sensor approach to monitoring, employing
additional sensors with the CCD camera to better understand what was happening during
the printing session. A study by Doubenskaia uses a pyrometer and a CCD camera
to monitor thermal processes in SLM and compares the results obtained by different
diagnostic tools [36]. The optical architecture can be seen in Figure 10. The temperature
was measured in the laser impact zone by a bi-color pyrometer. In contrast, the CCD
camera acquired the brightness temperature distribution in the heat-affected zone (HAZ).
In the study, researchers analyze variations in pyrometer signal and brightness temperature
with operational parameters by variations in hatch distance and powder layer thickness.
Hatch distance is the distance between the neighbor tracks. A track is a feature that results
from the laser beam scanning along a straight line on the powder bed with constant speed.
The paper instead of monitoring a specific print error looked at how the process parameters
that were controlled had effects on each other and also how they affected the temperature
distribution of the print.

Figure 10. Schematic of the optical system applied: 1—fiber laser; 2—beam expander; 3—laser
beam/thermal signal separating mirror; 4—scanner head; 5—F-Theta lens; 6—powder bed; 7—mirror;
8—pyrometer lens; 9—fiber tip; 10—optical fiber; 11—pyrometer; 12—CCD camera [36].

Meanwhile, a study by Davis and Shin utilizes a CCD camera(Pulnix TM-1402) in con-
junction with a line laser to measure the clad height of the LBPF print [37]. The clad height
refers to the height of the deposition of the metal layer. The study created a triangulation-
based clad height measurement technique that utilizes planar structured light to directly
measure the entire clad cross section’s height. See the experimental setup in Figure 11.
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Figure 11. Machine Vision system of FDC machine [37].

The clad height h appears as distance d in the camera images and is related to the true
clad height h through.

h =
d

sinθ
(3)

2.2. DSLR (Digital Single Lens Reflex) Cameras

DSLR cameras use a set of mirrors and a pentaprism that allows imaging in the optical
viewfinder. This image enters the lens and is captured by the mirror, which is responsible
for transferring it to a digital sensor that, in turn, stores the photograph [38].

The cameras are not as sensitive or accurate as CCD cameras primarily because they
are not cooled. However, they share some of the advantages of a CCD. They have a linear
response over a large portion of their range, and software programs such as AIP4WIN
accept their data. They also have their advantages as their fields of view are relatively
large [39]. Below Figure 12 shows a schematic of the DSLR camera.

Figure 12. Schematic of CCD camera [40].

Petrich et al. had a couple of studies where they used a DSLR CCD camera in con-
junction with CT scans to (1) create an anomaly detection algorithm with shorter execution
time, (2) create a clustering algorithm that groups anomalous voxels together without
pre-defining, (3) make a more robust feature extraction methodology and (4) use data
to inform supervised machine learning concepts [41]. The DSLR camera captured eight
images of the build platform during different build times.

Timing of image capture was triggered via proximity-sensor monitoring of the recoater
blade, with images (1)–(3) captured immediately following the powder recoating operation
and photos (4)–(8) captured immediately following the laser fusion step. The machine
learning algorithm is further developed with the CT scan images, explicitly using a support
vector machine (SVM) in a follow-up study [42]. The errors classified were defined by
the machine learning algorithm by similarity of image and were categorized by size and
dimension of the discontinuity. A CAD image of the experimental setup is seen in Figure 13.
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Figure 13. Camera systems and light chamber in build chamber [42].

In a study done by Imani et al., they used X-ray computed tomography (XCT) scan
data to quantify the effect of laser power (P), hatching space (H), and velocity (V) on the
size, frequency, and location of pores. The team also monitored and discriminated the
process conditions liable to cause porosity using in-process images captured with a DSLR
camera [43]. In Figure 14 you can see the experimental setup used in the study.

Figure 14. Schematic Diagram of the LPBF process [43].

Nine different cylinder prints were built with varying P, H, and V conditions to
quantify their effect on the pore spatial distribution frequency, size, and location. Then
the images acquired with the DSLR had multifractal and spectral graph theoretic features
extracted. In Table 2, we can see the different combinations of process parameters used in
creating the cylinders as well as a metric called the Andrew number defined as:

EA =
P

H × V
J/mm2 (4)

The Markov Decision Process, an optimal control based on the machine learning
algorithm, uses the multifractal components of the work done in this study [44].
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Table 2. The combination of power (P), hatch spacing (H), scan velocity (V) process conditions used
for making the different cylinders [43].

Process Condition EA [J.mm−2]
(P, H, V) [W, mm, mm/s] Andrew’s Number

P0, H0, V0 (340, 0.12, 1250) 2.27

P −25%, H0, V0 (250, 0.12, 1250) 1.70

P −50%, H0, V0 (170, 0.12, 1250) 1.13

P0, H+25%, V0 (170, 0.15, 1250) 1.81

P0, H+25%, V0 (170, 0.18, 1250) 1.51

P0, H0, V0+25% (170, 0.12, 1562) 1.81

P0, H0, V0+25% (170, 0.12, 1875) 1.51

For FFF printing, one study by Nuchitprasitchai et al. builds on research by
Pearce [45–47]. The team develops a low-cost, reliable real-time optimal monitoring plat-
form that uses an algorithm for reconstructing 3D images from overlapping 2D intensity
measurements for single and double construction [48].

For this paper (Figure 15), there were two camera setups where they either used one
camera for 2D reconstruction or two cameras for 3D reconstruction. Each experimental
setup uses different algorithms but the same type of camera, printer, and tested objects.
Both algorithms used with the two camera setups were effective at detecting the defects of
clogged nozzle, loss of filament, or an incomplete project for different 3D object geometries.
The difference in shape between STL Image and CameraImage, or the different sizes
between STL Image and the 3D reconstruction, informed the error calculation. The printer
stopped when these errors exceeded 5%. The two-camera error detection (size error) is
more accurate than the one-camera error detection (shape detection); however, the one-
camera setup is less computationally intensive. Furthermore, the error details for the
double-camera configuration are more comprehensive than the single camera that provided
only the total shape error.

Figure 15. Setup of FDM machine, camera, and other sensors of Nuchitprasitchai et al. [48].

Multi-Sensor DSLR Monitoring System

Miao et al. had a system that used multiple sensors to build and compare different
models that can predict the distortion and build a system that can prevent distortion
based on the prediction model [49]. A customized holder was built to fit an infrared
sensor and then mounted onto the print extruder allowing monitoring of the new layer
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temperature deposits.The IR sensor information can aid in in-situ prevention of printing
when the filament is not extruding or help protect the system by making adjustments
in other abnormal situations. Furthermore, the nozzle temperature is monitored by a
K-type thermocouple that is mounted on the nozzle through a threaded hole. A Melexis
MLX90621 thermal array IR sensor measures the filament temperature. The distortion can
be represented by the distance between the highest and lowest points on the deformed
part. A Nikon Coolpix P4 camera with 8.1 megapixels and ×3.5 optical zooms measure the
distance. See the system architecture in Figures 16 and 17.

Figure 16. Conceptual System Architecture [49].

Figure 17. Physical System Architecture [49].

The findings of this group were deformation was related to nozzle and platform tem-
perature, the influence of which depended on material and temperature range. For nozzle
temperature, in the 200–230 ◦C range, the deformation of PLA parts will decrease when
decreasing the nozzle temperature because the lower nozzle temperature can reduce the
temperature gradient. Meanwhile, in the 220–245 ◦C range, the deformation of ABS parts
will decrease when increasing the nozzle temperature. ABS will not melt at 220 ◦C and
will have low liquidity. For the print bed temperature, raising the platform temperature
from 110 to 115 ◦C will increase the distortion possible because the adhesion force de-
creases when the platform temperature rises. However, this distortion generally plateaus
in temperatures higher than 120 ◦C.

2.3. Infrared (IR) Cameras

Infrared imaging cameras are non-contact devices that detect heat or infrared energy.
These cameras convert this measure into an electronic signal and then process this infor-
mation to produce a thermal image [50]. The IR camera detects heat volume to calculate
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temperature differences and make clear thermal images in low-light situations. One advan-
tage of using IR cameras is that they are one of the few non-contact ways of detecting heat
and can produce images of things in very low-light circumstances. Figure 4 although an
image of a CCD camera, is an IR CCD and therefore a helpful schematic to revisit.

Although IR cameras can provide excellent qualitative thermal images, their accuracy
is only as good as the accountability of environmental conditions. Calibrating cameras to
account for such conditions, therefore, is critical. The radiant energy received from an object
will be a function of its temperature, spectral emissivity, reflections from its surroundings,
and atmospheric transmission. As radiation passes through the atmosphere, scattering and
absorption may attenuate the strength of the signal (Figure 18). Fortunately, IR cameras
operate above the wavelength range, which makes these effects negligible. In the regions
of minimal disturbance from the atmosphere [51].

Figure 18. Visual of IR Emissivity [51].

Several studies incorporate these IR cameras to monitor the print state of 3D printers.
LBPF printers would be the obvious first choice in integrating this technology into their
monitoring systems.

Schilp et al. created macro and microscale simulations of the print process. The team
measured temperature using a microbolometer IR camera. The typical response time for
microbolometer cameras in the order of 8 ms limits the maximum frame rate to approxi-
mately 50 Hz. Furthermore, the pixel resolution of 250 µm causes spatial averaging over
multiple single scan tracks (width: around 100 µm) [52]. Using the IR camera and modeling
software, the team monitored the temperature field of a print on a micro and macro level.
The modeling and experiments were created in an effort to see how process parameters
like geometry, material, heat input, scanning speed, and ambient influences affected the
temperature distribution, melt flow behavior, and wettability of an LPBF print.

Mireles et al. research team modified an Arcam A2 system to include a FLIR SC645 IR
camera. The camera saves a thermal history of a build while a print process occurs [53].
After the architecture for the study was set up, the IR camera’s monitoring capabilities were
evaluated by intentionally seeding porosity defects into a part assembly from 100 µm to
200 µm. See the group set up in Figure 19. Different shapes were utilized, including spheres,
triangular prisms, cylinders, and cubes. In detecting the defects, the study first uses IR
image analysis, which failed to find any flaws more minor than 600 µm [54]. The defects
were then X-ray CT scanned and then underwent a destructive analysis to compare all
forms of part analysis. The process parameter used to correct defects in situ is re-scanning,
where the affected area is re-melted. For post-processing, a process called hot isostatic
pressing (HIP) was used to better the part’s material properties.
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Figure 19. Top of ARCAM A2 Build Chamber with new component location and IR camera [51].

FDM printing also uses thermal imaging to monitor defects in a print. A series of
studies by Costa et al. examines the contribution of heat transfer of various thermal
phenomena during manufacturing [55]. The group used a FLIR ThermaCAM SC640 IR
camera to record the surface temperature of the filament. Figure 20 shows a picture of the
setup. The main aspect being tested and monitored in this study was the physical contact
between filament segments during the progressive build-up of the 3D structure, which
is tested by an adhesion test [56]. The parameters that were altered in the model were
processing conditions (extrusion temperature, environment temperature, extrusion velocity,
filament diameter etc.), material properties and depsoition sequence.

Figure 20. Experimental setup for Costa et al. [56].

Ferraris et al. utilize an Optris PI640 IR camera on a commercial Prusa MK3 to capture
temporal temperature variations in the x-z plane. The study’s goal was to capture spatial
and temporal temperature variations while printing an FDM/FFF part, which would enable
a combined experimental and numerical approach for in-process monitoring [57]. See the
groups experimental setup in Figure 21. The parameters that were varied was the time
that the printing proccess was monitored changing the boundary conditions of both the
inter-layer and intra-layer time. The second parameter that was changed was the location
of where the IR camera was monitoring varying between the 3rd, 20th, and 38th layer and
varying x positions of 2, 9, and 16 mm.
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Figure 21. (i) Picture of the thermal set-up for in-process monitor of the FFF process; (ii) top view
of the sample geometry, deposition sequence and intra-layer time ( ∆tintra) for elements located on
given x-y planes; (iii) picture of a realised sample and (iv) thermogram of the printed part. Given x-z
locations are highlighted [57].

Li et al. propose a framework to integrate physically-based and data-driven ap-
proaches for component scale and layer-to-layer thermal field prediction.

As seen in Figure 22, the framework captures the underlying physical printing pro-
cesses. A physically-based model is built and simulated using 3D transient finite element
analysis (FEA). Sampling in the design space of process inputs, historical FEA simulation
results in a surrogate model [58]. The resultant model links model inputs to model outputs.
The actual experimental measurements were compared with the model framework through
Bayesian calibration which allowed identification of the unknown model parameters and
model discrepancy. This calibrated the model in a non-parametric way. Due to the model
being trained and updated with the experimental data collected in-situ, it can capture the
physical processes in FDM as well as correct some model discrepancies that are associated
with the imperfect understanding of the underlying physics.The model is cross-validated
with a new process setting and new geometric designs. The process settings that were
used in the model include layer thickness, printing speed, nozzle temperature, layer index,
printing pattern direction, and neghborhood time difference (NTD). Additionally there
were two calibration parameters of the heat convection coefficient and latent heat of fusion.
A FLIR A6555sc IR camera did the thermal imaging.

Figure 22. Proposed Framework [58].
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Hu et al. utilize a support vector machine with thermal imaging to diagnose FDM
printing faults caused by the variation of temperature fields. See the architecture setup in
Figure 23 [59]. Support vector machine (SVM) is a pattern recognition method based on
statistical learning theory. Due to its good generalization ability, especially towards serious
nonlinear problems, SVM often has uses as a diagnostic tool for FDM parts. ABS plastic
parts are built on a Makerbot Creator with a VarioCAM®hr-HS as the thermal imager.
A process where the nozzle temperature gradually decreases each layer printed various
factors. The temperature gradation was from 220 ◦C to 180 ◦C. The variable temperature
prints pair against a control where the nozzle temperature doesn’t change. The different
defects are classified with data analysis. The print defects were broken up into two stages.
In stage one the defects are simply normal printing, which is also regarded as on of FDM
printing states for modeling convenience, and abnormal printing. Meanwhile in stage
two the printing defects include insufficient filling warping serous fault printing and
print failure.

Figure 23. Printing Process Diagram [59].

2.4. USB Cameras

USB cameras have become synonymous with the name web camera; however, with the
development of these cameras, they have uses outside of video conferencing. USB cameras
connect mainly through a USB port where the video feeds to the computer. A software
application allows viewing of the pictures and transfers them to the internet [60]. The main
downside to USB cameras is that a PC has to be switched on at the camera’s location to
have images taken.

Khandpur et al. use a USB camera by Svpro that comes equipped with a Sony
IMX322 sensor. The camera was a cost-effective choice with an effective enough resolution.
The camera costs around 85 euros, can focus up to 5 mm, and has a resolution of up to
2 Megapixels [7]. The experimental setup can be seen in Figure 24.

The camera was positioned into an A4v3 3D printer by 3ntr, capturing a top-down
view of the print bed. The group does not specify a type of error but compares the top-
down image of a print layer and compares this to the code. With image processing and
a user interface designed in the Matlab App designer, a flag arises if a defect is detected,
and the program shows the fault area. The process parameters that were controlled in the
system were the layer height, nozzle temperature, and the bed temperature. See the Matlab
interface in Figure 25.
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Figure 24. Printer setup with the Svpro camera and checkerboard pattern [7].

Figure 25. Matlab Interface [7].

The process of image processing to find areas of error can be seen in Figure 26.

(a) (b) (c) (d)

Figure 26. (a) Printed sample with artificial defects (b) Results of process monitoring (c) Area
corresponding to artificial defect (d) Edge detectopm.

Multi-Sensor USB Camera System

Moretti et al. worked to incorporate multi-sensor data fusion technology into AM
manufacturing to create a “smart” machine that could monitor the manufacturing process
and analyze part quality [61]. The multi-sensor system includes encoders on the XYZ axis,
a J-type thermocouple for the hot end temperature, and a Logitech C170 USB camera to
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image the print bed. An Open Electronics 3DRag printer is the test printer used. See the
multi-sensor printer setup in Figure 27.

Figure 27. Schematics of the sensor data streams captured by the NI cDAQ [61].

Although some print tests were done that changed the infill density of parts and
geometry of parts, the main focus was on the architecture’s data-fusion problem. It looks at
how the data signals take and how accurately they measure reality.

Gao et al. also created a multi-sensor monitoring sensor to make a defense mechanism
against cyber-physical attacks on 3D printers, looking at both the kinetic and thermody-
namic prospects [62]. The group utilizes an Ultimater 2 Go Desktop FDM 3D printer for
the machine they will monitor. The attached sensors include an inertial measurement unit
(IMU), an accelerometer, and a Logitech C960 webcam using both the image and sound
data for monitoring. The team monitors the infill path, printing speed, layer thickness,
and fan speed estimation. In Figure 28, the process of checking for attack and correcting for
is added into a general 3D printing process.

Figure 28. Taxonomy of attacks and defenses in additive manufacturing process chain [62].

2.5. Miscellaneous Cameras

Multiple other types of cameras and imagers are in AM process monitoring systems.
For the sake of not having a section for every camera iteration, some notable studies that
don’t fall under the above categories are in the miscellaneous camera category. These
cameras tend to be stock cameras you can get at a lower price point or particular cameras
to focus directly on a given issue.

To begin, Baumann and Roller utilize a Playstation EyeCam with an OmniVision chip
to image the printing process of a Makerbot Replicator 2X [63]. This camera is very similar
to how a USB camera would work but is slightly different as it is formatted to work for
Playstation and therefore doesn’t have a PC interface [64]. In Figure 29, you can see the
EyeCam, which looks very similar to a standard webcam.
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Figure 29. Image of Sony Ps3 EyeCam [65].

With the Omnivision chip, some extra filters and sensors might not be evident in a
general webcam [66]. The EyeCam is placed with a side-view orientation; therefore, no
complete view of the print bed exists in the study. The type of errors the study attempted
to catch included detachment, missing material flow, deformed objects, surface errors,
and general deviation from the model. Optical markers are placed on the horizontal
ground line of the print bed as well as the print head to minimize computational effort.
These markers allow auto-cropping of the video image. External color thresholding was
used for pre-processing, while blob detection was a large part of the in-situ error detection.
In the test prints, the process parameter that was controlled was the filament flow. The team
would purposelly cut the filament flow to seed errors into a print.

Ceruti et al. take an exciting approach to error detection by utilizing augmented
reality (AR). They define virtual reality as the user interacting with a completely virtual
scene, while augmented reality always has some contact with the real world [67]. Below in
Figure 30 is the apparatus of the AR glasses camera and 3D printer.

Figure 30. Printing machine with camera (top) or Wuzix glasses (down) [67].

The proccess used in the AR procedure is as follows.

1. Image acquisition: using an internal camera (digital camera connected to PC) or
external glasses fit by the experimenter

2. Calibration: evaluate internal parameters of camera to correct for image distortion
3. Tracking: defines the position in space and orientation of camera with respect to

fixed references
4. Registration: synchronizing virtual and real world image
5. Display: virtual object added on top of real word image.

After applying the AR program to the printing environment, the lab group utilizes a
speeded-up robust features (SURF) algorithm. The SURF algorithm is a scale and rotation
invariant procedure to detect interest points in images like corners, edges, points with
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sharp changes, etc. After splitting the part into distinct features, the actual print can be
compared to a CAD augmented reality image to locate particular errors where the image
and real-world print features are significantly skewed. The group created one case study
where the print was stretched 5 mm more on the wings of the print compared to original
CAD to test error detecting capabilities. However, further development regarding error
correction and more detailed print anomalies requires research as the paper was mainly a
proof of concept.

Multi-Sensor Miscellaneous Camera System

Rao et al. used multi-sensor fusion to study the states where print failure would
occur [8]. The sensors utilized were accelerometers, thermocouples, a non-contact IR sensor,
and a borescope for live visual feed. A borescope is an optical tool to view areas that would
otherwise not be visible. The camera inserts into the evaluated item without destroying the
object of interest [68]. See an image of a borescope and its components in Figure 31 below.

Figure 31. Borescope and corresponding components [69].

The group uses a USB borescope by Supereyes [70] that has a 13 mm diameter and
built-in measuring functions. The borescope works similar to a webcam presenting a live
feed of the print in its entirety. Using a borescope allowed more up-close imaging of the
extrusion process than other general camera types. The group analyzes three process
variables: extruder temperature, feed rate to flow rate ratio, and layer thickness and
build quality (which, in this paper, is the arithmetic average surface roughness of the print).
The group used a Dirichlet process and evidence theoretic (DP+ ET) to establish an effective
sensor fusion technique and a process fault classification approach. Sensor data acquired
under various process conditions show how sensor signal patterns were associated with
different process states and the evolution of build failures. These signal patterns helped to
identify the process setting that led to building failures and the physical root cause of said
failures. See the experimental setup in Figure 32.

Figure 32. (a) Schematic of the FFF process. (b) Schematic of the FFF setup instrumented with
multiple in situ sensors used in this work for measuring process conditions in real-time [8].
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3. Discussion

One of the main distinctions of the architectures is less about the specific camera and
more about the number of sensors used. The architecture that only utilizes one camera can
detect one-dimension errors. The layer height is the leading standard parameter monitored
for experiments using only a single camera for sensing capabilities.

Once we get into multi-sensing territory, the errors that are capable of detection become
fuzzier. Generally speaking, wanting to detect the location of specific 2D errors requires
two visualization methods. Often this visualization comes down to a camera that visualizes
the side of the print and another that gets a top-down image. In the studies in which this
isn’t present (for instance [67], there is generally CAD assistance, and the error verification
is not precise).

Regarding mapping process failure to specific errors, sensors monitor the internal
inter-workings of the printer. IR cameras seem to be the most utilized in these cases in
conjunction with other sensors. In being able to map the heat of the bed/print visually
and having thermocouples, accelerometers, etc., on the parts, we can have redundant data
that is compared to each other and synthesized to give a fuller understanding of what is
happening during a vibrant print.

Cost is essential in choosing desired architecture outside of talk of error. Generally
speaking, LPBF AM monitoring will be expensive anyway, as the printers are not cheap.
However, webcams and non-specific miscellaneous cameras will be your most affordable
option when discussing additional optical sensors and FDM architecture. CCD cameras
and DSLR cameras, on the other hand, will have a general proportional cost-to-quality
ratio. Other costs to account for are what you are getting with your purchase. Many
miscellaneous cameras have in-built sensors or software that monitor different aspects of
the print other than just visualization of the print bed. In contrast, if you get a stock camera,
you will have mainly only visualization features.

A final note, with analysis, is that although the lighting architecture isn’t mentioned
much in this paper, this is a crucial part of the monitoring architecture of a print. There
are often trade-offs in the angle at which the camera should be positioned and how to
illuminate the printing area to get valid data. The user who plans on creating their own AM
monitoring system will have to keep the type of printer they will buy, the size of camera
they need, and how many sensors they can realistically fit on the apparatus.

Further discussion on errors and architecture specific to each printer type is provided
below. These trends are summarized in Tables 3 and 4.

3.1. FDM

CCD cameras tend to be the standard optical monitors for the one-dimensional errors
seen in FDM printers. Although other cameras can be used to find one-dimensional errors,
if that is the case, these errors(generally infill layer and layer height) are a set of many
errors that are trying to be characterized. For this one-dimensional error, the process
parameter that is the controlled variable is usually the flow rate. However, Shen et al. [35]
monitored several other reasons for the effects found in their study to occur, including
nozzle temperature, layer thickness, ambient parameters and the aforementioned flow rate.

For FDM printing, 2D errors are not as defined as most one-dimensional errors and
usually are spotted using some machine learning algorithm and seeding the algorithm
with author-defined errors. The 2D errors are created based on different texturization
methods. Some algorithms that detect error include artificial neural networks, support
vector machines, nearest neighbor, Dirichlet Process, and more.

FDM printers are much more likely to be used and experimented on because of
their low price, especially for low-end printers. This is promising for developing process
monitoring for this style of AM. However, in the same vein, any pre-built monitoring
software is rare for this printer style; therefore, much experimentation and trial and error
are needed for even your most basic set-up.
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Table 3. Summary of FDM studies.

Author Optical Method Process Parameter Multi-Sensor Error

Cheng and Jafari [32] CCD Roller Speed No road width (underfill
or overfill)

Shen et al. [35] CCD
Nozzle temperature, environment
temperature, nozzle diameter,
layer thickness, feed velocity

No
Tranverse defect,
longitudinal defect,
localized defect

Nuchitpras- itchai et al. [48] DSLR clogged nozzle, loss of filament,
incomplete project

No, one and dual
camera cases

geometric difference
between CAD and capture
of print

Miao et al. [49] DSLR Nozzle and platform temperature IR Sensor, K-type
thermocouple distortion

Costa et al. [55,56] IR processing conditions,material
properties, deposition sequence No cross-section deformation

and layer adhesion

Ferraris et al. [57] IR Location and time of
section monitored No temperature variations

Li et al. [58] IR

layer thickness, printing speed,
nozzle temperature, layer index,
printing pattern direction,
neighborhood time difference

No thermal field prediction

Hu et al. [59] IR nozzle temperature No
Insufficient filling,
warping, serious fault
printing, print failure

Khandpur et al. [7] USB Layer Height, Nozzle temperature,
bed temperature No

top down geometrical
difference of print
and GCode

Moretti et al. [61] USB infill and part geometry XYZ Encoders,
J-Thermo- couple Data Fusion

Gao et al. [62] USB infill path, printing speed,
layer thickness IMU and accelerometer verifying print parameters

Baumann and Roller [63] Play station
EyeCam filament flow No

detachment, missing
material flow, deformed
objects, surface errors,
geographical deviation
from model

Rao et al. [8] Bore- scope Extruder temp, feed rate, flow rate
ratio, layer thickness

accele- rometer,
thermocouples,
IR sensor

normal, abnormal,
and failure

Ceruti et al. [67] AR glasses None No Geometric differences

3.2. LPBF

For the LBPF printers, the one-dimension defect monitored is the powder bed height.
Whereas the general 2D parameters monitored are porosity and how said porosity affects
the print as a whole. Often this is achieved with a combination of an in-built CT scanner in
the printer and an additional CCD camera.

Because LBPF printing parameters are tied together more directly using the energy
density function, any specific impact of process parameters on the print build is usually
coupled with at least one other parameter. For this reason, most studies dealing with errors
larger than the one-dimensional errors tended to be either just monitoring studies where a
couple of process parameters were changed through a set range and different maps of the
the effects generated. Or a machine learning algorithm used where the AI auto generated
specific errors depending on similarity of error visually.

As mentioned in the FDM chapter, LPBF printers tend to be at a pricier range and
therefore less likely to have success being used in a wide array of research as a cheaper
printer would be. However, due to certain in-built sensor like CT scanning already being
incorporated in many printers, optical monitoring can be attempted without any additional
modifications to the build.
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Table 4. Summary of LPBF studies.

Author Optical Method Process Parameter Multi-Sensor Error

Kleszczynski et al. [21,28] CCD energy density,scanning speed,
overhanging angle No balling formation, super

elevation, support connects

Zeinali et al. [31] CCD

flow rate, powder density,
scan speed, jet diameter, laser
beam diameter, nozzle angle,
laser angle

No Clad Height

Doubenskaia et al. [36] CCD hatch distance, powder
layer thickness Pyrometer Monitoring how process

parameters affect one another

Davis and Shin [37] CCD Clad-height Line-laser Validate measurement
technique

Peitrich et al. [41,42] DSLR Machine Learning model No, CT post scan Anomoly Detection of Voxels

Imani et al. [43] DSLR laser power, hatching
space, velocity No, post X-ray CT scan porosity

Schilp et al. [52] IR Scanning Speed No temperature distribution, melt
flow behavior, wettability

Mireles et al. [53,54] IR re-scanning No, post X-ray CT scan porosity

4. Conclusions

This literature review was meant to look into the experimental setups of AM moni-
toring systems from an optical point of view. The two most prominent in literature AM
processes were focused on, were FMD and LPBF printing. The review looked at how
different cameras and architectural styles lend themselves to discovering and possibly
altering different errors in the prints. The review found a couple of trends.

1. Regarding state-of-the-art AM monitoring, there seems to be a significant gap in
knowledge in terms of texture analysis as well as mapping errors to a given cause.
There appears to be a growing amount of research on how a product looks with a
given parameter change. In the same vein, an interest in studies that monitor more
closely all of the process signals during a print. However, there needs to be a growing
knowledge of how specific mechanical failures of a 3D printer affect a print and,
more specifically, how to fix or compensate for these mechanical errors. The one-
dimensional errors have a more considerable progression of understanding in this
regard. However, research on textural mistakes and their root causes is still early.

2. Another section of infancy is in-situ error correction. Many of the methods in the pa-
pers reviewed required post-print analysis, which would make any form of correction
impossible. Similar to finding root causes of errors, in-situ detection and correction of
one-dimensional errors has been attempted, although very much in its infancy stages.
Any textural in-situ error correction has either been limited in scope or non-existent.

With this in mind, the most promising direction to help further the field of AM
monitoring would be creating a multi-sensing architecture with sensors that could give
back real-time results. The system should analyze data to inform the printer what it should
do next. An architecture like this would need at least three sensors, 2 of which would
be optical and the third most likely thermal (if one of the two optical sensors is not IR).
Further recommendations include XYZ encoders and an encoder on the filament motor
(regarding FDM) to monitor the difference between the desired location of the print head
and the actual.
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