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Abstract—Micromachined corner cube retroreflectors (CCRs)
can be employed as transmitters in free-space optical communica-
tion links. In this application, a CCR is illuminated by an unmodu-
lated beam, and one mirror of the CCR is intentionally misaligned
to modulate the intensity of the retroreflected beam. The low power
consumption, small size, and ease of operation of a CCR makes it
an attractive option for certain types of optical links. However, cur-
vature and misalignment of the micromachined mirrors can cause
CCRs to perform far from theoretical limits. In this paper, we de-
velop two methods to predict the optical performance of CCRs
having ideal or nonideal mirrors. We first introduce a discretized
analysis method based on ray tracing and scalar diffraction theory.
We then propose a simpler phase-shift model under the assump-
tions that the misalignment and surface nonflatness are small and
that they do not alter the optical topology of the CCR. These as-
sumptions are satisfied by typical CCRs to be used in free-space
optical links. Using our two methods, we determine tolerances on
mirror curvature and misalignment for representative microma-
chined CCRs.

Index Terms—Free-space optical communications, MEMS CCR,
misalignment, optical modeling, surface curvature.

I. INTRODUCTION

A CORNER cube retroreflector (CCR) is a device made up
of three mutually orthogonal reflective surfaces, or mir-

rors, forming a concave corner [1]–[3]. The mutual orthogo-
nality ensures the light entering the CCR will be reflected back
to the source, provided that it strikes the CCR within a region
that depends on the direction of incidence. In Fig. 1, we illustrate
the CCR’s retroreflection property through ray tracing. By inter-
mittently misaligning and realigning one or more of the CCR’s
mirrors, one can transmit a digitally modulated optical signal
back to the interrogating light source. For example, in [1]–[3],
two of the CCR’s mirrors are fixed, while the third mirror is
hinged and equipped with an electrostatic actuator, allowing the
mirror to be tilted in response to an applied voltage. The hinged
mirror-actuator system has a resonance frequency on the order
of several kilohertz, allowing the CCR to transmit an optical
signal at a bit rate up to several kilobits per second. The CCR
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Fig. 1. Ray trace through an ideal CCR and the CCR coordinate system.

has been proposed as a passive transmitter in a free-space op-
tical communication system over a range of up to 1 km [4].
In this application, the CCR offers extremely low power con-
sumption ( 1 nJ/bit), ease of operation, and small size; CCRs
under a cubic millimeter in size can be microfabricated in pro-
cesses used for fabrication of microelectromechanical systems
(MEMS). In practice, however, the performance of microfab-
ricated CCRs can be degraded substantially by nonidealities,
including nonflatness and misalignment of the mirrors. In this
paper, we describe two methods of numerically computing the
reflection characteristics of nonideal CCRs with misalignment
and/or surface curvature. Using these techniques, one can deter-
mine specifications for CCR fabrication and predict the perfor-
mance of free-space optical links using CCRs. Current optical
MEMS processes can yield mirrors with surface roughness on
the order of tens of nanometers. When these mirrors are illu-
minated in the visible or near-infrared range, surface roughness
does not significantly impair CCR performance (see, e.g., [3]).

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce the geometrical optics description of CCRs.
We define the characteristics of CCRs that are relevant for free-
space optical communications, especially those determining the
optical power reflected to the receiver. We then describe two
methods for modeling the reflection characteristics of nonideal
CCRs, including the discretized analysis method and the phase-
shift method. In Section III, we apply these two methods to char-
acterize the performance of CCRs having mirror curvature and
misalignment. We present our conclusions in Section IV.

1077-260X/02$17.00 © 2002 IEEE
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Fig. 2. Effective areas of CCR surfaces with incident direction�n̂ , where
n̂ = n x̂ + n ŷ + n ẑ andn � n � n . The two different cases
are: (a)2n � n � n � n and (b)n � 2n � 2n .

II. OPTICAL MODELING OF MEMS CCR

A. Optical Characteristics of CCRs for Free-Space Optical
Communication

Fig. 1 shows an ideal CCR and defines theCCR coordinate
system( , , ). In an ideal CCR, the mirrors are normal to the

, , and axes, respectively. An incident ray strikes the CCR
along theincidence direction , where

, i.e., , with .
The ray undergoes three reflections, each reflection changing
the ray’s direction along one of the coordinates, so that the re-
flected ray exits the CCR along the direction.1 Not all rays
that strike the CCR will be reflected back to the light source,
however. Whether a given ray is reflected back depends on both
the incident direction and on where the ray first strikes the
CCR. For a given , we define the effective area on a mirror’s
surface such that an incident ray first striking the mirror within

1There also exist two boundary cases, in which an incident ray can strike only
one or two mirrors and be returned to the source. The single-reflection case
occurs when an incident ray is normal to a mirror, while the double-reflection
case occurs when an incident ray is parallel to one mirror surface and not normal
to either of the other mirrors. In typical communications applications, CCRs are
randomly oriented, and each of the boundary cases occurs with zero probability.
Hence, in this paper, we restrict our attention to the three-reflection case.

Fig. 3. On–off-keyed free-space optical link using a CCR: (a) on state and (b)
off state.

the effective area will be reflected back to the source. The ef-
fective area can be determined by ray tracing. Because of the
symmetry of an ideal CCR, it is sufficient to consider the case
that . In Fig. 2, we depict the effective area in
each of the two possible cases, i.e.,
and . For other incident directions, we can
determine the effective area by permuting the, , and coordi-
nates in Fig. 2. In Fig. 2, each mirror’s effective area is divided
by a dashed line into two subareas. If an incident ray strikes
the CCR in a given subarea of one mirror, upon reflection, the
beam will strike the mirror adjacent to that subarea. All rays in-
cident upon a given subarea will reflect off the three mirrors in
the same order. Since a ray trace is reversible, all rays exiting
the CCR from a given subarea will have reflected off the three
mirrors in the same order.

For each given , we define a light-path coordinate system
( , , ), where the -axis is along the direction of . As shown
in Fig. 1, in the CCR coordinate system (, , ), we can rep-
resent in spherical coordinates as (, , ), with .
Hence, the transformation between the CCR coordinate system
( , , ) and the light-path coordinate system (, , ) is given
by

(1)

We project the effective areas of all three mirrors onto the–
plane, and we define the sum of the projected effective areas to
be the total effective area. For each incidence direction, we
can consider the CCR output beam to be reflected from a single
flat mirror perpendicular to and having an area equal to the
total effective area and a reflectance equal to, where each
individual mirror has reflectance .

In a free-space optical link, the CCR is illuminated along
and the reflected light is monitored by a receiver along the ob-
servation direction , as depicted in Fig. 3. When the
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Fig. 4. Calculating the power received by a receiver from a CCR. The DSCS
profile is shown in a spherical coordinate system. The angular coordinates
(�; �) of the spherical coordinate represents the direction ofn̂ , and the radial
coordinate� denotes the DSCSd�(n̂ ; n̂ )=d
 = �.

three CCR mirrors are mutually perpendicular, the CCR is in the
on state, and reflects light to the receiver, as in Fig. 3(a). When
one of the mirrors is misaligned by a sufficiently large angle,
the CCR is in the off state, and rays exiting the CCR will be
directed away from the receiver, as in Fig. 3(b). Thus, by me-
chanically actuating one of the CCR mirrors, we can transmit
an on–off-keyed (OOK) signal.

In this paper, we focus on the characteristics of CCRs that de-
termine the power received in a free-space optical link. We make
reference to Fig. 4. Assume that the CCR is illuminated along
the direction by an irradiance (measured at the CCR).
Suppose that the reflected light is observed along the direction

by a receiver subtending a solid angle at the CCR. The
CCR’s light-reflecting properties are characterized by the differ-
ential scattering cross section (DSCS) , which
is the reflected power per unit solid angle of observation per unit
illumination irradiance. The DSCS is a function of the incident
direction and the observation direction and has units
(W/sr)/(W/m ), i.e., m /sr. In terms of the DSCS, the received
power is given by

(2)

The solid angle subtended by the receiver can be computed
using

(3)

where is the receiver diameter and is the distance from
the CCR to the receiver. Note that for a given, the integral of

over all equals the total effective area.
The colinear differential scattering cross section (CDSCS) is

defined as the value of when the axes of illu-
mination and observation are colinear . The CDSCS is
relevant because in practice the receiver is almost always placed
along the axis of illumination, and the distanceis much larger
than the receiver diameter . Hence, the receiver subtends a
small solid angle, over which the DSCS is approximately equal
to the CDSCS. Therefore, the power received can be calculated
approximately as follows:

(4)

In many applications [4], the CCRs are randomly oriented
with respect to the direction of the light source/receiver. A
useful parameter describing the performance of free-space links
using randomly oriented CCRs is the complementary cumula-
tive distribution function (CCDF) of the CDSCS normalized to
the CDSCS along the body diagonal

CCDF

(5)

where is the normalized CDSCS. Suppose that in order to
receive properly from a CCR, it is required that the CDSCS
be some specified fraction of the CDSCS along the body
diagonal. Then CCDF( ) is the probability that one can receive
from a randomly oriented CCR. In this paper, we assume that
the CCRs are randomly oriented over an entire unit sphere. In
some applications, the CCRs may be oriented randomly over a
half-sphere [4].

B. Calculating the DSCS of Nonideal CCRs

In this section, we describe how to calculate the DSCS of non-
ideal CCRs, in which the mirrors may have curvature and/or
misalignment. First, we introduce a discretized analysis method
that combines ray tracing and diffraction theory. While gener-
ally applicable, this method requires lengthy computations. We
then describe a phase-shift model, which greatly simplifies the
computation. The phase-shift model is valid as long as any cur-
vature and misalignment of the CCR is small enough that the
CCR optical topology can be considered to remain unchanged.
This assumption must usually be satisfied by CCRs in order to
achieve satisfactory performance.

1) Discretized Analysis:To begin the analysis, the surface
of each CCR mirror is described by an equation. The CCR faces
are bounded by the planes , , , ,

, and , as in Fig. 1, where each axis is normalized
by the lengths that each mirror would have if the three were per-
fectly flat and mutually perpendicular. In practice, the surfaces
are sufficiently close to flat and orthogonal that the error intro-
duced by not adjusting the boundary conditions is negligible.
Each surface is divided into a specified number of discrete ele-
ments that are bounded by equally spaced planes parallel to the

– , – , and – planes. In Fig. 5(a), we show an example of
dividing one surface into four discrete elements. If the surfaces
were perfectly flat, these discrete elements would be squares of
equal size. For nonflat surfaces, the different discrete elements
have various surface areas and shapes. We choose the number of
discrete elements to be sufficiently large so that we can approxi-
mate each surface as flat. The normal vector of each discrete el-
ement is determined by computing the Jacobian of the equation
describing the surface, evaluated at the center of the element.

Fig. 5(b) depicts the analysis of a single discrete element of
the CCR. We assume that the CCR is illuminated along the di-
rection by a uniform plane wave having an irradiance.
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Fig. 5. (a) Discretization of the CCR surfaces. (b) Analysis of elementm in
the CCR.

This is a good approximation for free-space optical communi-
cation over a few hundred meters or longer with CCRs of sub-
millimeter scale. For each discrete element, a ray trace is per-
formed to determine the direction of the ray leaving the CCR.
The ray starts from a reference plane in which all rays striking
the CCR are in phase. This reference plane is normal to the in-
cident direction and passes through an arbitrary point near
the CCR, i.e., parallel to the– plane in the light-path coordi-
nate system. After the ray strikes discrete element, the direc-
tion of the reflected ray can be determined from the incidence
vector and the normal vector of element. The next surface
that the ray strikes, if any, is then determined, and the ray trace
continues. Finally, the ray exits the CCR and is terminated on a
second reference plane, the – plane, which is defined by
two arbitrary unit vectors, and , which are perpendicular
to the exiting ray and to each other. The– plane for each
discrete element can be chosen to pass through an arbitrarily
chosen point near the CCR (possibly different for each). Un-
like the – plane, each – plane is unique to a discrete
element unless the three mirrors are perfectly flat.

It is also important to keep track of the distance that each
ray propagates through the ray trace and the number of reflec-
tions that each ray undergoes. These values are needed
to specify the phase change and the transverse extent of the wave
reflected from the discrete element.

In order to treat diffraction effects, we employ the Fraunhofer
diffraction theory [5], which is valid when the receiver lies in the

far field. More precisely, this requires that , where
is the distance from the aperture to the receiver,is the largest
dimension of the output aperture, andis the wavelength of
the light. For most free-space optical communication systems,
the transmission distance is large enough to satisfy the far-field
condition. The complex electric field amplitude contributed by
discrete element at the observation point is given by

(6)

where . In (6), is the projected area of theth
discrete element on its – plane, and is the
distance between on and the receiver position.

The sum over all discrete elements gives the complex ampli-
tude of the total electric field at the receiver

(7)

The irradiance at the receiver can be calculated from this total
electric field using

(8)

The differential scattering cross section (DSCS)
(m /sr) can be calculated from the irradiance

using

(9)

The integral of the differential scattering cross section over
all observation angles equals the total scattering cross section
of the CCR, , which has units of m

(10)

2) Phase-Shift Model:In order for CCRs to perform well
in free-space links, mirror misalignment and nonflatness must
be small. In the phase-shift model, we assume that these effects
are sufficiently weak that the geometrical optical topology of
the CCR can be assumed to remain ideal, as depicted in Figs. 1
and 2. Under this assumption, all – planes lie parallel to
the – plane, and so all – planes can be chosen to coin-
cide with the – plane. As in Fig. 5(a), the light exiting from
the CCR can be assumed to be exiting from the total effective
area on the – plane. We account for the effects of mirror mis-
alignment and nonflatness by introducing corresponding phase
shifts to the light rays exiting the CCR. The details are given as
follows.

We model nonflat mirrors as spherical surfaces, following
previous work [1], [6] showing that this is a good model for
representative nonflat MEMS mirrors. For nonflat mirrors, we
characterize mirror alignment by considering a vector normal to
each mirror at the mirror’s center. The CCR is considered to be
misaligned when any of these normal vectors deviates from the
ideal CCR coordinate system, as shown in Fig. 1. Knowing the
incidence direction of a ray, the normal vector to a CCR mirror
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surface (at the center of the mirror), and the mirror radius of cur-
vature, we can compute the phase delay of the ray as compared
to the ideal CCR. For example, assuming that for the mirror in
the – plane, the normal vector is

and the radius of curvature is , the phase delay at position
is

(11)

where

(12)

and where is the angle between the vectors and
.
Under the assumptions made here, we can assume that in a

nonideal CCR, each ray follows a path topologically equivalent
to the path through an ideal CCR. For each ray exiting from the
total effective area at , we can trace backward through an
ideal CCR to find the positions at each mirror surface where the
ray has been reflected. The total phase delay of a ray exiting at
( , ) (as compared to an ideal CCR) is the sum of the phase
delays caused by reflections from the three nonideal mirrors

(13)

The complex electric field amplitude at the receiver position
is given by

(14)

where is the total effective area at the– plane. Using (8),
(9), and (14), we can compute the DSCS of a CCR much more
easily than using discretized analysis.

III. RESULTS AND DISCUSSION

In this section, we apply the optical models described above
to investigate the influence of misalignment and surface nonflat-
ness on CCR optical characteristics that affect free-space links.
In all of the following, we assume that the illuminating light
has a wavelength nm and that all three CCR mirrors
are squares of equal size. When considering nonflat mirrors, all
three mirrors are assumed to be spherical with equal radius of
curvature .

We first consider a CCR having flat mirrors, with one
mirror misaligned by an angle, as shown in Fig. 6(a). Each
mirror is 250 m square. We consider incidence directions

and . In Fig. 6(b),
we show the CDSCS versus misalignment angle, computed
using both discretized analysis and the phase-shift model.
Results calculated using the two methods are seen to agree
closely. Fig. 6(b) shows that when the CCR is perfectly
aligned, the CDSCS for is larger than

Fig. 6. (a) Misalignment of one of the CCR mirrors by an angle�. (b) CDSCS
versus the misalignment angle� computed using both discretized analysis and
the phase-shift model. Each CCR mirror is 250�m square, and the incident
directionsn̂ are1=

p
3(1; 1; 1) and1=

p
2:3(0:7; 0:9; 1), respectively.

that for because the total effective
area is larger for the former incidence direction. When one
mirror is misaligned, however, the CDSCS degrades more
rapidly for the former incidence direction because misalign-
ment induces larger phase variations over the larger effective
area. In Fig. 6(b), we observe that when mrad, the
CDSCS for actually falls below that
for . In Fig. 6(b), we see that a
misalignment angle of only 2 or 3 mrad is sufficient to switch
this CCR from the on state to the off state.

We have performed additional calculations (not shown here)
comparing the discretized method and the phase-shift model,
which have verified the accuracy of the latter technique. In the
remainder of this paper, we employ the phase-shift model to
study the effects of mirror nonflatness and misalignment on
CCR performance.

Depending on the fabrication process, MEMS mirrors may
be subject to varying degrees of nonflatness. In Fig. 7, we
plot the CDSCS versus mirror size for radii of curvature

, 1, 0.5, and 0.2 m. We consider incidence directions
and . We see that

when the radius of curvature is large, the CDSCS increases
rapidly with increasing mirror size (i.e., with increasing ef-
fective area) for both incidence directions. When is small,
however, the CDSCS increases less rapidly with increasing
mirror size. In fact, when m or smaller, increasing the
mirror size fails to increase the CDSCS and may even decrease
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Fig. 7. CDSCS versus the CCR mirror size computed by the phase-shift
model. All three mirrors have radii of curvatureR , whereR takes on
the values1, 1, 0.5 and 0.2 m, respectively. The incident directionsn̂
are 1=

p
3(1; 1; 1) (solid line) and 1=

p
2:3(0:7; 0:9; 1) (dashed line),

respectively.

the CDSCS; this is because increasing the mirror size leads to
increased optical phase variation over the increased effective
area. The data in Fig. 7 clearly illustrate the importance of
mirror flatness in achieving good CCR performance.

We now consider the combined effects of mirror misalign-
ment and nonflatness. As before, we choose incidence direc-
tions and . In Fig. 8,
we plot the CDSCS versus the misalignment anglefor radii of
curvature 1, 0.5, and 0.2 m. We choose the mirror sizes to
be 250 and 400 m, respectively, in Fig. 8(a) and (b). The data
in Fig. 8 show that the CDSCS degrades with both increasing
and decreasing . Our calculations have shown that for large

, to achieve a CDSCS close to the optimal value, the tolerable
is approximately inversely proportional to the mirror size. For

smaller values of , the effect of misalignment angleis re-
duced, because at least some portion of the curved mirror sur-
face remains relatively well aligned.

In Fig. 9, we present the effects of misalignment and cur-
vature on the CCDF of the CDSCS normalized to its value
when the incidence direction lies along the body diagonal,

. The mirror sizes are chosen to be 250 and
400 m in Fig. 9(a) and (b), respectively. In each figure, we
consider a perfect CCR, a CCR having one mirror misaligned
at mrad, a CCR having radii of curvature
cm, and a CCR having both misalignment and curvature. As
we see in Fig. 9(a), when the mirror size is 250m, the
misalignment alone causes little change in the CCDF. The
curvature alone causes a noticeable increase in the CCDF,
especially for relatively high values of the normalized CDSCS.
The combined misalignment and curvature lead to a more
noticeable increase in the CCDF for all but the smallest values
of the normalized CDSCS. These increases of the CCDF occur
because curvature or combined misalignment and curvature
tend to degrade the CDSCS most significantly for incidence
directions for which the total effective area is largest, such as
along the body diagonal. Since the CDSCS along the body
diagonal is the normalization factor in the CCDFs shown in

Fig. 8. CDSCS versus the misalignment angle� [as defined in Fig. 6(a)] for
different CCR mirror radii of curvature computed by the phase-shift model. The
CCR mirror sizes are: (a) 250 and (b) 400�m. All three mirrors have radii of
curvatureR , whereR takes on the values 1, 0.5, and 0.2 m respectively. The
incident directionŝn are1=

p
3(1; 1; 1) (solid line) and1=

p
2:3(0:7; 0:9; 1)

(dashed line), respectively.

Fig. 9, these nonidealities can increase the CCDFs. When
we increase the mirror size to 400 m, as in Fig. 9(b), all
the effects described above become even more pronounced.
In Fig. 9(b), the CCDF with combined misalignment and
curvature does not go to zero for because under these
conditions, the CDSCS is not largest for incidence directions
along the body diagonal but is actually largest for other nearby
incidence directions. The results shown in Fig. 9 can be used
to compute the probability that in a free-space communication
system, a randomly oriented CCR will reflect sufficient light
back to the receiver.

IV. CONCLUSION

Micromachined CCRs can be used to transmit data in free-
space optical communication systems. However, their perfor-
mance can be far from theoretical limits because of misalign-
ment and the nonflatness of the mirrors. In this paper, we have
defined certain parameters to describe the optical characteris-
tics of CCRs for data transmission, such as DSCS, CDSCS, and
CCDF. We then developed optical models to compute these pa-
rameters. These optical models can be used to predict the per-
formance of CCRs, determine device fabrication tolerances, and
optimize device specifications.
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Fig. 9. Complementary cumulative distribution function of normalized
CDSCS [d�(n̂ ; n̂ = n̂ )=d
 ]=[d�(n̂ = 1=

p
3(1; 1; 1); n̂ =

n̂ )=d
 ] for CCRs with mirror sizes: (a) 250 and (b) 400�m, respectively,
computed using the phase-shift model. The cases of perfect CCR (solid line),
CCR with one surface misaligned with� = 0:6 mrad (dashed line), CCR with
radius of curvature 20 cm (dotted line), and CCR with both misalignment and
radius of curvature (dash-dot line) are shown for comparison.
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