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An optical network is described that is capable of recognizing at standard video rates the identity of faces
for which it has been trained. The faces are presented under a wide variety of conditions to the system
and the classification performance is measured. The system is trained by gradually adaptingphotorefrac
tive holograms.
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1. Introduction

We report the experimental demonstration of a two-
layer optical network that accepts input images of
faces at standard video rates and classifies them in
real time. The adaptable interconnections of the
network are implemented with holograms stored in a
photorefractive crystal. The optical system that we
use in this work is the standard holographic multi-
layer architecture The second layer has fixed
weights, and a simple ad hoc procedure is used to
train the network. Choosing a training algorithm
that is well suited to the optical implementation is the
most crucial step in carrying out a successful experi-
ment. The error backpropagation algorithm7 and its
variants are the most popular procedures for training
multilayer optical networks. 34 5 Backpropagation
is an example of a learning algorithm that yields
distributed representations in the hidden layers of a
network. In a distributed representation a large
portion (typically half) of the hidden units respond
when the input is one of the training samples. In
contrast, in a local learning algorithm each hidden
unit is trained to respond to only a small number of
training examples. The radial basis function classi-
fier is an example of a commonly used local learning
algorithm. An optical radial basis function system
has been recently demonstrated.8 The advantage of
local algorithms is the fact that the training process is
relatively easy. If an input training sample does not
cause any of the existing hidden units to respond
sufficiently, a new hidden unit is added and devoted to
the new sample. The disadvantage of local algo-
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rithms is the large network size that is typicall3
obtained. The disadvantage of distributed-represen
tation learning algorithms is the fact that the train
ing is difficult, typically requiring a large number ol
training cycles.

In selecting an algorithm for training an optica'
neural network, we can argue that distributed algo-
rithms are well suited for optics because the computa
tional speed of optics can be effectively used to speed
up the training. However, the optical implementa-
tion of algorithms such as error backpropagatior
require a dynamic holographic medium that can be
accurately controlled. In the experiment described
in here we use photorefractive crystals to implement
the adaptive interconnections. When a new holo-
gram is recorded in a photorefractive crystal, the
previously recorded signal is partially erased. This
weight decay in effect limits the number of cycles a
training algorithm can run on an optical system,
because earlier exposures are erased as the training
progresses. Dynamic copying9-12 can overcome this
problem by restoring the strength of the hologram
through feedback. However, dynamic copying is still
at the early stages of development, and it is prema-
ture to construct a large-scale network that uses this
approach. Another way of bypassing the weight
decay problem is to use local algorithms, since they do
not require long training sequences. In this case the
large storage capacity of three-dimensional holo-
grams can be used to synthesize the large networks
that are required.

The algorithm that we use is a hybrid. It has
features of local algorithms in that each hidden unit
is trained separately and the training method is not
iterative. In contrast, the representations that re-
sult are distributed. We found that distributed rep-
resentations were crucial for two reasons. First,
when the optical network was trained with purely
local representations, we found that it became ex-
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tremely susceptible to noise and the performance
deteriorated very rapidly as the number of hidden
units increased. This phenomenon occurs because
in a purely local representation, only one hidden unit
is on at a time. Because the output is formed as a
linear combination of all the hidden units, a small
amount of noise from each hidden unit will ultimately
overwhelm the signal term as more hidden units are
added. Poor generalization performance is the sec-
ond reason to avoid purely local representations.
We found that by switching to distributed representa-
tions, the system performed much better when pre-
sented with images it had never seen before.

In Section 2 we describe the optical architecture
and the overall experimental setup. In Section 3 we
describe the training algorithm and the details of the
training procedure. In section 4 we describe the
performance obtained with the network.

2. Experimental Apparatus

The optical setup is shown in Fig. 1. It is a two-layer
network with an optical preprocessing stage that
performs edge enhancement. The input device to
the network is a liquid-crystal TV (LCTV) that has a
resolution of 320 pixels x 240 pixels and 2 cm x 2.5
cm clear aperture. This device was extracted from
an Epson television projector. The LCTV is illumi-

nated with collimated light from an argon laser
(X = 488 nm). Lens Li produces the Fourier trans-
form of the input image at plane P2. A spatial filter
is placed at P2 to accomplish two goals. It blocks the
higher diffracted orders that result from the pixela-
tion of the LCTV. The removal of the higher orders
gives a smoother, less noisy image but it reduces the
light efficiency of the LCTV. The second function of
the spatial filter in plane P2 is to block the low-
frequency components of the input image that en-
hance the edges of the input image and dramatically
improve the ability of the system to discriminate
between inputs from different classes. A photo-
graph of the spatial filter is shown in Fig. 2. It
consists of a cross hair and a dc block for high-pass
filtering. The purpose of the cross hair is to remove
the diffraction pattern at P2 caused by the sharp
edges formed at the boundary of the actual area of the
LCTV. This boundary, when edge enhanced, yields
a strong rectangle that is common to all inputs and
makes discrimination difficult. The diameter of the
dc block is 260 pum. Given the wavelength of light
and the focal length of Li (FL, = 50 cm), we can find
the cutoff frequency to be 0.533 lines/mm. Roughly
speaking, features in the input plane that are smaller
than 1.9 mm are highlighted in the edge-enhanced
image. A iris (not shown in Fig. 2) is used to block
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Fig. 1. Optical setup of the face-recognition system; PR, photorefractive.
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Fig. 2. Spatial filter used in plane P1 of Fig. 1.

the higher orders not blocked by the cross hair. An
example of an image of a face and the edge-enhanced
version of it that was produced by the optical system
is shown in Fig. 3.

Lens L2 images with magnification 1 plane P2 onto
plane P3, the plane of the hologram. The size of the
spectrum on the hologram is approximately 5 mm in
diameter. The hologram is formed by introducing a
plane-wave reference. The angle between the signal
and reference beam varies from 29° to 310 outside the
crystal. The reference beam is reflected off a mirror
mounted on a computer-controlled rotation stage.
The plane of the rotating mirror is imaged onto the
crystal with a unit magnification 4-f system that
permits the angle of the reference beam to be scanned
without moving the position of the reference beam on
the crystal. The crystal is an iron-doped LiNbO3 ,
with a doping level of 0.01%. The c axis of the
crystal is in the horizontal direction in Fig. 1. The
crystal dimensions are 20 mm x 20 mm x 8 mm.

Lens L4 is a Fourier transform lens that produces
an image of the edge-enhanced input image on a CCD
for visual assessment. Lens L3 is also a Fourier
transforming lens that produces at the output plane
P4 the response of the first layer where it is sensed by
a linear detector array. A beam splitter placed in
front of the array diverts a portion of the light to a
CCD camera so that the output of the first layer can
be visually monitored. Functionally, the system from
the input plane P1 to P4 is an array of image
correlators with one-dimensional shift invariance.
To understand this, consider the case in which a

Fig. 3. Edge-enhanced image and original face.

single hologram is recorded in the crystal at a partici
lar angle of the reference beam. In this case t.
system is a classic VanderLugt13 correlator excei
that a volume hologram is used and the input he
been high-pass filtered. The effect of the voluir
hologram is to eliminate shift invariance in tI
horizontal direction in Fig. 1. This happens becaur
a horizontal shift at plane P1 will change the angle (
incidence at plane P3 and cause the hologram to I
Bragg mismatched.14-16 Specifically, the light distr
bution at plane P4 is given by14

g(x', y') = ff f(x, y)h(x - x', y - y')dxdy sinc(ax'),

(I

where f(x, y) and h(x, y) are the input and filte
functions, respectively. The input coordinates ai
(x, y) and the output coordinates are (x', y'). Th
thickness of the crystal is L, 0 is the angle of th
reference beam, and

L sin 0
o = ~

"4

We see from Eq. (1) that the effect of the thic
hologram is to mask off the two-dimensional correh
tion pattern except for one vertical strip whose pos
tion depends on the angle of the reference bean
The amount of shift invariance that can be tolerate
in the horizontal direction is approximately equal t
1/ux plus the width of the correlation peak in th
horizontal direction. The system retains its shil
invariance in the vertical direction. If we change th
angle of the reference beam and record a differer
hologram at each angle, then the one-dimension-
strip of the two-dimensional correlation function wi
be produced at a different horizontal location. In th
experiment that we will describe, holograms ar
recorded at 40 separate angles separated by 0.05'
yielding a system that has 40 correlators with one
dimensional shift invariance.

The experiment in Fig. 4 demonstrates the opera
tion of this part of the system. In this case eac]
filter was a recording of the face of the same person a
different scales. What is shown in Fig. 4 is the inpu
to the network for four different size images, alon
with the corresponding response at the right-hani
side of each picture. We see that as the size in
creases, the strongest response of the system is a
different vertical positions. In the optical setup, th
correlation responses shown in the right-hand side c
each picture is actually horizontal, and the displa
was created by simply rotating the CCD camera b
900.

The role of the second layer is twofold. The firs
task is to take advantage of the vertical shift invari
ance of the first layer, and the second task is tb
combine the outputs of the 40 correlators and mak
the final classification. We first discuss the shif
invariance. Suppose that an image at a particula
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Fig. 4. Experiment showing the position of the correlation peak to

be proportional to the size of the input face.

location at the input produces a strong correlation
peak somewhere at the output. If the input is
horizontally translated by approximately 0.4 mm
then the correlation peak disappears. If the input is
translated vertically then the correlation peak moves
vertically also. What we really need for shift-
invariant recognition is a system whose output does
not change as the input shifts. To accomplish this
we use long-detector elements in the vertical direc-
tion as shown in Fig. 1. These long detectors collect
the correlation peak and continue to produce a strong
output signal as the input image shifts vertically.
Unfortunately, we cannot use an arbitrarily long-
detector element to obtain full shift invariance verti-
cally, because then the detector would simply collect
all the diffracted energy from the corresponding filter
stored in the hologram. Roughly speaking, all input
signals with the same total energy would yield the
same response. A shorter detector responds more
selectively to the correlation peak, and hence the
degree of match between the input and the reference,
but it sacrifices shift invariance. Thus there is a
basic trade-off between shift invariance and discrimi-
nation capability. In our network we made this
compromise by trial and error. By repeating the
experiment with a horizontal slit of varying width
placed in front of the detector array, we find that the
amount of shift invariance in the vertical direction is
roughly 3 mm or equivalently 12% of the size of the
input image. As we see below, this choice yields good
discrimination capability.

The second layer also puts together all the verti-
cally integrated responses from the first layer and
produces the final output. Because the output of the
detector array in plane P4 is electronically available,
we can implement the second layer either electroni-
cally or optically. We have done both with compara-
ble performance. The optical implementation of the
second layer is realized by thresholding the output of
the detector array and then feeding it to a second
LCTV. The inner product between the signal re-

corded on the LCTV and a weight vector stored in the
form of a transparency is then optically formed.
This inner product is electronically thresholded to
produce the final output. In the current system we
describe in this paper, the operations of the second
layer are so simple that it was easier to do them
electronically. Specifically, all the weights of the
second layer have the same value. In other words,
the second layer simply integrates the output of the
first layer. The electric signal from each detector is
the square of the light amplitude of the total signal
incident at each element. The signal from the detec-
tor can be thresholded electronically. However, we
get the best performance by simply using the square-
law nonlinearity. In this case, the system becomes
similar to a quadradic associative memory.1718 Notice
that the nonlinearity performed at P4 is crucial in
this system. If the outputs of all the correlators
from the first layer were somehow coherently added
without the inclusions of the nonlinearity, then the
overall system would simply be equivalent to a single
correlator.

A schematic diagram of the overall system is shown
in Fig. 5. The input images are detected by a
standard television camera. The video signal is ei-
ther stored on a VCR to form a training set or directly
to the LCTV during real-time operation. The two-
layer optical network is the system we described
above. A personal computer controls the experi-
ment during the training phase by instructing the
VCR to advance the video by one frame and pause so
that the training algorithm can be executed in the
optical system. The output of the hidden layer
determines whether the hologram should be modified
by the current input image. If a holographic expo-
sure is needed, the computer opens two shutters (one
for the signal and one for the reference beam) for a
specified time and the hologram is recorded. During
the execution of the algorithm the computer also
controls the angle of the reference beam so that
different hidden units can be trained. After the
training is completed, the computer is no longer
involved in the operation of the system except to
record the output data if desired.

3. Training Procedure

The training algorithm that we use is partially moti-
vated by the tiling algorithm.'9 In the tiling algo-
rithm, individual units are trained separately for a
fixed number of iterations. Once a unit is trained
the algorithm moves on to a new unit and trains it to
make up for the deficiencies in the performance
obtained with the previous units. In this way net-
works with multiple layers and many neurons per
layer can be built up and trained. In the standard
tiling algorithm, each unit is trained with the percep-
tron algorithm with the entire training set. In our
algorithm each unit is trained by a subset of the
training set that consists of similar images. This
similarity measure is enforced by training each unit
to respond to a contiguous short segment of the
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Fig. 5. Schematic diagram of overall system.

training video. In this way, each unit is trained to
respond to a specific aspect of the input face. This
simplifies the training of individual units, and the
overall training procedure results in networks of
predictable size.

The flow chart for the algorithm we use is shown in
Fig. 6. Let us more specifically describe the algo-
rithm. Let fk denote the kth image in the training
sequence stored in the VCR and let wij denote the
weight of the first layer connecting the ith input pixel
to thejth hidden unit. The training algorithm is as
follows.

set e = 0 (e is the number of exposures per hidden
unit)

setj = 1 (j enumerates the hidden units)
while ("there are more training examples")
do { (go through the training set one frame at a

time)
h = 0 (h is the number of hidden units turned

on)
for j' = 1 toj, if Z[/ 1 2 j fkw. -i'.12 > 0 then
h = h + 1 (count the number of hidden units

that are on)
if (h < H and I/2 | t.f^W-i, J2

< 0)

(less than H hidden units are on, and the cur-
rent unit is off)

then wi = wi + fk and e =e+1
(make an exposure

if (e > E) (more than E exposures on curren
unit)

then j = j + 1 and e = 0 (create new hiddei

I

"go to next frame"
unit)

The user must select the parameters 0, H, and I
before the algorithm begins. In what follows we wil
explain the role of each parameter and how it affecti
the performance of the trained network. The vari
able j counts the hidden units. We begin traininf
the first unit (j = 1) by presenting frames to th(
system in sequence (incrementing k). The kth inpui
is added to the weights of the first unit if the respons(
of the first hidden unit is below a threshold 0. Notic(
that in the optical system the response of the hidder
unit is not simply the inner product between th(
input and the weight vector, but an integration over 
pixels of the center of the correlation function, as w(
described earlier. If 0 is set too high then the unite
become very highly tuned to respond to the particular
images they are trained for. If the threshold is toc
low then too much cross talk with unfamiliar faces
results, leading to erroneous classifications. Ideally,
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Fig. 6. Flow chart for the algorithm used to train the network;
HU, hidden unit.

0 should be lowered as the training proceeds and
hidden units are added, because this weakens all the
stored holograms. In the experiment we describe we
used a constant 0. The first unit continues to accu-
mulate training examples in this way until a total of E
exposures have been made to it. At that point a new
hidden unit is created (j is incremented) by rotating
the mirror that controls the angle of the reference
beam. We would like to have E large in order to have
each unit be responsive to as many training examples

as possible. However, because we are only present-
ing positive examples to the system (i.e., we never
subtract anything from the weights but always add to
them), if too many examples are accumulated the
weight is simply the average of the subject's faces,
which is similar to the average of anybody's face, and
loses its discrimination capability. The first H hid-
den units are trained in exactly the same manner as
the first. Whenj exceeds H, the current input frame
is added into the weights of thejth hidden unit only if
fewer than H units are above threshold. If H is set
to 1, then the training of the early units is identical to
the rest. However, this results in a hidden layer
response that has only one unit on at a time. We
have already commented that we found that this
results in poor performance on the training set
because of susceptibility to noise and poor generaliza-
tion. By requiring that at least H hidden units are
on at any one time for the training set, we improve
the robustness of the system and improve generaliza-
tion. If H becomes too large, we would need too
many hidden units to enforce this requirement, and
the encoding becomes inefficient.

The discussion in the above paragraph describes
the basic trends that we predict and experimentally
observe as the parameters E, H, and 0 are adjusted.
The experiment that we will describe in this paper
was carried out with H = 3, E = 6, and 0 set equal to
three times above the noise background level. These
values were arrived at empirically by running the
experiment several times and measuring the general-
ization performance. The system performance is
sensitive to the setting of 0 (it should be set relatively
low), but not as sensitive to changes in H and
E. These settings worked best for all the face-
recognition experiments we tried. Unfortunately,
there is no guarantee that these settings are the best
for other problems.

The most attractive feature of this algorithm is
that it can be easily implemented with the optical
system described in Section 2 while yielding remark-
ably good classification performance, as we will see in
Section 4. The algorithm requires two basic opera-
tions from the optical system: evaluation of the
response of the hidden units to an input image so that
the computer can compare it with a threshold, and
addition of the current image into the hologram that
specifies the weights of the unit. We have already
described how the system evaluates the response of
the hidden units. We will discuss here how the
weight updates are performed. When a hologram is
exposed to light, the strength of an individual holo-
graphic grating (or connection wij) is modified accord-
ing to the following equation3 :

X dw + wij = amij, (3)

where r is the time constant of the holographic
recording in the photorefractive crystal, , is a con-
stant that depends on the crystal properties, and mij
is the modulation depth of the frequency component
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of the illuminating light that matches the grating wij.
For a short light exposure of duration At, we can
approximate the change in the hologram by

At At
Awj - Wij + - mij. (4)

In other words, each exposure reinforces each weight
in proportion to the strength of the corresponding
frequency component of the illuminating light.
However, each exposure also erases all the weights in
proportion to their current strength. This is the
well-known weight-decay problem that plagues pho-
torefractive memories20 and photorefractive neural
networks.3 Several solutions to this problem have
been proposed.9 1021 We use a simple exposure sched-
ule in our experiment, in which the later exposures
are linearly shortened to compensate for the decay of
the earlier holograms, resulting in an approximately
uniform final recording. Specifically the mth expo-
sure, t, is set equal to t = 3 - m/240 s. Thus the
exposure varied from 3 s at the beginning of the
exposure sequence to 2 s at the end, with a total light
intensity equal to 10 mW/cm2 and a modulation
depth of approximately 0.1.

The training set for the experiment was a video
recording of one of the authors (Yong Qiao) moving
his head in front of the camera, turning, nodding,
tilting his head, smiling, etc. The total number of
images in the training set is 5400 frames. The
execution of the algorithm modified the hologram
with only 240 of these images. The rest produced an
acceptable hidden layer response. Because each hid-
den unit receives six exposure, a total of 40 hidden
units were created. The maximum number of hid-
den units that the system can support is limited by
two factors. One is the dynamic range of the photore-
fractive hologram. In this case a total of 240 holo-
grams are superimposed. If we assume that all
these exposures are statistically uncorrelated (i.e,
each exposure simply erases all the previously re-
corded holograms and does not ever reinforce them),
then the diffraction efficiency of each hologram would
fall by a factor equal to (240)2 (Ref. 9) compared with
the efficiency with which a single hologram is stored.
Because as many as 5,000 holograms22 have been
superimposed in LiNbO3 , the dynamic range was not
a problem in our experiment. The second limitation
is the numerical aperture of the optical system that
permitted all the reference beams to enter the crystal.
The system we used in the experimental had the
capability to implement in excess of 100 units, and it
is possible to build systems with more than 1000
units. Therefore, this particular training set did not
stretch the limits of the system's capabilities. The
entire training cycle lasted 40 min, which includes
the time for hologram exposure and controlling the
system by computer.

Figure 7 is a composite photograph showing a short
sequence of the training session. Each picture in the
composite shows the current input frame; at the
right, vertically displayed, is the optical response of

_Mig. ~ I 7. P s I sesin
Fig. 7. Photographs showing part of the training session.

the hidden units. The first event in the sequence is
at the top left in Fig. 7, and it shows the frame shortly
after the hologram is exposed. As time progresses
the hidden layer response changes (upper right-hand
corner) and gradually dims (lower right-hand corner).
Ultimately there are fewer than three units on, and
the system is triggered to make another exposure
(lower right-hand corner). The white ribbon on the
left of the input image where the hidden layer nor-
mally appears indicates that the hologram is being
exposed to light and the camera that monitors the
hidden layer response is flooded with light.

4. Classification Performance

In this section we describe the performance of the
trained network. Once the network is trained it
operates in real time, processing 30 frames/s directly
from the input TV camera. The outputs from the
detector array are simply added together electroni-
cally, and this sum is then thresholded to produce the
final output. The holograms will decay when ex-
posed to light during the testing phase. We can
overcome this decay by either thermally fixing the
hologram 23 or by using dynamic copying. 10-12 In this
experiment we adopted a simpler route that tempo-
rary overcomes this problem. By reducing the read-
out light intensity by a factor of 20, compared with
the total writing intensity, we can calculate that the
holograms will decay after several hours of constant
illumination. The holograms were sufficiently strong
that the reduction in the readout intensity yielded a
sufficient signal at the detector. The system was
tested with the training set and with a wide variety of
test sets, including Yong presented to the system
under various conditions and other people in an
attempt to confuse the system. Shown in Fig. 8 is
the signal at the output of the system before final
thresholding. The entire recorded presentation
shown in Fig. 8 lasts for 10 min. The first minute
is a portion of the training set. The next 2 min are a
real-time input of Yong, who looks into the TV
camera and moves around in a manner similar to that
in the training set. While he does this, he does not
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Fig. 8. System response before thresholding.

have access to any information from the network.
The rest of the sequence is the response of the system
to two other persons (Sid and Allen). We can see
that the average response is highest for the training
set, and it remains almost as high for the rest of the
time when Yong is the input. The average response
for the other two subjects is markedly lower. The
variance of the response is higher for Yong, because
he was exhibiting a wider range of head perspectives,
compared with Sid and Allen, to test the limits of the
system. Similar behaviors were observed for all 14
members of our group.

To make the final classification, we need to thresh-
old the signal shown in Fig. 8. In the actual system,
this is done electronically in real time. The opti-
mum threshold was determined from the data shown
in Fig. 8. Shown in Fig. 9 is a plot of probability of

error as a function of the output threshold level.
The three curves correspond to the probability of
error for Yong, Sid, and Allen, estimated by classify-
ing the data in Fig. 8 with different thresholds. If we
want to minimize the overall probability of error, the
optimum threshold level is approximately 2.5 nW,
giving a probability of error of 12%. If we set the
threshold slightly above 3 nW, then we almost never
make a false recognition while correctly identifying
Yong approximately 70% of the time.

We can improve the performance of the system
further by using the time domain. If the input face
is moving and presents different views to the system,
we can eliminate many of the errors by using a period
of time longer than the duration of a single frame to
do the classification. Specifically, we classify the
current frame to be Yong if M out of the N previous
frames give us a positive response. In implementing
such an algorithm, we need to select N, M, and the
threshold level. Shown in Fig. 10 is a plot of proba-
bility of error on the same three data sets as before as
a function of the threshold level for M = 7 and N =
25. Notice that if the threshold level is selected in
the range of 2.75-3 nW, the estimated probability of
error is zero. In this example, the decision is made
based on observation of the input video for 6 s (the
computer sampled the output at four samples/s).
In general, there is a trade-off between performance
and observation time.

The next sequence of experiments we describe were
carried out to evaluate the kind of generalization
obtained by the network. In this case, the subjects
(Yong and others) were allowed to look at the output
of the network, and adjustments were made to test
the limits of the system. Examples from this series
of experiments are displayed in the composite of Fig.
11. The pictures are arranged in a 4 x 4 matrix.
We will assign to each picture a pair of numbers (i, j),
with the picture at the upper left-hand corner being

1.0

0 0.8

'I 0.6

,r -4-40.4

la
0
In

;-, 0.2

0.0
0

Fig. 9. Probability of
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Fig. 10. Probability of error as a function of the output threshold
level when the output is observed for 6 s to perform the classifica-

tion.
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Fig. 11. Examples demonstrating the generalization capabilities
of the system. A bright dot in the circle at the lower right-hand
corner of each photograph indicates that the system classifies the
input image as the person it was trained to recognize.

(1, 1) and the one at the upper right-hand corner
being (1, 4). The small black circle within each
picture displays the final output of the system after
thresholding. If a bright dot appears in the circle,
the system makes a positive identification of Yong.
Picture (1, 1) is an example of Yong being correctly
recognized by the system. Picture (1, 2) shows Yong
illuminated from below and the side, whereas during
training the illumination was from above. We can
see that the system is sensitive to the direction of
illumination because of the edge enhancement that is
performed by the system. As the direction of illumi-
nation changes, the edges move around. To obtain
invariance to illumination direction, we need to in-
clude in the training set examples of different lighting.
Picture (1, 4) and (2, 1) show that key features such
as the mouth and the eye are crucial for recognition.
However, as picture (2, 2) shows, the eyes alone are
not enough for a positive identification. Picture
(2, 3) is meant to display the invariance of the system
to up and down motion. It is difficult to assess this
from the still photo. However, we measured a toler-
ance to vertical shifts of 5% of the whole scene.
The optical system was arranged such that vertical
shifts of the input image become horizontal shifts on
the LCTV. We made this arrangement because we
need more tolerance to horizontal input shifts (people
move side to side much more than up and down), and
the optical system provides shift invariance in the
vertical direction at the LCTV plane. Prior to the
training, the tolerance to vertical input shifts was 2%
of the whole scene. Training more than doubled the
tolerance of the vertical shift. The tolerance of the
system to nodding up and down was recorded by
measuring the vertical motion on the screen of a fixed
point on Yong's forehead, as he nodded up and down.
According to this measure, the spot on his forehead
can move by 1 cm without loss of recognition. From
this measurement, and by measuring the dimensions
of Yong's head, we obtain a crude estimate of 5 for

the maximum tolerable angle of forward head tilt
Picture (3, 3) shows an example of the tolerance of thi
system to horizontal shifts of the input image. Ii
this direction the optical correlator provides consider
able shift invariance. We measured the maximun
horizontal shift to be 13% of the total horizonta
extent of the input frame. Overall, the system ha
more than three times better tolerance to shifts in the
horizontal than the vertical direction. Pictures (3, 4
and (4, 1) demonstrate the system's ability to tolerat(
turning of the head, which we measured to be 30 is
either direction. The maximum tilt of the head
picture (4, 2), was measured to be 12° in eithei
direction. We did not seriously test the response o:
the system to scale changes.

5. Conclusion

The main goal of this experiment was to use 
combination of existing optical techniques and algo.
rithmic ideas to build a trainable real-time face.
recognition system that works. This system gave uE
remarkably good performance and yet it greatl3
underutilizes the full capabilities of the optical net
work. In contrast, there are many ways we can see
to improve the performance of the system. Foi
instance, to incorporate invariances to scale or illumi-
nation, we would need to expand the training set tc
have all possible combinations of scale and illumina-
tion conditions of interest as well as all the invari-
ances that the current system incorporates. Foi
example, to accommodate five different scales, we
would need to expand the size of the training set by
roughly a factor of 5. The number of hidden units
that are needed with the approach we use usually
scales proportionally to the size of the training set.
Expanding the size of the optical system from the
current 40 hidden units to approximately 1000 units
is within reach. It should therefore be possible to
expand the variety and range invariances accordingly.
In addition, we can seek ways to build in some of the
invariances, in addition to the one-dimensional shift
invariance afforded by the Fourier transform holo-
grams. For instance, we can have an adaptive opti-
cal system that is trained to recognize eyes indepen-
dently of the identity of the face. This feature
detector can then be used to normalize the input for
vertical position or head rotation. These modifica-
tions of the system and its extension to multiperson
recognition will be the subject of a future paper.
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