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ABSTRACT 

 

This work is divided into two main parts. In the first part (chapters 2-7) we consider the 

nonlinear response of nano-particle colloidal systems. Starting from the Nernst-Planck 

and Smoluchowski equations, we demonstrate that in these arrangements the underlying 

nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical 

intensity. Two different nonlinear regimes are identified depending on the refractive 

index contrast of the nanoparticles involved and the interesting prospect of self-induced 

transparency is demonstrated. Soliton stability is systematically analyzed for both 1D and 

2D configurations and their propagation dynamics in the presence of Rayleigh losses is 

examined.  

We also investigate the modulation instability of plane waves and the transverse 

instabilities of soliton stripe beams propagating in nonlinear nano-suspensions.  We show 

that in these systems, the process of modulational instability depends on the boundary 

conditions. On the other hand, the transverse instability of soliton stripes can exhibit new 

features as a result of 1D collapse caused by the exponential nonlinearity.  

Many-body effects on the systems’ nonlinear response are also examined. Mayer 

cluster expansions are used in order to investigate particle-particle interactions. We show 

that the optical nonlinearity of these nano-suspensions can range anywhere from 

exponential to polynomial depending on the initial concentration and the chemistry of the 
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electrolyte solution. The consequence of these inter-particle interactions on the soliton 

dynamics and their stability properties are also studied. 

The second part deals with linear and nonlinear properties of optical nano-wires 

and the coupled mode formalism of parity-time (PT) symmetric waveguides. Dispersion 

properties of AlGaAs nano-wires are studied and it is shown that the group velocity 

dispersion in such waveguides can be negative, thus enabling temporal solitons. We have 

also studied power flow in nano-waveguides and we have shown that under certain 

conditions, optical pulses propagating in such structures will exhibit power circulations. 

Finally PT symmetric waveguides were investigated and a suitable coupled mode theory 

to describe these systems was developed. 
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 CHAPTER ONE: INTRODUCTION 

Light-matter interactions via radiation forces play nowadays a crucial and central role in 

several areas of physics, chemistry and biology [1]. One such example is the rich 

interdisciplinary field of optical traps or tweezers first pioneered by Ashkin and 

colleagues [2,3]. In these early works the optical self-focusing and four-wave mixing 

response of colloidal artificial nonlinear systems was also explored in a series of 

experiments [4-7].  In such settings the optical nonlinearity is a direct outcome of the 

electromagnetic gradient force and can be relatively high depending on the size and index 

contrast of the nano-particles involved [8,9]. In general, when an optical beam propagates 

through a colloidal system, the optical gradient force will attract (or repel) the nano-

particles towards (or away from) local intensity maxima. This process, in conjunction 

with that of Brownian motion, always raises the average refractive index at the beam 

center [6,7]. Interest in this area was lately rekindled in a number of experimental [10-12] 

and theoretical [13] investigations.  Interestingly, in most studies, the optical nonlinearity 

of such nano-colloidal suspensions was a priori taken to be of the Kerr type. Yet, as 

demonstrated in two theoretical studies [14,15], this rather simplistic assumption is only 

valid when the optical beam intensity is well below a threshold intensity set by the 

thermal energy.  This in turn has important implications on nonlinear beam dynamics in 

such nano-suspension systems. In fact as demonstrated in [14,15], the nonlinearity of 

nanosuspensions varies exponentially with intensity. This exponential character of 
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nonlinearity was also recognized in earlier studies using either thermodynamics 

arguments [6] or by invoking Chandrasekhar equation [16].  

In chapters two and three, we review the origin of the exponential nonlinearity 

and its consequence on beam dynamics [14]. Starting from first principles, we analyze 

the nonlinear response as well as the nonlinear Rayleigh losses associated with nano-

particle suspensions. This is done by directly solving the underlying Nernst-Planck and 

Smoluchowski equations under equilibrium conditions. We show that in such systems 

both the optical nonlinearity and Rayleigh losses vary exponentially with optical 

intensity. Depending on the sign of the particle polarizability, these exponential 

nonlinearities can be saturable or super-critical with intensity. The soliton solutions 

corresponding to these two cases are obtained and analyzed in detail. The stability 

properties of both 1D and 2D self-trapped states are investigated. Our analysis indicates 

that at low powers, relatively narrow soliton beams, can propagate undistorted over 

several diffraction lengths in spite of the presence of nonlinear Rayleigh scattering 

effects. In the case of negative polarizability particles, a “self-induced transparency” 

effect is predicted. The propagation characteristics of these self-localized beams are also 

investigated in nanosuspension mixtures with competing polarizabilities that can exhibit a 

novel nonlinear response.  

Optical beam instabilities in nano-colloidal systems are considered in chapter 

four. More specifically, we study modulational and transverse modulational instabilities. 

We show that the process of modulational instability (MI) depends on the boundary 

conditions, i.e. on the overlap between the exciting beam and the colloidal cell. 
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Depending on the regime, the MI behavior can display either Kerr or non-Kerr 

characteristics [17].  Transverse modulation instabilities of soliton stripe beams are also 

investigated and a new instability is identified as a result of the 1D collapse caused by the 

exponential nonlinearity.  

Chapters five and six deal with the theoretical and experimental aspects of many-

body effects on the nonlinear response of stabilized colloids. Starting from a “non-ideal 

gas” equation of state and by taking into account the screened Coulomb interactions 

among suspended nano-particles, we show that the nonlinear optical behavior of these 

colloids can range anywhere from exponential to polynomial depending on their filling 

factor, composition, and chemistry.  The thermodynamics of this problem indicate that 

while the exponential optical nonlinearity is always present, it can be modified by many-

body interactions described by Mayer cluster expansions [18]. This in turn has a profound 

effect on optical beam dynamics.  The stability of optical beams in systems with positive 

polarizabilities is considered in both 1D and 2D configurations. Experimental 

measurements presented in chapter six are found to be in good agreement with the 

theoretical model proposed here. In order to check the validity of our results, numerical 

schemes based on beam propagation methods were used to predict the nonlinear response 

of our system. To check the accuracy of such techniques, we use the conservation of 

power and Hamiltonian. However for the system described in chapters five and six, it is 

impossible to compute the Hamiltonian. In chapter seven we show how to overcome this 

obstacle by introducing the concept of the shifted Hamiltonian. 
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Chapters eight and nine deal with linear and nonlinear properties of optical 

nano-waveguides. In particular we demonstrate that optical solitons can exist in 

dispersion-inverted highly-nonlinear AlGaAs nanowires. This is accomplished by 

strongly reversing the dispersion of these nano-structures from normal to 

anomalous over a broad frequency range. These self-localized waves are possible 

at very low power levels and can form in millimeter long nanowire structures. The 

intensity and spectral evolution of solitons propagating in such AlGaAs 

nanowaveguides is investigated in the presence of loss, multiphoton absorption 

and higher-order dispersion. 

In chapter nine we show that energy circulation within a pulse is possible 

when it propagates in a high-contrast dielectric nanowire. This process is 

accomplished through electromagnetic “wormhole” regions, in which the Poynting 

vector associated with the guided mode is negative with respect to the direction of 

propagation. For demonstration purposes this mechanism is elucidated in  AlGaAs 

and silicon nanowaveguides. The effect of dispersion on the power circulation is 

also considered. 

Finally, in chapter ten, we investigate the coupled mode theory (CMT) of 

parity-time (PT) symmetric waveguide coupler. For this type of structures, it was 

found that the conventional coupled mode theory fails. Here, starting from the 

Lagrangian formalism of the problem, we derive the correct CMT. Our results 

were checked using numerical simulations and excellent agreement with theory is 

demonstrated.  
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 CHAPTER TWO: OPTICAL NONLINEARITY IN NANO-

SUSPENSIONS 

In this chapter we analyze the interaction between the electromagnetic field of a laser 

beam and the nanoparticles involved in a colloidal suspension. To do so we invoke the 

particle current continuity equation [19], 

                              0



J
t


 ,                                                (2.1) 

where   represents the particle concentration and J


is the particle current density. In 

these systems, the mechanisms contributing to the particle current density are described 

by the Nernst-Planck equation [19]: 

                                DJ


,                                               (2.2) 

where D is the diffusion coefficient and


 is the particle convective velocity which is 

related to the external force F


 acting on the nanoparticles through the relation  F


   

where  represents the particle’s mobility. The first term on the right hand side of Eq. 

(2.2) gives the drift current due to the external force while the second one describes the 

diffusion current due to Brownian motion. In Eqs (2.1)-(2.2) we assume a highly diluted 

mixture and we neglect any particle-particle interactions. Combining Eqs. (2.1) and (2.2) 

one obtains the Smoluchowski equation, i.e.,  

                                           0

 

D
t


 .                                (2.3) 
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In order to solve Eqs. (2.1-2.3) we assume steady state conditions, i.e. 0/  t . In 

addition, under equilibrium the current density is zero, 0J


, i.e. drift is balanced by 

diffusion. In the case where the particle size is small compared to the wavelength 

(Rayleigh regime), the average optical gradient force on this nanoparticle can be obtained 

within the dipole approximation [2,8,9],   

                                                  IF 
4


   .                                           (2.4) 

In Eq. (2.4),   represents the particle polarizability and the quantity *
EEI


 is 

associated with the light intensity through the peak spatial field amplitude E


. In the 

dipole approximation, the polarizability  of a spherical particle having a refractive index 

pn  is given by [20]: 

                                        











2

1
3

2

2
2

0
m

m
nV bp      ,                               (2.5) 

where 3/4 3
aVp  is the volume of the particle, 0 is the free space permittivity, bn  is 

the refractive index of the background medium and the dimensionless parameter 

bp nnm /  represents the ratio of the particle’s refractive index pn to bn .  It is important 

to note that   can be positive or negative depending on whether the refractive index of 

the particle is higher ( m >1 ) or lower (m<1) than that of the background. 
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In the absence of any illumination (I=0), 0 vF


, the particle density obeys 

Laplace’s equation 02    under steady state conditions. Moreover, at the container 

boundaries, the normal component of the diffusion current  is zero. In this case, this 

Neumann boundary value problem dictates that the particle density is everywhere 

constant. This uniform distribution is also the one that leads to maximum entropy (in the 

absence of external constraints).  

If on the other hand, light forces are present, substitution of Eq. (2.4) into Eq. (2.2) 

(under the condition 0J


) leads to   04/   DI . This last partial differential 

equation can be directly integrated and gives )
4

exp(0 I
D

  . From Einstein’s relation  

TkD B/1/   we finally obtain:     

                                          







 I

TkB4
exp0

        ,                                    (2.6) 

where TkB is the thermal energy and 0  stands for the unperturbed uniform particle 

density (in the absence of light-when the container is large). Given the fact that I
4


is 

associated with the optical potential energy, this last result is another manifestation of the 

Boltzmann distribution in statistical physics [1].  Similarly the volume filling factor 

( pVf  ) in nano-suspension systems follows a similar rule, that is 

 TkIfIf B4/exp)0()(   . Moreover it is important to emphasize that this exponential 

law is only applicable in the case of relatively low concentrations (or filling factors) since 
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the diffusion equation itself ignores particle-particle interactions. As we will see, in most 

typical cases Rayleigh scattering losses naturally provide an upper bound on particle 

concentration.  

From Eqs. (2.5) and (2.6) we notice that the particle concentration will increase in the 

regions where the intensity is high, whenever the refractive index of the particles pn  is 

higher than that of the background bn ( 0 ). The converse is true in the other regime 

( 0 ), i.e. the particles will escape from the high intensity regions when their refractive 

index is lower than that of the surrounding medium. As a result the refractive index is 

locally perturbed due to this intensity dependent change in the particle concentration. To 

calculate this local index change we use the Maxwell-Garnett formula given by [21,22]: 

                                      
 
 2222

2222

22

2

22

bpbp

bpbp

beff
nnfnn

nnfnn
nn




    .                                 (2.7) 

In Eq.(2.7) effn  is the effective refractive index of the medium and f  is the volume 

filling factor given by the ratio of the volume of the particles to the total volume. If we 

expand the right hand side of Eq. (2.7) and by assuming a relatively small index contrast 

(i.e. 1m  being small) we get: 

                                 






 


b

bp

beff
n

nn
fnn 2122      .                                 (2.8) 

In this same limit, Eq.(2.8) reduces to   pbeff fnnfn  1 . This result could have been 

intuitively anticipated based on fractional composition arguments. The change in the 
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refractive index is then given by  fnnnnn bpbeff   where the particle volume 

filling factor is defined as:  
ppp VVVNf  / . This together with Eq. (2.6) provides 

the optical nonlinearity of such nanoparticle suspensions [14,15]: 

          










 1)0()( 4

0

I
Tk

pbpeffeffNL
BeVnnInInn



    .             (2.9) 

 

In addition to these nonlinear index changes, it is important to incorporate scattering 

losses in the dynamical evolution equations.  If the particle size is smaller than the free-

space wavelength 0 , the scattering cross section can be determined in the Rayleigh 

regime [23], that is: 

                            
2

2

2
4

0

425

2

1

3

128





















m

mana b


    ,                             (2.10) 

where again a is the particle radius. 

We now develop the beam evolution equation in nano-particle suspensions. Starting 

from the Helmholtz equation 022
0

2  EnkE eff , and by  assuming  a slowly varying 

field envelope ),,( zyx , that is ,     )exp(,,,, 0 znikzyxzyxE b , we find that: 

                        0
2

1
0

2

0





 
ifnnk

nkz
i bp

b

     ,            (2.11) 
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where   in the last term represents the loss coefficient and 00 /2 k . If we now keep 

only the loss term in the last equation, we find that )2exp(
2

0

2
z  . Given that 

)exp(
2

0

2
zl   where the loss coefficient is given by  l  we finally 

obtain  TkI B4/exp2 0   . This final expression for the loss coefficient is 

important since it demonstrates that the scattering losses are actually nonlinear, i.e. they 

depend on the beam intensity. As will be shown later, these nonlinear Rayleigh losses 

will play a crucial role in the beam propagation dynamics. From these latter results, Eq. 

(2.11) takes the form: 

   0
22

1
22

4
0

4
00

2

0





  





TkTk

pbp

b

BB e
i

eVnnk
nkz

i  .      (2.12) 

Note that equation (2.12) is general and is applicable in both cases irrespective of 

whether the polarizability   is positive or negative. If we first consider the case of 

positive polarizability and by introducing the following normalizations, 

2
02/ wnkz b , wxX /  , wyY / , 0

2
0

2 2 pbpb Vnnnkw  ,   UTkB

2/1
/4   , 

Eq.(2.12) takes the form: 

       0
22





UeiUeUU
U

i
UU

YYXX 


      ,          ( for bp nn   )    .          (2.13) 
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In Eq.(2.13) U is the normalized field amplitude, w is a characteristic beam width, and 

the normalized loss  is given by  pbp Vnnk  02/ . In the same manner, if the 

polarizability is negative, we obtain  

        0
22



 

ueiueuu
u

i
uu

YYXX 


   ,                  ( for 
bp nn  )              (2.14) 

where here we used the symbol u instead of U.  If now introduce the transformation 

i
Ueu

  in equation (2.14) we obtain: 

               01
22



 

UeiUeUU
U

i
UU

YYXX 


   ,       ( for bp nn  ) .       (2.15) 

Equations (2.13) and (2.15) are normalized evolution equations describing wave 

propagation in these two different cases.   

Note that in both situations the nonlinearity is of the self-focusing type. In the first 

case, described by Eq. (2.13), the nonlinearity is monotonically exponential. On the other 

hand, in the second regime (Eq.(2.15)), the nonlinearity is exponentially saturable.  Even 

though at first sight it might be unclear how both systems lead to a self-focusing 

nonlinearity, this can be clarified using the following physical arguments. In the case 

where the particles have a higher refractive index than the background, the polarizability 

    of each particle is positive and thus the particles are attracted toward the high 

intensity region, i.e. to the center of the beam, thus elevating the effective refractive index 

of the system (Fig. 2.1(a)). This will of course increase the nonlinear scattering losses as 
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well. On the other hand, particles having a lower refractive index than that of the 

background and hence a negative polarizability will be repelled away from the center of 

the beam, again raising the refractive index at the center (Fig. 2.1(b)). In this latter case 

however, the nonlinear losses decrease at the beam center (due to the reduction in the 

particle concentration), thus increasing the transparency of the system. As it will be 

shown, this difference in the character of the exponential optical nonlinearity will have a 

profound effect on the beam dynamics of spatial solitons. 

                                                                

 

Figure 2.1.1 A high intensity beam (a) attracting nanoparticles with positive 

polarizabilities and (b) repelling nanoparticles with negative polarizabilities. 

 

 

(a) (b) 
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 CHAPTER THREE: SOLITON DYNAMICS AND STABILITY 

PROPERTIES 

 

In this chapter we investigate the dynamics and stability properties of the soliton 

solutions possible in exponentially nonlinear nano-suspensions. To do so, we solve Eqs. 

(2.13) and (2.15) in both one and two dimensional configurations in the absence of any 

nonlinear Rayleigh losses ( 0 ).  

 

3.1. 1D soliton solutions 

We first consider the 1D case. Here we seek 1D stationary solutions of the 

form     )exp(,  iXgXU   where   represents the soliton eigenvalue. Substituting 

this latter expression into Eqs. (2.13) and (2.15) gives: 

                                       0
2

 gegg
g

XX      ,                                         (3.1-a) 

                                         01
2

 
gegg

g

XX                                        (3.1-b)  

Equations (3.1) can be readily integrated once, thus leading to: 

                                        1
22 2

Cegg
g

X                                                 (3.2-a)  

                                          2
22 2

1 Cegg
g

X                                        (3.2-b) 
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Since asymptotically, these solutions satisfy 0
X

g  and 0
XXg , we set 

121 CC . By rearranging Eqs.(3.2) we directly obtain: 

                                 
   


 Xg

g

Xd
gg

gd

0
22

0
exp1 

                                    (3.3-a) 

                                    


 Xg

g

Xd
gg

gd

0
22

0
exp)1(1 

        .                 (3.3-b) 

As Eqs. (3.3) imply, these soliton solutions are symmetric with respect to the 

origin 0X . Using the boundary conditions at the beam center, namely that   00 gg   

and   00 Xg  we can now numerically integrate Eqs. (3.3).  

We will first discuss the 1D soliton solutions associated with exponential 

nonlinearities, i.e., Eq. (3.3-a). Figure 3.1(a) shows the existence curve of these solutions, 

e.g. their normalized intensity FWHM as a function of their peak intensities. The inset in 

Fig. 3.1(a) shows the intensity profile of such a solution at 3 . As one can see, the 

beam width monotonically decreases as the soliton peak intensity increases. The stability 

properties of this class of solutions can be systematically examined using the power-

eigenvalue ( P ) diagram where dXUP
2

 . Following Vakhitov and Kolokolov 

[24], this solution is stable whenever the slope of the curve is positive (for 49.2 ) and 

is unstable for higher eigenvalues where the slope is negative  as shown in Fig. 3.1(b).  

The existence of two different regions of stability is by itself an interesting result 

given that we are dealing with a 1D system [25]. In reality, above this threshold 
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( 49.2 ) these 1D solutions tend to catastrophically collapse into a singularity. This 

behavior can be qualitatively explained based on the Taylor series expansion 

...)2/1(1
422

 UUe
U

. As a result, at lower intensities the nonlinearity is of the 

Kerr-type and the corresponding solutions are stable.    

 

Figure 3.1 Normalized soliton FWHM width as a function of their normalized peak 

intensities in exponential nonlinear nanosuspentions. The inset represents the intensity 

profile of such a solution. (b) The corresponding   P  diagram with S being the stable 

and U the unstable branch. 

 

 However, at higher intensities, the degree of nonlinearity is above the supercritical value 

(i.e. 
4

U ) necessary for 1D systems to exhibit collapse [25]. Of course in reality 

nonlinear Rayleigh scattering and/or saturation effects in the particle concentration may 

prevent such a collapse from occurring. The dynamics of these solutions are then studied 

by directly solving Eq. (2.13) and by including nonlinear Rayleigh scattering losses. To 

(a) (b) 
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illustrate our results we consider the propagation of a soliton beam in nano-suspensions 

when the wavelength is 0.532 m . The nano-suspensions involve polystyrene nano-

particles (refractive index 56.1pn ) of radius 50 nm  suspended in water ( 33.1bn ) at a 

concentration of 311107  cm  (or 4105.3 f ). Under linear conditions, a 10 micron 

beam (FWHM in width) expands considerably because of diffraction (3 times) and loses 

13% of its power because of scattering losses. Conversely, in the nonlinear regime, this 

same beam can propagate up to 4 diffraction lengths (2 mm) without any appreciable 

distortion-limited only by the nonlinear losses (20%), as clearly shown in Fig. 3.2. 

 

Figure 3.2 Linear propagation of an optical beam in water-polystyrene nanosuspension. 

(b) Nonlinear soliton effects in this same system. 

On the other hand, the situation for the saturable nonlinearity (described by Eqs. (2.15) 

and (3.3-b)) is quite different. Figure 3.3(a) shows the soliton existence curve for this 

latter system. These results indicate that the intensity FWHM width of these solutions 

tend to initially contract with peak intensity and eventually expand –a characteristic 

behavior of solitons in saturable systems [26,27]. The inset in Fig. 3.3(a) shows the 
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intensity profile of such a solution at 95.0 . The power-eigenvalue P  diagram in 

this regime is shown in Fig. 3.3(b). This graph indicates that in the saturable case (of 

negative polarizabilities) the 1D soliton solutions are always stable since 0/ ddP . 

 

Figure 3.3 (a) Normalized soliton intensity FWHM width as a function of their peak 

intensity in exponentially saturable nanosuspentions. The inset depicts such a solution  

(b) Corresponding P  diagram indicating stability. 

 

Figure 3.4 depicts the propagation of a 10 micron beam (FWHM in width) in a 

suspension involving 50 nm  air nano-bubbles ( 1pn ) floating in water ( 33.1bn ). 

Again the wavelength is taken to be 0.532 m . The nano-bubble concentration is 

assumed to be 312102  cm  or 310f . Under linear or low power conditions, the beam 

diffracts considerably (more than 10 times) and loses almost all its energy (97%) as 

clearly indicated in Fig. 3.4(a). 

This considerable loss is a direct outcome of Rayleigh scattering at these 

concentration numbers. At power levels sufficient to sustain a soliton however, the beam 

expels the nano-spheres from the center, thus giving rise to self-induced transparency and 

(b) (a) 
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self-trapping effects. In other words, at high powers the beam can effectively reduce the 

“haze” while at the same time can establish its own waveguide structure In this case the 

overall losses drop from 97% to 20%.  

 

Figure 3.4 Linear propagation of a 10 m  beam in water-air nanobubble suspenstions 

where 97% of losses are expected. (b) Nonlinear soliton self-trapping and self-induced 

transparency effects. 

  

 

A direct simulation of this beam (based on Eq. (2.15)) shows that the soliton (10 

micron FWHM) can propagate up to 12 diffraction lengths (Fig. 3.4(b)), i.e. 

approximately 4 times more than in the first case. This behavior is understood by 

recalling that the nonlinear losses are exponentially growing in the first case whereas are 

exponentially decaying in the second one.  

 

3.2. 2D soliton solutions 

Two-dimensional soliton solutions in these systems are obtained by directly solving the 

2D version of Eqs.(2.13) and(2.15). To do so we seek stationary solutions in cylindrical 

(a) (b) 
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coordinates having the form      , expU r g r i   and we keep in mind the boundary 

conditions 0g at r  and 0/ drdg  at 0r .  

We begin by considering first nanoparticles with positive polarizabilities. In this 

regime, the normalized ( P ) diagram associated with these solutions is shown in Fig. 

3.5(a). The monotonically decreasing behavior of this latter curve clearly indicates that 

the 2D soliton solutions in exponentially nonlinear nanosuspensions are always unstable 

and tend to catastrophically collapse. Again as in the 1D case, collapse will be prevented 

because of nonlinear Rayleigh scattering and/or saturation effects in the particle 

concentration. In addition, the intensity profiles of this class of waves exhibit a cusp-like 

shape as a result of the exponential nonlinearity, as shown in Fig. 3.5(b). As an example 

we study the propagation of a 10 micron width (FWHM) 2D beam in water containing 

polystyrene nanospheres. All the physical parameters are the same as those used in the 

corresponding 1D system except for the volume filling factor which taken here to be 

410f . At low power levels the beam expands because of diffraction (2 times) and 

loses 2% of its power as a result of Rayleigh scattering, as shown in Fig.  3.5(c). On the 

other hand, at 5W (at soliton power), this same beam can propagate up to 1mm (3.5 

diffraction lengths) without any appreciable expansion and in spite of the nonlinear 

Rayleigh losses (5%) as accounted in Eq.(2.13), as demonstrated in Fig.  3.5(d). We note 

that in our simulations this beam would have otherwise undergone a collapse had not 

been for Rayleigh scattering. This collapse behavior is illustrated in Fig. 3.5(e) in the 

absence of nonlinear losses and by neglecting saturation effects in the particle density. 
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Figure 3.5 (a) P  stability diagram of 2D solitons in nanosuspentions with positive 

polarizabilities. (b) Soliton intensity profile at 7.1 . (c) Beam diffraction at low power 

levels shown in scale. (d) Propagation dynamics of a 2D 10 m  soliton beam after 1 mm 

in the presence of Rayleigh losses. (e) Catastrophic collapse in the absence of nonlinear 

losses. 

We now consider 2D soliton solutions in nanosuspensions with negative 

polarizabilities exhibiting saturable exponential nonlinearities similar to those 

encountered in plasma science [28,29]. This is done by considering Eq. (2.15) in the 

absence of losses. The ( P )  stability diagram associated with these solutions is shown 

in Fig. 3.6(a) and indicates that these self-trapped states are always stable 

since 0/ ddP . 

To illustrate our results we consider air nano-bubble suspensions in water. Again 

all the physical parameters used here are the same as those used in the corresponding 1D 

example and 310f . Fig. 3.6(b) shows the intensity profile of a m10 beam (FWHM) 

(a) 
(b) (c) 

(d) (e) 
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that is possible in this system at a power level of 2.8 Watts. At very low intensities, after 

3.5 mm of propagation, the beam linearly diffracts (7 times) and loses 80% of its power 

because of substantial Rayleigh scattering, Fig. 3.6(c).  

 

Figure 3.6 (a) P  stability diagram of 2D solitons in nano-suspensions with negative 

polarizabilities. (b) Soliton intensity profile at 5.0 . (c) Expansion and loss effects 

during linear propagation of a 2D 10 m  beam after 3.5 mm (d)  Self-trapping and self-

induced transparency effects at 6 W of beam power in this same system. 

On the other hand, when the beam input power is 6 W, the beam self-traps and at 

the same time increases the transparency of the system by optically expelling the 

nanoparticles from its center. In this latter case, the beam expands only by 10% and loses 

a small fraction of energy (20%) after 3.5 mm of propagation as shown in Fig. 3.6(d). As 

in the 1D case, this self-induced transparency effect is again a result of the specific nature 

of the optical gradient force.  

(a) 
(b) 

(c) (d) 

310
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3.3. Engineering nonlinearities in nano-suspension systems 

So far we have considered nano-suspensions involving only one type or species of nano-

particles. In this section we study the effect of mixing two or more types of nano-particles 

in the same suspension. In this case the Nernst-Planck equation takes the form: 

                            
j

jjjj

j

j DJJ 


    ,                               (3.4) 

where the subscript j runs over all different kinds of nano-particles. In the case of diluted 

suspensions particle-particle interactions can be neglected. As a result each current 

component 
jJ


 vanishes independently and the statistical distribution for each type of 

nano-particles is represented by a Boltzmann distribution, i.e.  

                                         







 I

TkB

j

jj
4

exp0


        .                            (3.5) 

Following an analysis similar to that of chapter 2, we find that the beam evolution 

equation in such a system is given by: 
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In Eq. (3.6), we have incorporated nonlinear contributions from either type of particles, 

i.e. from those with positive or negative polarizabilities (the +/- superscript denotes 

particles with positive/negative polarizabilities). The last term in Eq.(3.6) represents 

Rayleigh losses due to these two different kinds of nano-particles. For each family, the 

equation implicitly assumes different values for their respective polarizabilities and 

densities.  Note that in Eq.(3.6) the coefficient of each term is a function of the nano-

particle properties (refractive index, radius) and their concentrations. Thus by controlling 

these parameters one could design an otherwise physically nonexistent nonlinear 

response. For example if we consider a mixture of only two different types of particles 

having equal but opposite polarizabilities and we choose the particle concentrations  so as 

the nonlinear coefficients in both terms of Eq.(3.6)  are equal to unity, then the nonlinear 

evolution equation (neglecting the loss terms) can take the form: 

                                0sinh2
2 




UUUU
U

i YYXX
        .                  (3.7) 

This suggests that systems with artificial nonlinearities (such as that of Eq.(3.7) with 

hyperbolic-sine nonlinearity) can be for example synthesized at will through appropriate 

inclusion of nanoparticles. 
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 CHAPTER FOUR: MODULATIONAL AND TRANSVERSE 

MODULATIONAL INSTABILITIES 

 

Optical beam instabilities in nano-colloidal systems are the subject of this chapter. In 

particular, we focus our attention on modulational and transverse modulational 

instabilities. We show that the process of modulational instability (MI) depends on the 

boundary conditions, i.e. on the relative size of the exciting beam with respect to that of 

the colloidal cell. Depending on the regime, the MI behavior can display either Kerr or 

non-Kerr characteristics.  Transverse modulation instabilities of soliton stripe beams are 

also investigated and a new instability is identified as a result of the 1D collapse caused 

by the exponential nonlinearity.  In both cases, linear stability analysis is carried out in 

the absence of any nonlinear Rayleigh losses. This analysis is then compared against 

beam propagation simulations that also incorporate Rayleigh losses. 

 

4.1. Modulational instability 

Modulational instability is a process during which small perturbations 

superimposed on top of a plane wave propagating in a nonlinear medium can grow and 

eventually cause the plane wave to break into several small filaments. To study this 

phenomenon and determine the conditions under which this effect will occur, we apply 

linear stability analysis and assume sinusoidal perturbations of certain spatial frequencies. 

The growth rate of the perturbations as a function of their spatial frequencies is then 

obtained. 
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We start our analysis by writing the evolution equation for an optical beam propagating 

in a nano-particle colloidal system in the absence of nonlinear Rayleigh losses: 

    0
4

exp
2

1 2

0

2

00
2

0






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Vnnk
nkz

i
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pbp

b

  .  (4.1)       

This equation is exactly the same as Eq.(2.12) except that the loss term is omitted and 

0 represents a possible infinite light background or a plane wave component (if it exists) 

upon which the beam rests.  This last term arises as an integration constant in the solution 

of the Nernst-Planck equation and guarantees that the particle density is constant under 

plane-wave illumination, as one may expect from the gradient nature of the optical force 

[8,9]. In normalized units, Eq. (4.1) takes the form [17]: 

 2 2
exp 0XX YY o

u
i u u a a u b u u

       

             (4.2) 

where again   uTkB

2/1
/4   , 

2
02/ wnkz b , wxX / , wyY / , and the 

spatial scale w  is given by 0
2
0

2 2 pbpb Vnnnkw 
. Equation (4.2) was written in a 

general form so as to account for different scenarios. The case 1a corresponds to a 

system with an index contrast m greater than unity  1/  bp nnm  while 1a is used 

for 1m . The constant b  is either 1 or 0 depending on whether the input is a plane wave 

(or rests on a plane wave) that covers the entire cell or a quasi plane-wave broad beam 

that covers only a small portion of the cell, respectively. In other words, even though the 

nonlinearity is local, the boundary conditions manifest themselves in a non-local way.   
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Here we consider the process of modulation instability. To do so we write the 

plane wave solution of Eq.(4.2) as : exp( )o pu u i   where  2exp (1 )p oa a b u   . By 

introducing a small perturbation ),(  X in this solution  ( , ) exp( )o pu u X i     and 

by substituting this latter form back in Eq.(4.2), then to first order in   we get: 

       0)1(exp 22  
ooXX ubaui           .                           (4.3) 

Assuming a solution of the form:    KXiBKXA   sincos , and by 

eliminating the arbitrary constants A,B we obtain: 

       2 2 2 2 22 exp 1o oK K u a b u                               .             (4.4) 

From this last relation we see that under plane wave excitation conditions ( 1b ) the MI 

of this system exhibits a Kerr response [30,31] regardless of the refractive index contrast.  

On the other hand, for the more realistic case of a quasi-plane wave input, when the beam 

is wide enough to avoid appreciable diffraction but does not cover the entire cell ( 0b ), 

the situation is different. In this latter case, when the particle polarizability is 

positive  1m , Eq.(4.4) becomes  22222 2 ou

oeuKK  . Here, as in the case of Kerr 

nonlinearities, the maximum gain happens to be at the peak intensity of the beam ( maxou ) 

and the spatial frequency at which this maximum gain is attained occurs at 

)exp( 222
oo uuK  . Fig.4.1(a) shows the gain curve for a system of polystyrene nano-

particles ( 56.1pn ) of radius (r=50 nm) suspended in water when the particle 

concentration 317107  m . For this set of parameters, the power density of the incident 
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plane wave is 1 MW/cm2. Conversely, when the particle polarizability is negative  1m , 

the modulation instability exhibits entirely different characteristics as the dispersion 

relation takes the form  22222 2 ou

oeuKK
 . In this case, in contrast to the previous 

one, the maximum gain does not monotonically increase with the peak intensity ou . In 

fact the maximum intensity occurs when 1ou and for a spatial frequency eK /1 . The 

gain curve in Fig.4.1(b) was obtained for air nano-bubbles ( 1pn ) and radius of 50 nm 

suspended in water at a concentration of 318102  m  (the power density is 0.7 MW/cm
2). 

In all the examples considered in this study the wavelength is taken to be m 532.00  . 

 

Figure 4.1 MI gain versus perturbation wavenumber for (a) an exponentially nonlinear 

( 1/ bp nn ) and (b) an exponentially saturable nonlinear nanosuspension system 

( 1/ bp nn ) for the parameters given in the text. The solid/dotted curves depict the MI 

gain when 1/0  bb for 1ou . 
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4.2. Transverse modulational instability 

Next we study transverse modulational instabilities. This process is responsible 

for breaking up a soliton solution into several filaments. In other words, here we are 

concerned with the effect of small perturbations superimposed on nonlinear localized 

eigenmodes instead of plane waves. As in the case of MI, we use linear stability analysis 

and determine the perturbation growth rate for each spatial frequency. 

To do so, we consider the transverse modulation instability of soliton stripes 

(along y) [32]. In this case we assume a solution of the form 

  )exp(),,()(  iYXXuu s   where )(Xu s  is a 1D soliton solution of Eq.(4.2), 

),,(  YX  is a small perturbation and  is the soliton eigenvalue. Substituting this form 

in Eq.(4.2) and by retaining only first-order terms in   we get: 

  0)exp()exp( 222   sssYYXX auuauai    .         (4.5) 

If we in turn assume  

         qYiXWXVqYiXWXVZYX    exp)()(exp)()(),,(

                                       

                                                                                                                            (4.6) 

then from Eq.(4.5) we obtain the following linear coupled eigenvalue equations: 

WVqauuauaV sssXX   ])exp(2)exp([ 2222                              (4.7-a) 

         VWqauaW sXX   ])exp([ 22                          .                    (4.7-b) 

For any specific power level (corresponding to a certain soliton solution su ), the above 

generalized eigenvalue problem can be solved for each transverse spatial frequency q . 



29 
 

The solution )(Xu s is stable against transverse modulation perturbations when   is real 

and it becomes unstable in the complex   domain. 

We first consider the case when the particle’s refractive index is higher than that 

of the background, i.e. when 1a  . In this case, as discussed in chapter 3, the soliton 

solution has two regimes of stability with respect to longitudinal perturbations (along x) 

of the form ),(  X (Vakhitov-Kolokolov criterion) [14]. The transverse 

instability q gain curve corresponding to a 1D soliton that belongs to the stable region 

[14] ( 49.2 ), is shown in Fig.4.2(a) where again polystyrene spheres of radius r=50 

nm are assumed to be suspended in water at a concentration of 317107  m . This gain 

curve was obtained for a soliton solution of Eq.(4.2) at a power density of 1.3 kW/cm and 

at 7.1 . From Fig. 4.2(a) one can see that the solution is marginally stable at q=0, 

unstable for long wavelength perturbations and becomes stable for q>1.9. This behavior 

qualitatively resembles that encountered in nonlinear Kerr systems [32]. Contrary to this 

latter case, in the longitudinally unstable region ( 49.2 ), the transverse instability 

displays new features due to the competition between longitudinal and transverse 

instabilities. Fig.4.2(b) shows the gain curve for a soliton stripe at power density of 1.33 

kW/cm and for 3 , i.e. when it belongs to the unstable branch of the power-eigenvalue 

diagram discussed before in chapter 3 (see ref. [14]).  
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Figure 4.2 Transverse modulational instability gain of a stripe soliton versus perturbation 

wavenumber q for an exponentially nonlinear colloidal system when the 1D soliton 

solution belongs to (a) the stable ( 7.1 ) and (b) the unstable ( 3 ) branch. 

 

Note that in this case the soliton stripe beam is unstable even at q=0, a unique feature of 

this exponential system. Qualitatively, this behavior can be explained as follows. When 

q=0, the transverse perturbation ),,(  YX described in Eq.(4.6) effectively reduces to 

the  longitudinal perturbation ),(  X which in this specific case is known to be unstable, 

thus giving rise to a complex eigenvalue solution to the generalized eigenvalue problem 

of Eq.(4.7). Figures 4.3(a-c), depict the propagation dynamics of the stripe soliton 

corresponding to Fig. 4.2(a). As clearly seen, transverse instability and filamentation 

persist even when the Rayleigh losses are included in the simulations.  Figures 4.3(d-f) 

show what will happen to the stripe beam corresponding to Fig. 4.2(b) (unstable 1D 

soliton). In this case, in spite of the scattering losses, the beam quickly disintegrates into 

collapsing filaments as a result of the synergy of the longitudinal and transverse 

instabilities. 
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Figure 4.3 (a-c) and (d-f): Propagation dynamics of the stripe soliton beams associated 

with Figs. 4.2(a) and 4.2(b), respectively. (a),(d): input profiles. Output intensity in (b) a 

lossless system at nmz 9.1 , (c) in a lossy system (45% of losses at the output) at 6 mm. 

(e) depicts the output beam in the absence of losses (after 3 mm) while (d) shows the 

effect of losses (16% after 0.8 mm of propagation). 

 
 

On the other hand, when the nano-particles have a negative polarizability, (nano-

particles suspended in a higher refractive index host medium), the 1D soliton solution is 

always stable and one would expect  soliton stripes to be marginally stable at q=0, in a 

way similar to that shown in Fig. 4.2(a). In fact this prediction is in perfect agreement 

with linear stability analysis as depicted in Fig. 4.4(a) where the normalized gain curve 

corresponds to the “nano-bubble” suspensions considered in Fig. 4.1(b). 

The q diagram in Fig. 4.4(a) was obtained at a power density of 2.8 kW/cm when 

75.0 . Figs. 4.4(b-d) show propagation dynamics of a stripe soliton beam (that 

corresponds to Fig. 4.4(a)). In the absence of losses this beam becomes transversely 



32 
 

unstable (Fig.4.4(c)) starting from the 1u  regions where the MI gain is maximum. In 

Figs. 4.4(b),(c) these regions are located at the two edges of the finite stripe. Fig.4.4(d) 

shows the output beam when the nonlinear Rayleigh losses are included, In this case the 

filamentations process affects the entire beam more quickly because of self induced 

transparency effects [14]. In all previous simulations, in order to keep the simulation 

window finite, we use very wide super-Gaussian soliton beams in the y  direction as 

opposed to ideal soliton stripes. This explains the high frequency dispersive waves that 

appear in Fig.4.4 (d) that eventually decay with propagation.  

 

 

Figure 4.4 (a) Transverse modulational instability gain of a stripe soliton versus 

perturbation wavenumber for a saturable exponentially nonlinear colloidal dispersion 

when 75.0 . Corresponding propagation dynamics in this same system after 

7z mm  for (b) an input soliton stripe beam, when (c) losses are neglected, and (d) 

nonlinear Rayleigh losses are included. 
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 CHAPTER FIVE: MANY-BODY INTERACTIONS AND NON-

IDEAL “GAS” OF COLLOIDAL NANO-PARTICLES 
 

5.1. Introduction 

So far we have neglected any particle-particle interactions in our analysis. In other 

words we assumed that each particle responds to an external force without being affected 

by other particles. This approximation corresponds to an ideal “gas” model and hence the 

particle distribution follows Boltzmann statistics. In this case, the nonlinear response was 

shown to depend exponentially on the incident optical beam intensity which in turn 

renders the soliton solutions very unstable, i.e. they undergo a severe collapse as 

discussed in chapter three. Of course in some cases the nonlinear Rayleigh losses can be 

strong enough to prevent any collapse. However, in cases where Rayleigh losses can be 

neglected (when the light beam wavelength is much larger than the particle size) one 

would expect this model to be valid only at relatively low filling factors. The question 

naturally arises as to how the system would behave if the particle concentration becomes 

relatively high. This can happen either because of high initial filling factors or at high 

levels of optical gradient force. As we will see, in both cases, due to many-particle 

interactions the nonlinearity is no longer exponential. This situation can be easily 

understood be keeping in mind that particles can not penetrate each other (due to hard 

sphere interactions), thus posing an upper limit on the particle packing factor as shown 

schematically in Fig. 5.1(a). In real colloidal systems, even more complicated types of 

interactions are involved. For example, in the process of preparing colloidal suspensions, 

it is very important to stabilize the nano-colloids against flocculation, i.e. introduce 
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repulsive forces that are capable of overcoming the attractive van der Waals dispersive 

forces or otherwise the particles will aggregate and eventually sedimentation will occur.  

This repulsive force can be steric or electrostatic [33,34]. Even though our analysis is 

general enough to account for any type of inter-particle forces, we here focus our 

attention on electrostatic interactions- given that it is one of the main techniques typically 

used to stabilize nano-particle suspensions and in addition the interaction potential is in 

this case described in closed form.  

Starting from a “non-ideal gas” equation of state [18] and by taking into account 

the screened Coulomb interactions among suspended nano-particles [33-35], we show 

that the nonlinear optical behavior of these colloids can range anywhere from exponential 

to polynomial depending on their filling density, composition, and chemistry.  The 

thermodynamics of this problem indicate that while the exponential optical nonlinearity 

is always present, it can be modified by many-body interactions described by Mayer 

cluster expansions [18]. This in turn has a profound effect on optical beam dynamics.  

The stability of optical beams in systems with positive polarizabilities is considered in 

both 1D and 2D configurations.  

 

5.2. Analysis 

Within the context of Gouy-Chapman double layer theory (Fig. 5.1(b)) the 

electrostatic interaction between two identical suspended nano-particles is described by a 

Yukawa-like potential [33-35].  The extension of this  formalism, the so-called 
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Derjaguin, Landau, Verwey , Overbeek (DLVO ) theory, is also known to account for 

attractive (London-van der Waals) dispersion forces.  

 

Figure 5.1 (a) Self-focusing of an optical beam in a colloidal nano-suspension. (b) A 

charged nano-sphere screened by a Gouy-Chapman double-layer.   

 

In this regard, the interaction potential between two identical nano-particles is 

given by [34,35]:  
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               .      (5.1)                              

where e  is the magnitude of the electron charge, Q is the number of charges per sphere, 

0 is the free space permittivity and r is the liquid relative permittivity. In Eq.(5.1) a is 

the particle radius, r is the center to center distance between any two spheres, and 

)(rW represents the van der Waals attractive potential. The Debye-Hückel screening 

http://en.wikipedia.org/wiki/Boris_Derjaguin
http://en.wikipedia.org/wiki/Lev_Davidovich_Landau
http://en.wikipedia.org/w/index.php?title=Evert_Johannes_Willem_Verwey&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Theo_Overbeek&action=edit&redlink=1
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length 1/D Dl  associated with the electrolyte solution is given by 

2 2 2
0

1

( / )
M

D r B i i

i

e k T z n   


  . Here Bk  is Boltzmann constant, T  is the absolute 

temperature, iz  is the ionic valency and in   is the ionic number concentration at the 

neutral state.  In this work we consider only binary electrolytes with 2M  . Note that in 

aqueous solutions, in   is a direct function of the pH value and as such is an additional 

degree of freedom in controlling the optical nonlinear response of the system.  For all 

practical purposes this interaction energy can be treated as a perturbation on an otherwise 

“ideal” gas. Using the total Hamiltonian 
1

( ) /(2 ) ( )
N

i i p i j

i i j

H p p m U r r
 

       
 in the grand 

canonical partition function of the system  and by considering the thermodynamic limit 

where  lno Bp V k T  , one obtains the equation of state of such non-ideal gas of 

colloidal particles [18]. In the above discussion, ( )i jU r r
 

 is the interaction potential 

between any two particles, op  is the “osmotic” pressure and V  is the total volume. 

Under these conditions, the system can be effectively described through a virial 

expansion, i.e., 

2 3
2 3( ) ( ) .....o

B

p
B T B T

k T
           .       (5.2) 
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In Eq.(5.2),  is the particle density, and 2B and 3B  are the second and third virial 

coefficients, respectively. The second virial coefficient ( ) / 2
2

0

( ) 2 ( 1)BU r k T
B T e r dr


   , 

represents two-body interactions, while the third virial coefficient 3( )B T  arises from 

three-body effects and is given by: 

3 1 2 1 3 2 3 1 2 3( ) 1/(3 ) ( ) ( ) ( )u u uB T V f r r f r r f r r drdr dr    
        

, where 

 ( ) exp ( ) / 1u Bf r U r k T   . Equation (5.2) represents an equation of state for a non-

ideal gas of colloidal nanoparticles and can be also written in a more compact form 

/ ( )o Bp k T Z   where 2
2 3( ) 1 ( ) ( ) .....Z B T B T      is the so called 

compressibility factor [33].  

From thermodynamical considerations, a generalized form of Fick’s law can be 

written as  ( )J D Z   


 where J


 is the particle current density and D is the 

diffusion coefficient.  By superimposing the external optical gradient force acting on a 

nano-particle we then obtain:  

                                        ( )
4

bJ I D Z
     


.                                          (5.3) 

In Eq.(5.3),  b  is the particle’s mobility,   is its electric polarizability and I is the 

optical field intensity.  For Rayleigh nanoparticles, the electric polarizability is given by 
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nV bp   where 34 / 3pV a  is the particle’s volume, 0 is the free space 
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permittivity, and the dimensionless parameter /p bm n n   represents the ratio of the 

particle’s refractive index pn to that of the host medium bn  [20]. Under equilibrium 

conditions ( 0J 


), Eq.(5.3) can be integrated and to third order in the virial expansion 

we find [36]: 

 
2

2
2 0 3 0

0 0 2
0 0

2 3
( ) ln / 1 1

4 2B p p

B f f B f f
I I f f

k T V f V f
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              

   .             (5.4) 

In Eq.(5.4), 0I  is an integration constant and can represent in general a flat background 

intensity at infinity-here taken to be zero. In addition pf V  is the local volume filling 

factor while 0f stands for the filling factor at infinity where the beam intensity is assumed 

to vanish ( 00 I ). In deriving Eq.(5.4), Einstein’s relation / b BD k T  was used. Note 

that in the absence of any particle-particle interactions ( 03,2 B ), the nonlinear response 

of Eq.(5.4) (e.g. the logarithmic term) reduces to the previously considered ideal-gas 

Boltzmann distribution of Eq.(2.6)[14]. We remark that Eq. (5.4) is a generic result in 

which the details of the inter-particle interactions are contained in the specific values of 

B2,3.  In particular, our conclusions below regarding the appearance of a super-Kerr 

nonlinear response are theoretically founded on Eq. (5.4) as opposed to the specific 

model of screened Coulomb interactions treated here.  It is in this sense that our analysis 

can serve as a theoretical foundation for a super-Kerr nonlinear response. 
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Using Eq.(5.4) in conjunction with Eq.(2.11) and by introducing the same normalizations 

as before, i.e. , 0/z z  , 1
0 0 0p bz k n n f
   , /X x w  , /Y y w , 

 2
0 0/ 2 bw z k n ,  1/ 2

4 /Bk T   , we obtain: 

0
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       ,       (5.5-a)        
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2 22 0 3 0
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2 3
sgn( ) ln 1 1

2p p

B f B f

V V
          .                 (5.5-b) 

In Eq. (5.5), 0/f f   is a filling factor ratio, sgn( ) 1    when 0   or 
p bn n and 

sgn( ) 1    for negative polarizabilities, e.g. p bn n . We note that at low densities 

( 00 f ) the nonlinear response of the system given by Eq.(5.5-b) reduces to the 

Boltzmann exponential distribution of an ideal gas [14]. The two coupled equations (5.5-

a) and (5.5-b) describe nonlinear optical dynamics in a non-ideal gas of interacting nano-

colloidal particles. This nonlinear system can be solved numerically in both 1D and 2D 

geometries in order to extract information as to the propagation and stability properties of 

optical beams in such colloidal suspensions [36].  

 

5.3. Results 

To appreciate the effects arising from Coulomb screening, we have evaluated the 

first two virial coefficients based on a linearized Gouy-Chapman double-layer theory or a 

Debye-Hückel model (DH) [34]. For simplicity we have also ignored the van der Waals 

component in the interaction potential.  For comparison purposes, we plot both the 
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nonlinear behavior calculated from DH theory and that obtained from the ideal 

Boltzmann model for a specific set of parameters. In this example we assumed an 

aqueous solution of polystyrene nanoparticles ( nma 50 ) at a pH=6, and a filling factor 

3
0 10f . The average charge per particle was taken here to be 20Q  . Under these 

conditions, 300/2 pVB  and 32
3 107/ pVB . For this case, Fig. 5.2 (a) depicts the 

nonlinear response of this non-ideal gas of interacting particles as a function of the 

normalized intensity  / 4 Bk T I -as obtained from Eq. (5.4). As shown in chapter three, 

the nonlinear index change is always proportional to the filling factor f [14].  

 

Figure 5.2 Volume filling factor or nonlinearity versus normalized intensity as obtained 

from the Debye-Hückel theory (DH) and the Boltzmann exponential model (a) positive 

polarizabilities (b) negative polarizabilities. The system parameters are given in the text. 

The inset in (a) provides an expanded view at low filling factors. 

 

As Fig. 5.2(a) indicates, in this range of parameters, the DH curve quickly 

deviates from the Boltzmann distribution even at very low filling factors, slightly 
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exceeding 0f -as shown in the inset of Fig.5.2(a). This behavior is in contrast to that 

expected from the Carnahan-Starling hard-sphere model where significant deviations 

from the exponential model only occur at much higher packing factors- exceeding 5% 

[37,38]. In fact, the competition between the Boltzmann distribution and repulsive 

interactions leads to an optical response that can range anywhere from exponential to 

polynomial depending on their filling density, composition, and chemistry. Interestingly, 

even though at high filling densities the exponential distribution can be overshadowed by 

the higher virial terms, the Kerr coefficient (to lowest order in intensity I ) is largely 

affected by the Boltzmann term, e.g.  

      TkIVfBfnnIn Bpbp 4/.../21)(
1

020  . On the other hand however, for 

negative polarizabilities, the exponential term dominates the saturable self-focusing 

optical nonlinearity of this colloidal system, as clearly shown in Fig. 5.2(b).  In this 

regime, the deviation between the Boltzmann and DH curves is small since the nano-

particles are in this case expelled away from the center of the beam, thus reducing many-

particle interaction effects.  

We next investigate how many-body interactions may affect the nonlinear 

dynamics of optical beams propagating in such colloidal systems. A feature that is 

directly related to the nonlinear response itself is beam stability. To explore optical beam 

stability in these media, we first consider self-trapped solutions or optical solitons of the 

form ( , )exp( )G X Y i   and plot their power-eigenvalue diagrams where the 

normalized power is given by dxdyGP 
2

. Figures 5.3(a) and 5.3(b) depict this 
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behavior for both 1D and 2D configurations respectively-obtained for the same 

parameters used for Figs. 5.2. From the Vakhitov-Kolokolov criterion [24] one can 

directly infer that for these specific parameters one-dimensional optical self-trapped 

channels are stable while their 2D counterparts are unstable. This behavior is consistent 

with the super-Kerr character of the nonlinear optical response mentioned above. Clearly, 

this stability behavior can be greatly altered depending on the parameters of the colloidal 

system itself.  

 

Figure 5.3 Power-eigenvalue diagrams for (a) one-dimensional stripe solitons (b) 2D 

solitons. The parameters used are identical to those of Fig. 5.2(a).  

 

For example, 1D solitons can be destabilized if the strength of the interaction is 

reduced. This can be accomplished either by reducing the initial filling factor (dilute gas) 

or by altering the chemistry of the solution-thus enhancing screening effects. In that case 

the nonlinear response will approach the Boltzmann distribution-rendering even 1D stripe 

solitons unstable. On the other hand, for 2D self-trapped beams, the presence of inter-

particle interactions tends to slow-down the self-focusing collapse that would have been 
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otherwise severe in a purely exponential model. We note that for negative polarizabilities 

the self-focusing nonlinearity is saturable and hence all soliton solutions are stable [14]. 

The signature of many-body effects on beam propagation can be used to optically extract 

valuable information concerning the nature of the interaction potential by estimating the 

virial coefficients. Figure 5.4, shows beam propagation of a 2D optical self-trapped beam 

in this same system (corresponding to Fig.5.2(a)) at a wavelength of 0.532 m  . 

Figure 5.4(a) depicts the dynamics of a Gaussian beam of 7FWHM m at a power 

level of 1 Watt over a distance of mm1  of propagation (3.5 diffraction lengths) when 

nonlinear Rayleigh losses are taken into account. In this environment the beam undergoes 

expansion since the power is not enough to cause self-trapping. Figure 5.4(b) on the other 

hand depicts the intensity evolution of this beam in this same system when the charge per 

particle is reduced to one half ( 10Q ).  

 

Figure 5.4 Propagation dynamics of a m7 FWHM Gaussian beam at a power level of 1 

W (a) for the same system parameters used in Fig. 5.2 (b) when the charge per particle is 

reduced to 10Q . 



44 
 

 
In this case, the optical wave is initially compressed because of reduced inter-particle 

interactions and forms a self-trapped state before nonlinear losses take over. Note that in 

the absence of nonlinear Rayleigh losses, the beam would have collapsed after a small 

propagation distance because of the super critical nature of the optical nonlinearity in 2D. 

Our simulations indicate that the nonlinear beam dynamics, e.g. the output spot size 

versus input power, is sensitive to the inter-particle interactions and can therefore be used 

as a probe of these processes.  

In summary, we have examined the effect of many-body interactions on the 

optical nonlinearity of colloidal nano-suspensions. By considering the screened Coulomb 

repulsions between nano-particles we found that the nonlinear optical behavior of these 

colloids can range from polynomial to exponential depending on their composition and 

chemistry. The dynamical behavior of optical beams propagating in such non-ideal gas 

environments of interacting particles was considered and characterized. 
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 CHAPTER SIX: EXPERIMENTAL STUDY OF NONLINEAR 

OPTICAL RESPONSE OF COLLOIDAL SUSPENSIONS 

 

In the previous chapters different models were proposed to describe the nature of the 

nonlinear optical interaction of a light beam propagating in colloidal nano-particles 

[4,14,36]. In particular, based on the strength of the interaction between the nano-spheres, 

it was shown that the nonlinear optical response can be either exponential or polynomial 

[36]. It would be certainly of interest to test these predictions against measurements.  In 

this chapter we present the experimental results aiming at probing [39] the nonlinear 

optical response of aqueous nano-colloidal suspensions. The goal is to provide a test of 

previous theoretical approaches so far proposed for this nonlinearity; namely the 

exponential model [14], artificial Kerr medium [4-6], and the non-ideal gas model [36]. 

As we will see, the best agreement with experiment [39] is obtained using the non-ideal 

gas model for the colloidal suspension which in turn can be used to infer values for the 

second virial coefficient (see chapter 5) of the medium and the associated nonlinear 

coefficients. 

 

6.1. Experiment  

The experimental setup used to probe the nonlinear optical response of nano-

suspensions is shown in Fig.6.1. Two oppositely directed and aligned identical single-

mode optical fibers are inserted into the colloidal suspension and separated by a distance 

D, shown in the inset of Fig.6.1.  In this scheme, a well defined optical beam (with 

variable input power) is launched directly into the colloidal suspension from the input 
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single-mode fiber to the left. The collecting fiber to the right is used to measure the 

power coupled into the same single-mode beam profile after propagating a distance D.  

The fiber mode profile was well characterized by a Gaussian field of spot size w0, and the 

distance D was typically a few times the Rayleigh range of the initial Gaussian beam.  

We note that our experimental setup is reminiscent of the classic Z-scan technique used 

for measuring Kerr nonlinearities with the collecting fiber playing the role of the aperture 

in the Z-scan method [41].  In our case, however, it is the input power that is scanned. 

The key advantage of this technique is to gain direct access to the nonlinear suspension 

within the aqueous medium.  In addition, this approach eliminates any spherical 

aberration due to beam propagation through the glass and water interfaces present for 

cuvette-type geometries, and by reducing the sample chamber (from a cuvette) it is 

possible to greatly reduce thermal convection flows within the sample.  

 

 

Figure 6.1 The experimental setup. 
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Here we treat the colloidal suspension as a self-focusing Kerr medium with a critical 

power crKP for self-focusing or self-trapping. For input powers much less than crKP , linear 

diffraction takes place and as a result the power at the collecting fiber collP will be a 

fraction of the input power. The ratio /coll crKP P is determined from beam spreading and 

wavefront curvature that accumulate over the distance D .  However, as the input power 

is increased towards the critical power, nonlinear effects starts to come into play, 

reducing beam diffraction and hence increasing the fraction of power at the collecting 

fiber.  For the special case when the input power equals the crKP , the input beam should 

propagate with unchanging beam profile between the fibers leading to, in principle, 

perfect power coupling. In reality, due to nonlinear Rayleigh losses, this scenario will be 

altered depending on the strength of the losses. Increasing the input power beyond  crKP is 

expected to lead to beam self-focusing between the fibers before losses and diffraction 

takes over, resulting in a deduction of the power coupled into the collecting fiber.  Thus 

for a Kerr medium  the critical power for self-focusing can be estimated experimentally 

by looking for a peak or rollover in the plot of the measured power collP  at the collecting 

fiber versus input power inP . 

 

6.2. Experimental details and results 

We now turn to a more detailed description of the experimental setup in Fig.6.1. 

A linearly polarized laser (10 W, 1090 nm, SPI laser) is coupled into a 50/50 fiber splitter 

(FC1064-50-FC- 2x2 SM Coupler) using a three positioning fiber coupling stage 
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(MDE122, Elliot scientific) with a microscope objective and coupling objective (10X, 

0.25NA, Comar).  The beam profile of the single-mode fibers is well characterized as a 

Gaussian with spot size w0=3.4 μm at the wavelength 1.09 m  (this wavelength was 

chosen so as to reduce Rayleigh scattering losses). One end of the fiber splitter is directed 

onto a power meter, PM (Melles Griot) to monitor the power fluctuations in the laser and 

fiber coupling stage ( 2% ). The other end of the splitter is coupled, via FC connector, 

into a single ended cleaved single mode fiber, SMF (1060XP, Thorlabs, mode field 

diameter to 6.8 m ). The cleaved end of the fiber is then inserted into a capillary of inner 

diameter of 200 m  (Invitrocom) as shown in the inset. The sample is mounted onto an 

X-Y translations stage (H117, Prior Scientific) within an inverted microscope platform 

(TE2000E, Nikon). A microscope objective (imaging MO) (20X, NA DIC 0.50 NA, 

Nikon) is used to image the sample onto a high speed digital camera (DC) (A622f Basler) 

via a tube lens (TL). A condenser assembly to support differential interference contrast 

(DIC) illumination is used (LP – linear polarizer, NP – Nomarski prism). The same 

polarization optics is placed in the imaging path so as to pick up the small phase 

difference within the sample. The DIC illumination technique has previously been used 

to visualize single nanoparticles [42].  

The cleaved end of a second identical single mode fiber (1060XP, Thorlabs, mode field 

diameter) is inserted into the other end of the capillary and brought to a known distance 

away from the input face of fiber. Once the two fibers are aligned, the whole chamber is 

subsequently sealed with epoxy to reduce fluctuations. The output of the second fiber 

illuminates an Indium gallium arsenide (InGaAs) photodetector, PD (PDA10CS-EC, 
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Thorlabs), which in turn measures the coupled power. A set of calibrated neutral density 

filter is used so as to prevent over exposure onto the PD. A custom Labview program is 

used to remotely control the input power and capture the coupled power at the PD using a 

data acquisition device (National instruments NI USB-6009). The nanoparticles used here 

are polystyrene plain spheres of diameter ma 099.02  (10% coefficient of variation), a  

being the radius (PS02N/6391, Bangs Lab). The spheres are treated with a sulfate 

groups:  0.1% SDS (sodium dodecyl sulfate) and 0.05%  sodium azide anti-microbial 

agent. The initial concentration is 141.921 10 particles/cm
3. For each dilution step, heavy 

water (D2O - having low absorption at 1.09 m  ) is used as the diluting agent so as to 

reduce thermal convection flow.For the coupling power measurements, two samples have 

been prepared with colloidal densities of 13
0 1.921 10    and 

12
0 1.921 10   particles/cm

3. The collecting fiber is placed at a distance 

110 10D m   away from the input fiber. For each run, a total of 200 data points were 

taken and averaged over a 1 second acquisition time. At lower input powers ( 400mW ), 

the collected power varies linearly with the input power (the difference in the power plots 

is due to slight misalignment in z). 

Figure 6.2 shows the experimental results for the power measured at the collecting fiber 

( collP ) versus input power ( inP ) for the two concentrations mentioned above.  In the first 

case of  lower density suspensions (dash-dot line) the input power remains well below the 

critical power (5 W) and the collected power varies linearly with the input power.  For 

the higher density colloids (solid line) the collected power scales linearly for lower input 

http://www.bangslabs.com/cgi-bin/PSGFind.pl?return=2.1&code=PS
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powers, rises above the low concentration linear plot for higher powers, and finally there 

is a peak in the plot of collP versus inP  akin to that discussed above for the case of a Kerr 

medium, the rollover occurring at Proll ≈ 0.5 W. Due to the thin capillary walls, we are 

also able to observe the alignment of the nanoparticles under DIC illumination for the 

concentration of 131.921 10 particles/cm
3. In the inset of Fig. 6.2, we show two 

brightfield images for input powers of 0 W and 0.514 where for the latter case we can see 

a fine track in the refractive index from the DIC illumination upon the sample, this 

corresponding to the formation a fine channel of increased nanoparticle density.  

We have also performed standard Z-scan measurement [41] to obtain the value of the 

nonlinear Kerr coefficient 2n  for the sample concentration of 13 3
0 1.921 10 cm   . In 

order to satisfy the Z-scan requirements (sample thickness larger than beam’s Rayleigh 

length), we increased the input beam spot size to 15 m  (measured in air). The beam was 

directed into a sealed sample cell of 100 m  thickness that is scanned in 10 m  steps 

using a motorized stage (T-LS Series, Zaber Technologies). The transmitted power is 

collected and measured after passing through a 3 mm aperture. The measured nonlinear 

coefficient was approximately 9 2
2 2 10 /n cm W

  . We comment that the nonlinear 

coefficient is comparable with previous measured values, and the scattering loss 

(measured at lower power) in the sample at wavelength of 1.09 m  is 13.91cm
 which is 

much lower than that reported in the visible [6]. 
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Figure 6.2 Plot of power measured at collecting fiber with a photodetector versus the 

input power for the two concentrations indicated. Insets show the DIC image of two 

position when input power is 0 mW and 514 mW. 

 

6.3. Field propagation equation 

In order to understand the results presented in Fig.6.2 we use the theoretical 

models derived in chapters five where the beam evolution equation for the optical field 

envelop can be described as 
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      (6.1) 

Where as before the Rayleight scattering cross section is given by: 
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In Eq.(6.1), the factor 0/r f f  with 1r   for zero optical intensity and and 

0( ) /p b pk n n V    is a dimensionless constant that reflects the strength of the self-

focusing nonlinearity to the nonlinear Rayleigh scattering losses. 

Note that, as shown in previous chapters, different models for the nonlinear optical 

response colloidal suspensions correspond to different choices for the factor r . For 

comparison with the experiment the following parameters are used: 

13 3
01.09 , 1.57, 1.33, 1.9 10 , 50 ,

p b
m n n cm a nm        

0 0.01f  ,and 110D m , 

corresponding to polystyrene spheres in water.  In this wavelength region, the Rayleigh 

scattering losses due to the colloidal particles is expected to be very small, and we have 

verified this in numerical simulations with and without the losses.    

We shall employ Eq. (6.1) for propagation between the input and collecting fibers along 

with the initial Gaussian field representing the field launched by the input fiber at z=0 
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with input spot size w0 and input power inP .  Once the propagated field ( , , )x y D  is 

calculated we can calculate the power at the collecting fiber via the overlap integral 
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which is the modulus squared of the propagated field projected onto the collecting fiber 

mode.  For comparison with the experiment we shall use the spot size 0 3.4w m . 

 

6.4. Medium equations 

From Eq. (6.1) the nonlinear change in the refractive-index Δn of the colloidal 

medium is related to the ratio r via the relation 0ok n r   , leading to the expansion 
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    (6.5) 

 

where 0' ( / ) |
I

r dr dI  . In general the ratio r  must be determined from the equation of 

state of the soft condensed matter system exposed to the laser field (see chapter 5). In 

order to verify the theoretical model presented in our previous studies [36] we treat the 

colloidal suspension as a non-ideal “Van der Waals” gas to allow for compressibility of 

the colloidal suspension, and by keeping the second and third virial coefficients 2B  

and 3B , the relation between the optical intensity I  and the ratio r  can be written as 
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where the particle polarizability is given by 2 2 2
03 ( 1) / ( 2)

p b
V n m m    . Equation (6.4) is 

valid when the virial expansion converges 
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with p  and   the osmotic pressure and density of the colloidal suspensions, which is 

valid if 2 max( / ) 1
p

B V f  ,  and 2 2
3 max( / ) 1

p
B V f  . The values of the virial coefficients depend 

on the details and the nature of interaction between nano-spheres. Hard sphere 

interactions was proposed as a mechanism that accounts for the nonlinear optical 

behaviors of nano-suspensions  [37,38] but it was shown that simulations resulting from 

these types of interactions are in complete disagreement with experimental results and 

that one has to take into consideration even more complicated inter-body forces such as 

double layer [33,34] or steric potentials. We would like to emphasize that our treatment 

though limited to the second and third virial coefficients allows, in principle, for the 

inclusion of arbitrary inter-particle interaction potentials. 

In the limit of an “ideal gas” in which particle-particle interactions are neglected, 

2 2
2 max 3 max( / ) 0,( / ) 0,

p p
B V f B V f   Eq.(6.6) yields    exp / cr I I I , where 4 /c BI k T  , giving 

the limit of the exponential model for the nonlinearity 
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where we identify the nonlinear coefficient 2 0( ) /
K p b p c

n n n V I    in the limit of an 

artificial Kerr medium.  In contrast, combining Eqs. (6.5) and (6.6) for the non-ideal gas 

case with 2B  and 3B  non-zero yields 
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 (6.9) 

 

From the above formulae, it is evident that the effects of the many-body interactions is to 

soften the effective Kerr nonlinear optical response with respect to the exponential model 

since 2 2Kn n , but that higher-order nonlinearities are also present yielding a super-Kerr 

nonlinear response ( 4n term).  

In addition to the parameter values mentioned above, and in order to facilitate 

comparison with the experiment we shall set 3 0B   and vary the scaled second virial 

coefficient ( 2 / pB V ) which we expect to be dominant. Figure 6.3 shows the variation of 

the scaled nonlinear index change 2[ ( ) / 1]
K c

n I n I   versus scaled intensity ( / )
c

I I  for 

2 / 25pB V   as described by Eq.(6.6) (solid line) along with that obtained from the 

exponential model in Eq. (6.8). Evidently, a considerable softening of the exponential 

model is clearly indicated by the fact that the index change increases far less rapidly with 
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intensity for the non-ideal gas.  Inclusion of the virial coefficients is therefore an 

important factor in understanding how the exponential model can give way to the notion 

of an artificial Kerr medium or a super-Kerr nonlinear response. 

 

Figure 6.3 The variation of the scaled nonlinear index change 2[ ( ) / 1]
K c

n I n I   versus 

scaled intensity ( / )
c

I I  for 2 / 25pB V   using both the non-ideal gas model in Eq. (6.6) 

(red line) and the exponential model in Eq. (6.8) (blue line). 

 

6.5. Numerical results 

In order to analyze the experimental results in Fig. 6.2 we use both numerical and 

semi-analytical techniques. More specifically we employ Beam Propagation Method 

(BPM) simulations based on Eqs. (6.1)-(6.4), and also a variational Gaussian  (VG) 

model based on the non-ideal gas model in Eq. (6.9) using n2 and n4. Although the BPM 
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results are ultimately more accurate we concentrate on the VG model as it offers some 

insights into the underlying physics and it is important as a check on the purely numerical 

BPM results.  In all cases we checked that the same trends occur in both the BPM and 

VG results.  First we describe our VG model and then we turn to our numerical results.  

Throughout our numerical study the parameters used are those previously quoted unless 

otherwise stated. 

To analyze propagation of the initial Gaussian beam (6.3) according to Eq. (6.1) we use 

the variational approach of Anderson and Bonnedal [43].  In particular, we use the results 

for 2n  and 4n  for the non-ideal gas in Eq. (6.1) by replacing 
2

0 0 2 0 4r k n I k n I    , 

and we set the Rayleigh scattering losses to zero.  In the variational approach a suitable 

Lagrangian is introduced that yields the paraxial wave equation (6.1) when the Euler-

Lagrange equations are evaluated.  Although this makes an exact solution no easier it 

permits an approximation based on a prescribed trial function,  which we choose here as a 

Gaussian 
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where ( )T z  is the on-axis phase of the field,  w z  is the Gaussian spot size of the 

propagating field, and  R z  is the radius of curvature of the field.  Here we solve the 

problem under the initial conditions   0w z w  and  1/ 0R z  since the initial Gaussian 
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is collimated.  By evaluating the Euler-Lagrange equations we find the equations of 

motion for the Gaussian beam spot size and radius of curvature [43,44] 
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  (6.11) 

where the critical power for self-focusing due to the Kerr effect alone ( 2n ) for a Gaussian 

beam is given by: 
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and 2
02 /cr crI P w . These equations can be solved to find the Gaussian spot size and 

radius of curvature at the collecting fiber, and the measured power calculated using 
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                                                                                                                              (6.13) 

Physically, Eq. (6.13)  is the modulus squared of the propagated Gaussian field projected 

onto the collecting fiber mode.  Note that both the propagated beam spot size  w D  and 

the beam curvature  R D  affect the power measured at the collecting fiber. 

Equation (6.11) is solved numerically for a given set of parameters and under the initial 

condition 0(0) , (0) / 0w w dw dz   for an incident collimated beam (  1/ 0R z  ). The 



59 
 

collimated power is then obtained using Eq. (6.13).  One can gain physical insight into 

the self-focusing dynamics by recognizing that Eq. (6.11) is analogous to Newton’s 

equation for a unit mass particle moving in one dimension with w  playing the role of the 

particle coordinate, z  the role of time, and the right-hand-side being the force. Self-

focusing contraction of the beam occurs when the force is negative meaning that the 

particle is attracted to the origin ( 0w  ). Note that for an artificial Kerr medium 

( 2 0n  , 4 0n  ) the force is negative and self-focusing collapse occurs only when 

in crP P .  On the other hand, when the non-ideal gas model with both 2 4, 0n n  is 

considered, the force can be negative even for in crP P  (depending on the magnitude of 

the higher-order terms), thus leading self-focusing collapse phenomena even for input 

powers lower than the critical one, i.e. in crP P . This result shows clearly that artificial 

Kerr nonlinear coefficient alone will not be sufficient to account for the beam dynamics 

experimentally observed in interacting nano-colloidal system. 

Numerical simulations based on Eq. (6.1) and the exponential nonlinearity (Eq. (6.6) with 

all virial coefficients equal zero) were also carried out. It was found that under no 

conditions can one fit the model to the experimentally obtained data.  This is because  the 

exponential nonlinearity includes arbitrarily high orders of self-focusing nonlinearity, 

hence once self-focusing collapse starts it is immediately super-critical [40], leaving no 

room for the relatively smooth rollover seen in Fig. 6.2. In fact the exponential nonlinear 

model predict that the plot of the collected versus the input power is initially linear with 

the input, then it increases very sharply with increasing input power, and finally drops 

abruptly to zero above a given power level.  (This plot is not included due to lack of 
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numerical accuracy after the collapse takes place).  We conclude that the pure 

exponential model is therefore not a good representation of the nonlinear optical response 

of the experiment under investigation. 

We next consider the numerical results treating the colloidal suspension as an artificial 

Kerr medium. In other words, we truncate the exponential nonlinearity to the first 

nonlinear term as shown in Eq. (6.8).  For the same system parameters as before, we find 

that 9 2
2 2.3 10 /Kn cm W

   . From Eq. (6.11) one can calculate the critical power by 

setting 2 2Kn n . By doing so we find that 0.6crKP W  (We remark that the critical 

power for the lower concentration example in Fig. 6.2 calculated in this manner is 5 W).  

Figure 6.4 depicts the results of these simulations with both collected and input powers 

being normalized to crKP . The dashed line is obtained using the VG model and the solid 

line is obtained using the BPM with good overall agreement between the models. In this 

case, we see that the rollover occurs at an input power 0.6rollP W  for both models, in 

agreement with the experimental value of 0.5 W.  Indeed, fine tuning of the numerical 

parameters can easily reduce the difference in the rollover powers between the 

experiment and models.  However, as was discussed in the previous chapter, the artificial 

Kerr model contradicts the Boltzmann statistics and the natural question arising here is 

whether the one can explain the experimental data starting from first principles and by 

taking into account many-body effects? 
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Figure 6.4 shows simulation results for the power collected by the output fiber versus the 

input power using the artificial Kerr medium model, both powers being normalized to the 

critical power for self-focusing PcrK. The red line is obtained using the VG model and the 

blue line is obtained using the BPM. 

 

Finally we present VG results based on the non-ideal gas model with values for 

the nonlinear coefficients 2n  and 4n  based on Eq. (6.9) for the previous quoted parameter 

values and varying values of the second virial coefficient ( 2 / pB V ) (here we assume 

3 0B  ).  It is evident from Eq. (6.9)  that increasing ( 2 / pB V ) past zero will reduce the 

Kerr nonlinear coefficient 2n   below the value n2K for an artificial Kerr medium, and this 

will cause the critical power Pcr in Eq. (6.12) to be even greater than that for the artificial 

Kerr medium PcrK=0.6 W.   This would seem to be a step backwards in terms of 
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improving the agreement with the experiment.  However, this is not the case since this 

argument ignores the presence of the next order nonlinearity that is proportional to 4n .  

Figure 6.5 shows the results expected from the VG model for 2 / 10pB V   (blue 

line 0.4rollP W ),  2 / 20pB V   (red line 0.5rollP W ), and 2 / 30pB V   (green line 

0.6rollP W ).  By using BPM we find that 0.4,0.51,0.62rollP W  for 2 / 15,25,35pB V   

respectively.  

 

Figure 6.5 The power measured by the collecting fiber versus the input power using the 

non-ideal gas model and the VG.  The blue line is for 2 / 10pB V  , the red line for  

2 / 20pB V  , and the green line for 2 / 30pB V  . 
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The best fit to experimental data is obtained for 2 / 20pB V   (solid line) where the 

rollover power is 0.5 W . In this case values for the nonlinear coefficients are given by 

9 2
2 1.66 10 /n cm W

  , 16 4 2
4 4.2 10 /n cm W

  .  This value for n2 is in reasonable 

agreement with the previously quoted value 9 2
2 2 10 /n cm W

   measured by the Z-scan 

method. 

It is worth noting that Junio et al.[12] have previously commented on the 

necessity of incorporating higher-order nonlinear effects to account for dipole-dipole 

interactions between the spheres. We would like to emphasize that in general the virial 

expansion can account for  this type of interactions (as well as any other interactions), as 

long as the nature and form of interaction is known.  As mentioned earlier, the non-ideal 

gas model expresses the compressibility of the colloidal suspension via the virial 

coefficients, and their inclusion softens the nonlinear optical response from the 

exponential nonlinearity model (see Fig.6.3).  In this way the exponential model can be 

tamed to produce an artificial Kerr medium, but we also see the necessity of including the 

higher-order nonlinearity proportional to n4 thus yielding a super-Kerr nonlinear 

response. A comparison with the hard sphere gas model of Matuszewski et al. [37,38] 

shows that for this type of interactions the value of the normalized second virial 

coefficient 2 / 4pB V   which is too small to explain our experiment. 

We finish by noting that we have used the rollover power as the fit parameter between 

theory and experiment, but it must be noted that there is some discrepancy between the 

functional form of the experimental and theoretical plots of the variation of collected 
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power versus input power in Figs. (6.2) and (6.4).  In particular, the theoretical plots vary 

far more abruptly past the rollover point in comparison to the experiment.  However, the 

shot-to-shot variations in the experimental collected power, reflected in the vertical error 

bars, are also greater past the rollover.  The abrupt drop off past the rollover in the theory 

is most certainly a consequence of super-critical collapse due to the 4n  nonlinearity [40] 

which translates into the sensitivity to small variations in the input power in the 

experiment beyond the rollover making detailed comparison of theory and experiment 

more difficult past the rollover point. 

In summary, we have introduced an optical fiber-based diagnostic experiment that can be 

used to probe the nonlinear optical response of a colloidal suspension and provide a test 

of the theoretical approaches that have been proposed.  The exponential nonlinearity 

model was found to have the least correlation with our experiment, followed by the 

artificial Kerr medium approach.  Including the effects of compressibility via the second 

virial coefficient in the non-ideal gas model was found to yield good agreement with the 

experiment, and in turn can be used to infer values for 2 / pB V , and the nonlinear 

coefficients.  
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 CHAPTER SEVEN: SHIFTED HAMILTONIAN FORMALISM FOR 

THE NONLINEAR OPTICAL RESPONSE OF SOFT MATTER 

 

7.1. Introduction  

Conservation laws play an important role in classical mechanics [45] as well as 

nonlinear dynamics [46,47]. The existence of these conserved quantities arises from both 

external and internal symmetries of a system [45,48]. In nonlinear dynamics, the 

classification and behavior of the system depend on these constants of motion [46]. A 

system with a number of conserved quantities equal to (or greater than) the number of 

degrees of freedom is said to be integrable. Otherwise it is labeled as non-integrable. 

While the former behaves regularly, the latter exhibits chaotic behavior [46]. These 

quantities also find applications in modeling nonlinear equations. In the absence of 

analytical solutions it is very important to devise methods to check the validity and 

accuracy of numerical simulations carried out to predict the nonlinear response under 

certain initial conditions. In the context of nonlinear guided waves, the most commonly 

used conserved quantities are the power and the Hamiltonian. While the power can be 

conserved for many different physical realizations, the expression for the Hamiltonian, on 

the other hand, is unique to each nonlinear differential equation, and hence provides a 

means of checking numerical results. In some cases, as we will see later, it is impossible 

to either derive a closed form solution for the Hamiltonian or to obtain its value 

numerically, rendering this quantity useless for all practical purposes. Here we focus our 

attention on nonlinear Schrodinger-like equations [49] that play important role in optics 
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[50] as well as other fields such as plasma physics [29] and Bose-Einstein condensates 

[51]. By introducing a finite shift on the Hamiltonian density, we show that a numerical 

value of the new shifted Hamiltonian can be obtained and used to check the validity of 

the numerical analysis.  Before we go into the details of our analysis, it might be first 

useful to describe briefly the Lagrangian and Hamiltonian formalisms of nonlinear field 

equations and to establish the conservation of the Hamiltonian. 

 

7.2. Lagrangian and Hamiltonian formalism  

In nonlinear dynamics as well as in classical mechanics, the system’s evolution 

can be described using several different formalisms. The most common of these is to 

write a differential equation that directly represents the time (space) evolution of the field 

quantities. Equivalently, the same system can be described through its Lagrangian or the 

Hamiltonian. In this section we briefly introduce the latter two in the context of 

nonlinear-like Schrodinger equations [49]. Consider the optical beam evolution equation: 

 
2 2

2

2 2
0i

z x y

       
   

                  (7.1) 

To develop the Lagrangian equivalence of Eq.(7.1), we start by assuming the Lagrangian 

density  , , , , , , ,z z x x y y          L L , where here /z z    and the same is also 

true for other indices ,x y . In the above definition, each of the terms appearing in the 

argument of L  is treated as an independent variable. Using calculus of variations, one 
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can show that the action, defined as 
2

1

z

z

S dx dy dz

 

 

    L  is maximum/minimum when 

the Lagrangian density satisfies the Euler-Lagrange equations: 

                               

1 1 1
0

z x yz x y      

   
   

      
L L L L

                     (7.2.a) 

                   
1 1 1

0
z x yz x y   

   
   

      
L L L L

                     (7.2.b) 

A Lagrangian density associated with Eq.(7.1) will reduce the Euler-Lagrange equations 

to the beam evolution equation (Eq. (7.1)). It is clear that each different evolution 

equation has its unique Lagrangian density. For example, for Eq.(7.1), we find that: 

   22 2

2
z z x y

i
G          L                         (7.3) 

Where    G I I dI  with 
2I . Note that G in the last expression is an indefinite 

integral of    and it has to be obtained analytically. This can be done easily in the case of 

Kerr nonlinearity and the cases of exponential and saturable nonlinearities introduced in 

chapters two. However for the general situation of optical beam propagation in a colloidal 

system of interacting nano-particles, we find that performing this integral analytically is 

impossible for the simple reason that the exact form of the nonlinear optical response is 

not known. Instead the filling factor ratio f  is expressed as an implicit function of the 

nonlinear coefficient; hence the nonlinear response can be obtained only numerically for 

each value of f . It is important to note here that direct substitution of Eq.(7.3) in Eq.(7.2) 

yields the nonlinear propagation equation, Eq.(7.1).  
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The Hamiltonian density corresponding to Eq.(7.1) can be obtained directly through its 

Lagrangian density as  

         22 2

z z x y

z z

G    
 




 
     

 
L L

H L .                           (7.4) 

By defining the canonical variable     along with the associated canonical momentum 

i    it is straight forward to show that  / /z     H  leads directly to Eq.(7.1). 

In the previous formula   is the variational derivative. It is important to emphasize that 

the total Hamiltonian H dx dy H of the system is conserved, i.e. / 0dH dz  . This 

result can be easily derived by substituting /dH dz in Eq.(7.1) and using integration by 

parts. As mentioned before, conserved quantities are associated with symmetry properties 

of the systems. For this specific case, the conservation of the Hamiltonian is a direct 

outcome of the invariance of the Lagrangian with respect to z . In other words there is 

symmetry with respect to the propagation direction (The form of the evolution equation 

does not depend on the propagation distance). 

 

7.3. Shifted Hamiltonian 

Here we start again with the normalized nonlinear Schrodinger equation: 

 2 0i I
z

   


  
         (7.5) 

Where 
2

I   is the normalized intensity and  I represents the nonlinearity. For 

example, in the case of Kerr nonlinearity  I I  . As explained before, the 
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corresponding Hamiltonian density in 2D takes the form 
22

( ) x yG I    H , with 

 ( )G I I dI  . As we mentioned before, this integral is indefinite and can be obtained 

only analytically if the form of  I  is explicitly known. Under Kerr nonlinear 

conditions, the integration takes the form 2( ) / 2G I I . In the case of optical beam 

propagation in ideal nano-suspensions where    expI I  we find that  ( ) expG I I . 

However, when the many-body effects are taken into consideration, the nonlinearity can 

not be expressed as an explicit function of the intensity. In this latter case, the evolution 

equation takes the form: 

         2 0i I
z

   


  
                  (7.6.a) 

     2
1 2ln 1 1I A A                 (7.6.b) 

In Eq.(7.6.b) 1A  and 2A are constants that depend on the system parameters. It is clear, 

from Eq.(7.6.b), that  can not be solved and written as an explicit function of I and thus 

it is not possible to obtain the function  ( )G I I dI  . As a result the Hamiltonian 

density and hence the total Hamiltonian can not be calculated. Consequently the 

conservation of the Hamiltonian can not be used anymore in order to check the accuracy 

of the numerical simulation. In order to overcome this obstacle we introduce a shifted 

Hamiltonian density of the form: 

     
22

( ) (0) x yG I G      H   .             (7.7) 
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Where in Eq. (7.7) (0)G  is a constant representing the value of ( )G I  at 0I  .This is 

equivalent to  
0

( )
I

G I I dI    . Note that the addition of this constant will cause the 

total Hamiltonian to diverge, i.e. H dxdy

 

 

    H . However in modeling 

nonlinear beam propagations, for localized initial conditions, the field decays fast and for 

all practical purposes the simulation window is always kept finite. Under these conditions 

the numerical value of the shifted Hamiltonian will be shifted by a constant C  

above/below the actual value of the Hamiltonian, namely
0 0

f fy x

y x

H dxdy H C    H ,  

where C  is a constant and  0C G W with W  being the area (or width) of the 

simulation window. Note that / / / / 0dH dz dH dz dC dz dH dz     . This last formula 

is an expression of the conservation of the shifted Hamiltonian and can be used to check 

the accuracy of the numerical integration of the optical beam evolution. First we examine 

the 1D situation and we and show how to calculate the shifted Hamiltonian in one 

dimension. Before we proceed, we stress that the simulation domain is always chosen 

such that the field values practically vanish at the boundaries. Assume that at any step, 

the field takes the form ( )x  , it follows that the intensity can be also written as 

  2
( )I x K x   and hence     ( ) ( ) ( )I I x K x h x     , where ( )K x and 

( )h x are two functions of the transverse coordinate x . Note that these two functions are 

readily obtained at each point z along the propagation direction by directly integrating of 

the evolution equation under the given initial conditions (using beam propagation 
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techniques for example). Next we define the integral 
0

( )
iI

i

I

J I dI  where 0I is the 

intensity at point 0x , the most left boundary point of the numerical window where the 

value of 0I is always zero during the evolution of the initial data. On the other hand, iI  

represents the intensity at an intermediate point ix along the transverse direction. Note that 

( / )dI K x dx   and thus the integration can be written as  
0

( ) ( ) /
ix

i

x

J h x K x x dx   . 

From the numerical values of both functions ( )K x  and ( )h x , iJ can be calculated and its 

numerical value can be easily obtained for any point ix . But this same integration yields 

0

0( ) ( ) ( ) ( ) (0)
iI

i i i

I

J I dI G I G I G I G     , since 0I is zero at the boundaries. This 

leads to the result: 

 
0

( ) (0) ( ) ( ) /
ix

i

x

G I G h x K x x dx           .  (7.8) 

The shifted Hamiltonian density is then obtained by substituting Eq.(7.8) into Eq.(7.7). 

Since the value of 
2

x  can be also computed numerically, it immediately follows that 

the numerical value of the shifted Hamiltonian density can be calculated at any point ix . 

It is now straightforward to carry out the integration 
0

fx

x

H dx  H to find the numerical 

value of the total shifted Hamiltonian.  These steps can be repeated at each propagation 

distance z  and the conservation of H   can be checked.  
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This result can be generalized to 2D geometries where now ( , )I K x y and 

    ( ) ( , ) , ( , )I I x y K x y h x y     . As before, we define the integral 

00

( )
ijI

ij

I

J I dI   where ijI is the intensity at point  ,i jx y . In this case we have 

( / ) ( / )dI K x dx K y dy      and the integration becomes a line integral on a contour , 

i.e.    ( , ) ( , ) / ( , ) /ijJ h x y K x y x dx K x y y dy


        . Since 
ijJ  depends only on the 

values of the intensity at the boundaries 0( 00I and 
ijI ), it directly follows that that integration 

in the last equation is contour independent and one is in fact free to choose the contour 

that facilitates the numerical calculation. The most straight forward choice is the one 

shown in Fig.7.1 where the integration is first performed along x  with y  being constant 

and then along y with x kept constant.  By doing so, ijJ can be expressed as: 

   
0 0

0 0( , ) ( , ) / ( , ) ( , ) /
fi

yx

ij i i

x y

J h x y K x y x dx h x y K x y y dy              (7.9) 

Finally, similar to the 1D situation, we find that: 

   
0 0

0 0( ) (0) ( , ) ( , ) / ( , ) ( , ) /
fi

yx

ij i i

x y

G I G h x y K x y x dx h x y K x y y dy               (7.10) 

The shifted Hamiltonian density is then found through Eq. (7.7) and the total shifted 

Hamiltonian is found using
0 0

f fy x

y x

H dx dy   H . 



73 
 

In order to verify these results, a numerical integration was performed for Eqs.(7.6.a) and 

(7.6.b)  for the same parameters as in chapter 5. In both one and two dimensions the 

shifted Hamiltonian was conserved up to the fourth digit. 

 

 

Figure 7.1 Different possible paths of integration with P3 being the preferred one for 

numerical calculations 

 

In conclusion, we have introduced the concept of shifted Hamiltonian density. We 

showed that it is a constant of motion and that it has a finite numerical value for finite 

modeling domain. A systematic method was described to obtain the value of the Shifted 

Hamiltonian in both 1D and 2D geometries. While the problem reduces to simple integral 

in the 1D case, it was shown that in the 2D situation, the final result can be expressed as a 

contour integral. The simplest possible contour was identified and the results were 

verified numerically. 
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 CHAPTER EIGHT: SOLITONS IN DISPERSION-INVERTED 

AlGaAs NANOWIRES 

 

8.1. Introduction 

The interaction of light with matter on a nanometer scale opens up new 

opportunities which may have far reaching implications in telecommunications, 

computation, biophotonics, and sensing technologies [52]. Lately, single-mode sub-

wavelength waveguides or nanowires have been realized in several material systems [53-

62]. Such optical nanowire structures are capable of providing superior light confinement 

and are thus ideal for nonlinear optics applications [63]. Clearly, of interest will be to 

fabricate such nanowires using high contrast, highly nonlinear materials, such as AlGaAs-

known to exhibit a nonlinearity that is three orders of magnitude higher than that of silica 

glass [64,65]. Apart from being highly nonlinear, AlGaAs nanowires are also highly 

promising in terms of applications since they can be integrated with other optoelectronic 

components on the same wafer and thus can serve as information conduits among 

miniaturized devices.  Quite recently, enhanced spectral broadening or SPM has been 

observed for the first time in 700m long AlGaAs nanowires [66]. An important question 

associated with this particular system is whether optical solitons are possible in AlGaAs 

nanowaveguides. This is of relevance since solitons can be used to either overcome 

dispersion effects or to achieve pulse compression in such nanostructures. We note that so 

far, optical solitons have only been observed in multi-layer AlGaAs structures in which the 

dispersion can be engineered [67,68]. Yet, in primitive weakly guiding AlGaAs waveguides 
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such solutions are not possible since this material system exhibits appreciable normal 

dispersion in the spectral region of interest [69], i.e. for mm  7.11.1  .  Here we 

theoretically demonstrate, that, because of high contrast, the dispersion of an air-clad 

AlGaAs nanowire can become strongly anomalous (becomes inverted), thus overcoming 

material dispersion limitations. This in turn may allow optical soliton formation in 

millimeter long structures. These solitons are possible at very low power levels (at ~5 W) 

in spite of the fact that the AlGaAs nanowires can exhibit anomalous dispersion that is a 

thousand times higher than that of silica glass. The intensity and spectral evolution of these 

solitons is investigated in AlGaAs nanowaveguides in the presence of loss, multi-photon 

absorption, and higher-order dispersive and nonlinear effects. 

 

8.2. AlGaAs nanowire dispersion properties 

To analyze the dispersion properties of AlGaAs  nanowires, let us consider for 

example an AsGaAl 8.02.0
nanorod of core radius a  as shown in Fig.8.1(a).  This particular 

composition ( AsGaAl 8.02.0
) is deliberately chosen since in the neighborhood of m 55.1  

it is known to exhibit relatively low two-photon absorption [70]. In addition, we assume 

that the nanowire is air-cladded. We note that even though completely air-clad structures 

are rather difficult to develop these days, it is yet possible to fabricate waveguides that are 

mostly surrounded by air, with characteristics very similar to the one analyzed here. At this 

wavelength the refractive index of AsGaAl 8.02.0
 is approximately 3.27, and the nanorod is 

operated at or close to the single-mode regime. In general, the nanowire dispersion relation 

is given by [71]: 
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In Eq.(8.1) )(uJm
is a Bessel function of the first kind and of order m  and  similarly )(wK m

 

is a modified Bessel function, and primes represent derivatives with respect to the 

argument. 22
effcoreo nnaku  , 22

cladeffo nnakw   where  /20 k  is the free space wavevector 

and effn  is the effective refractive index of the mode [71]. 
coren  is the core index and 1cladn  

since the exterior medium is air. The wavelength dependence of the refractive index is 

accounted by using the Sellmeier expansion of AsGaAl xx 1 , i.e  [69]: 

               
22
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1
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
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
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TxATxn

o

o

core
      . (8.2)                            

 In general, the constants A , 
0C , 

1C , 
0E  and 

1E  depend on the Al  composition )(x , the 

temperature T , and  the free space wavelength  . Here all calculations were carried out at 

room temperature. 

The dispersion properties of the fundamental mode 
11HE of such a nano-structure are 

obtained by numerically solving Eq. (8.1) for 1m , with the core index evaluated at each 

frequency step from Eq. (8.2). The dispersion coefficient 22" /  dd  of an AsGaAl 8.02.0
 

nanowire is shown in Fig.8.1(b) in units of mps /2  for different core radii. In this same 

figure, the bulk AsGaAl 8.02.0
 dispersion is also included for comparison. 
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Figure 8.1 (a) a nanowire structure; (b) group velocity dispersion "  of an  Al0.2 Ga 0.8 As  

nanowire when its radius    is (A) 160, (B) 175 and (C) 193 nm. Bulk dispersion of Al0.2 

Ga 0.8 As  is also shown. 

 

It is important to note that because of the strong index contrast of the AlGaAs  

nanowaveguide and the resulting field confinement, the waveguide dispersion dominates 

and as a result the dispersion can become inverted and strongly anomalous [55,72]. In fact 

for nma 193 , the dispersion of such a nanorod can reach very high values, as high as 

mps /12 2 , which is 310 times higher than that of a standard silica fiber at 1.55 m .  

     Parenthetically, we would like to point out that these same structures can also lead to 

very high normal dispersion. Figure 8.2(a) depicts the total dispersion of an AsGaAl 8.02.0
 

nanorod when its radius is nma 160 . As one can see, the anomalous dispersion of this 

structure (also shown in Fig.8.1(b) for m 4.1 )  is followed by a region of strong 

normal dispersion especially at 1.55 m . In fact around 1.55 m  the dispersion is 

approximately mps /80 2"  . Thus the dispersion of a cm2  long AlGaAs  nanorod will be 

sufficient to cancel that arising from a km25.1  long anomalously dispersive fiber with 

group velocity dispersion nmkmpsD ./1 . In addition Fig.8.2(b) shows the group index 
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gg cn / and the effective index effn  of an AsGaAl 8.02.0
 nanowire of radius nma 175  as a 

function of wavelength. Note that the group index in this case can be as high as 52.5gn  

around 1.55 m , which indicates “slow” light transport (because of waveguide dispersion) 

in spite of the fact that  bulk index is 3.27 and 56.1effn  . 

 
    
 Figure 8.2 (a) group velocity dispersion " when nma 160 , (b) group and effective 

refractive indices of an  AsGaAl 8.02.0
  nanowire when  nma 175 . 

 

   For the subsequent discussion, we chose two operating points based on the designs 

(C) and (B) shown in Fig.8.1(b).  In particular the design (C) is used at 1.55 m  where the 

third-order dispersion is very small whereas design (B) is used at 1.5 m  where cubic 

dispersive effects become appreciable. The nanowire of case (C) is single-moded for 

m 57.1 whereas that of (B) is monomode for m 42.1 .  

 
8.3. Soliton effects in AlGaAs nanowires 

Nonlinear pulse propagation in such nanowire structures is modeled using the 

evolution equation [73]: 
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In Eq.(8.3),  represents the pulse envelope, 
gztT / , is the linear loss coefficient, 

mmm   /)( is the th
m

 order dispersion coefficient evaluated at the carrier angular 

frequency  /20 c , )2/()( 22 onnn   where Wcmn /103.1 213
2


 is the nonlinear 

Kerr coefficient and n is the linear refractive index of AlGaAs ( o is the free space wave 

impedance). 215
2 /105.6 Vm

 and 4331
3 /1063.5 Vm

 are the two-photon and 

three-photon absorption coefficients respectively at m 55.1 [70]. In all cases, the 

dispersion curve is incorporated in Eq.(8.3) using a dispersion Taylor series over a broad 

spectral range (greatly exceeding the pulse spectrum). Here the linear loss for the field is 

taken to be 125.  cm . 

     Figure 8.3(a) shows the intensity evolution of a fs200 (FWHM) hyperbolic secant 

optical pulse when is launched into a mm5  long AsGaAl 8.02.0
 nanowire of core radius 

nma 193  (corresponding to curve (C) of Fig.8.1(b)) at m55.1 . For this design, the 

quadratic dispersion ( mps /12 2''  ) dominates the propagation process (the higher-order 

dispersion terms are negligible) and the dispersion length is mm5.1 , i.e., is very small. The 

pulse peak power in this case is approximately W5.5  (with a 75% confinement factor), 

corresponding to the fundamental soliton in this nanowire structure.  

As Fig.8.3(a) clearly indicates, this soliton can be sustained over approximately 3-4 

dispersion lengths, i.e. up to a distance that is ultimately determined by the linear loss of 
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the system. Fig.8.3(b) on the other hand depicts soliton compression under similar 

conditions when the input power of the pulse is 8 W.    

 
 
 Figure 8.3 Intensity evolution of a 200 fs soliton propagating in a 193 nm (radius) 

AlGaAs nanowire when the peak power is (a) 5.5 and (b) 8 W. Similarly, (c) and (d) 

depict soliton propagation and compression in a nanowire of radius 175 nm when the 

peak power is 2 and 2.8 W respectively. 

 

For this power level, at 2 dispersion lengths, the FWHM pulsewidth becomes 

fs175 . Figures 8.3(c) and (d) demonstrate similar results when an AlGaAs nanowire 

corresponding to curve (B) of Fig.8.1(b), is used at m5.1 . Even in this case, in spite of 

appreciable third-order dispersion effects and multi-photon absorption, a fs200  soliton 

forms at W2 , as shown in Fig.8.3(c). Soliton compression is also shown for this case in 

Fig.8.3(d) when the input power is W8.2 . It is important to note that in all cases 
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ultrashort solitons in these nanowires can form within millimeters and at very low power 

levels. 

 
Figure 8.4 (a)  Input and output soliton power spectra corresponding to the case shown in 

(a)  Fig.8.3 (a) ; (b) Fig.8.3 (b) ;     (c) and (d) spectral generation and intensity profile for 

an 3N  soliton (50 W peak power) at mmL 5 . 

 

Figure 8.4 depicts the power spectra that may result in 

an AsGaAl 8.02.0
nanowaveguide of radius nma 193  when is excited at m55.1  with a 200fs 

FWHM optical pulse. When the input peak power is enough to establish an optical 

soliton (5.5 W) the power spectrum remains essentially invariant during propagation as 

shown in Fig. 8.4(a). At a higher power (8W) the pulse undergoes compressions and thus 

its spectrum broadens (Fig. 8.4(b)). Figures 8.4(c) and (d) on the other hand depict the 
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expected spectra and intensity profile of a higher order soliton at mmL 5 . In this latter 

case, the peak power is 50 W and thus corresponds to an 3N  higher order soliton 

solution. The splitting behavior observed in Fig. 8.4(d) is attributed to multi-photon 

absorption.  

 

In conclusion we have shown that optical solitons can exist in dispersion-inverted 

highly-nonlinear AlGaAs  nanowires. These soliton waves are possible at very low power 

levels in spite of strong dispersion and can form in millimeter long nanowire structures. 

The intensity and spectral evolution of solitons propagating in such AlGaAs  

nanowaveguides was investigated in the presence of loss, multiphoton absorption and 

higher-order dispersion. 
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 CHAPTER NINE: POWER CIRCULATION VIA NEGATIVE 

ENERGY-FLUX WORMHOLES IN OPTICAL NANOWAVEGUIDES 
 

 

9.1. Introduction 

Controlling the flow of light on a nanometer scale may have important implications in 

both science and technology [52].  Progress in the area of nano-photonics is expected to 

impact communication and computing technologies as well as bio-photonics. In the last 

few years we have witnessed rapid advances in the fields of near-field microscopy and 

spectroscopy and sub-wavelength imaging [74]. The fabrication of high contrast 

dielectric nanowaveguides is yet another important development in this area. Because of 

their strong index contrast, these sub-wavelength waveguides or nanowires can exhibit 

considerably altered dispersion characteristics and enhanced nonlinearity [53-56]. When 

implemented with semiconductor materials such as GaAs or AlGaAs, these nano-

waveguides show promise for efficient second harmonic generation and self-phase 

modulation at very low optical powers [66,75,76]. 

 In the last few decades or so, the electromagnetic problem associated with wave 

propagation in cylindrical dielectric waveguides has been intensely investigated in a 

number of studies [77-79].  Given the history of this topic, at a first glance it may seem 

that all is known regarding the guiding behavior of these structures.  An unusual effect 

associated with the electromagnetic properties of the fundamental 11HE mode in high-

contrast dielectric rods was theoretically found by Gillespie in 1960 [80]. This effect, 

which has so far received little if any attention, arises from the fact that in such high-
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contrast structures there can be two regions (close to the core-cladding boundary) where 

the Poynting vector is negative with respect to the direction of propagation. We 

emphasize that in all cases (for lossless fibers), the phase velocity and group velocity 

vectors of the 11HE mode are parallel, i.e. the negative power never exceeds the positive 

power and thus no backward waves are associated with the presence of these regions 

[80]. An important facet of this intriguing effect that still remains unresolved arises when 

one examines the energy balance equation of the 11HE mode during pulse propagation, 

e.g. by considering [81] 

 



A t

W
adS


      (9.1) 

over a virtual volume V (surrounded by a surface A) that is totally embedded in one of 

these regions. In Eq.(9.1), S


is the energy flux or Poynting vector, and W is the total 

electromagnetic energy in the volume V. More specifically, if a pulse first excites the 

front face of the virtual surface enclosing this volume (where the energy flux is negative), 

then how is the escaping energy balanced in this region? To address this issue we will 

investigate the behavior of this system in the time domain.  

        Here we show, that in high-contrast dielectric optical nanowires, power circulation 

is possible during pulse propagation via negative energy-flux wormholes. This 

phenomenon is in fact universal since it occurs in a variety of waveguide geometries as 

long as the waveguide index-contrast exceeds a critical value. For demonstration 

purposes this mechanism is examined in circular AlGaAs and silicon nanowaveguides. 

We theoretically demonstrate that under pulse conditions these wormholes are constantly 
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exchanging energy with their surroundings and at “infinity” (with respect to the pulse 

center) they become strongly warped-in a way similar to that expected in negative-index 

waveguides.  For completeness dispersion effects are also accounted in our analysis and 

pertinent examples are provided. Methods to detect the presence of these negative 

energy-flux regions or wormholes are also suggested.  

 

9.2. Analysis 

To demonstrate our results we consider wave propagation in a cylindrical optical 

nanowire of core radius a .  This dielectric rod is surrounded by air/vacuum and its 

refractive index is taken here to be n . The vacuum wavelength of the optical wave 

exciting this nano-waveguide is 0 . In this case, the electromagnetic field associated with 

fundamental 11HE  mode of this cylindrical structure is given by [71] 

  ztireE   exp),(


         (9.2a) 

  ztirhH   exp),(


       (9.2b) 

where its propagation constant   can be obtained from the first root of the corresponding 

eigenvalue equation. In this study, without any loss of generality, the fields of Eq.(9.2) 

were judiciously chosen so as the transverse electric field of the of the fundamental mode 

is primarily x-polarized ( x
HE11 ) [71].  As usual the transverse components (  hhee rr ,,, ) 

of the hybrid 11HE field can be directly derived from the longitudinal vectors. Here, the 

longitudinal electric fields are taken to be:   )cos(/1 aurAJez  , 

  )cos(/1 awrKBez  in the core and cladding regions respectively. Similarly, the 
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magnetic fields are given by:   )sin(/1 aurCJhz   and   )sin(/1 awrKDhz  , where 

A,B,C,D, u, and w, are all frequency dependent quantities [71]. The time-averaged 

Poynting vector can then be obtained from )Re()2/1( *
HES


  which under 

continuous-wave (CW) conditions has only a ẑ -component, i.e., is parallel to the 

direction of propagation.  

 As an example, Fig. 9.1(a) shows the distribution of the Poynting vector zS  (of 

the x
HE11  mode) over the entire transverse plane (core and cladding regions) of an 

AsGaAl 8.02.0  nanowire when its radius is nma 170 . The AsGaAl 8.02.0  refractive index 

is 25.3n  and the operating wavelength was assumed to be m 5.10  . Figure 9.1(b) 

clearly shows that in this case the intensity distribution in this nanowaveguide is 

elliptical-like (with an aspect ratio of 80 %).  

 

 

Figure 9.1 (a) Distribution of the x
HE11

 Poynting vector 
zS  associated with an AsGaAl 8.02.0

 

nanowire      of core radius nma 170 . (b) Top view shows the ellipticity of the 
zS  

distribution. (c) Negative 
zS  regions with the positive part removed for illustration 

purposes. 
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More importantly, at the core-air interface (around the x-axis or 0 ) there are two 

regions or wormholes where the energy flux density or Poynting vector becomes 

negative. What is quite interesting, is that, this effect results and coexists with the process 

of total internal reflection (TIR) which is responsible for the existence of the guided 

mode. These two areas have a crescent-like shape as shown in Fig. 9.1(c). 

 In general, these negative 
zS  features arise from the severe disruption of the 

electromagnetic field lines at the core-cladding interface and are only possible in high-

index-contrast structures. It is worth noting that this effect does not occur for TE and TM 

modes since in these cases one can directly show that zS  is everywhere positive.  

 

Figure 9.2 Iso-contour lines 



 maxmax / zz SS  associated with the 11HE  mode in an air-clad 

nanowire, as a function of index contrast and the V number. 
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Figure 9.2 shows the contour lines of 



 maxmax / zz SS  associated with the 11HE  mode in 

such a nanowire structure, as a function of index contrast and the V-number, where 

1)/2( 2
0  naV   [71].  

As this latter figure indicates, these wormholes start to appear only when the core index 

exceeds the critical value of 71.2n . Thus these effects can take place in low-loss high-

index materials such as for example GaAs, AlGaAs, or Si. For the AsGaAl 8.02.0  nanorod 

assumed here, these regions exist in the range 88.697.1 V  (i.e. in both the single-and 

multi-mode regime) and its maximum 



 maxmax / zz SS ratio is around 10% at V=2.2. 

Figure 9.2 also indicates that these effects can become considerably more pronounced at 

higher index contrasts. This may be more relevant in the microwave region where 

materials with very high refractive indices of 108n are known to exist [82]. 

 We emphasize that these negative energy flux regions occur in a universal 

fashion, e.g. they are not uniquely associated with cylindrical waveguides. Figure 9.3 

depicts the electric field distributions as well as the negative Poynting vector regions as 

obtained using finite element methods for three different waveguide geometries 

when m 55.10  . In all cases the structures are air-clad and are assumed to be made out 

of silicon (refractive index of Si is 5.3n ). 

Note that these wormhole domains are always enhanced around edges and regions of 

high geometrical curvature. Thus these effects are a byproduct of high-index contrast and 

geometrical effects, around which the electromagnetic field lines are severely distorted.   
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Figure 9.3 Electric field and negative Poynting vector distributions in an (a) elliptical 

waveguide with aspect ratio  2350400 nm  (b) square waveguide 2350350 nm  and (c) 

“pyramid” waveguide of approximate dimensions 2350300 nm  

 

9.3. Results and discussion 

Even though the CW analysis indicates that such negative energy flux regions are 

possible in high-index optical material systems the question remains how these 

wormholes get established in the first place and how is their presence consistent with the 

energy considerations of Eq.(9.1). To address these issues we will examine this problem 

in the time domain. To do so we express both the electric and magnetic field vectors 

through a Fourier superposition, i.e.,  
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where 0 is the carrier angular frequency of the wavepacket and 0  is the corresponding 

propagation constant of the 11HE mode. gztT /  is a time coordinate frame moving 

at the group velocity g  of the pulse, )(0  is the pulse envelope frequency spectrum, 

 is a frequency deviation from 0 , and the dispersion function is defined as 
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)/()()( 00 gF   . By employing a first-order Taylor series expansion of 

the vector fields around 0 , i.e.,   )()(),( 100 rerere
   where dedre /)(1


  

evaluated at 0 , and similarly for the magnetic field h


, Eq. (9.3) takes the form 
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      (9.4)  . 

In Eq.(9.4), ),( Tz  represents the envelope of the pulse which is given by 

  ))]((exp[)()2/1(),( 0 zFTidTz  . In addition, one can formally show that 

even under dynamic conditions the average power flow density is still given 

by )Re()2/1( *
HES


 . This is true because, under typical pulsed conditions, the time-

averaged part )(Re)2/1( HE


 of the Poynting vector is zero as the spectral functions 

)( 00   and )( 00   have no overlap. In this case, 
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where in Eq.(9.5) the envelope was expressed in polar form, e.g. )exp(  iA . Let us 

now analyze this latter result. The first term in the bracket corresponds to a modulated ẑ  

power flow (CW-like part). The second term in Eq.(9.5) describes an energy 

redistribution among spectral frequency components (different frequencies see a different 

11HE distribution). From the fact that   0ˆ)()(Re 0
*

0  zhe 


, one can   then 

deduce that the energy redistribution associated with the 

 *
10

*
01Re hehe


 term occurs again only in the ẑ direction. The last term on 
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the other hand gives the transverse Poynting vector and is in fact responsible for 

establishing the wormhole regions. It is important to note that since 0)( 2  T
AdT  (for a 

finite energy pulse), the time-integrated Poynting vector  SdT


of Eq.(9.5) exhibits only 

a ẑ component, in agreement with Parseval’s energy theorem. If we assume that initially 

the envelope is Gaussian, that is )/exp(),0( 2
0

2
0  TETz  and by considering only 

second-order dispersion effects ( 2/)( 2''
0 F ), then the evolution of the envelope in 

Eq.(9.5) can be analytically determined. In this latter case, S


 is given by 
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where 0/ T  is a normalized time coordinate and  ''02
0 2/ dz is a dispersion 

length. As an example we consider the propagation of a Gaussian pulse in an 

AsGaAl 8.02.0 nanowire at m 5.10  , when the core radius is nma 170 , the nanowire 

dispersion is mps /48.4 2''
0  , and the pulsewidth is fs5000  . Figure 9.4(a) depicts 

the transverse Poynting vector associated with this case, as obtained from Eq. (9.6), at 

1/ 0 T  (at the leading edge of the pulse) after a propagation distance of one 

dispersion length,  dzL  . As Fig. 9.4(a) clearly indicates, the two negative energy flux 

wormholes are constantly fed with energy from the sides, from both the core and 

cladding regions. This energy sinkhole effect is better shown in Fig. 9.4(b), where the 
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wormhole has been expanded for illustration purposes. On the other hand, at the trailing 

part of the pulse ( 0/ 0 T ), the situation is reversed, i.e., the wormholes release their 

energy to the forward zS  components, i.e., they act as sources.  

 

Figure 9.4 (a) Transverse Poynting vector distribution at the leading edge of a pulse (b) 

An expanded view of the power-flow density around the wormhole area. 

Even more importantly, at a certain time-distance (ahead or behind the pulse center) 

where the power tends to diminish, these wormholes become strongly warped. This 

warping effect of the power-flow density is schematically illustrated in Fig. 9.5, in the 

Tx  plane.  
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Figure 9.5  Schematic demonstration of the space-time Poynting vector field (in T and x). 

Power circulation within the pulse (traveling from right to left) is evident. 

 

Our results shed light on how such an energy balance is accomplished around these 

negative zS  zones. More specifically, at the front of the pulse, these wormholes are fed 

from the positive zS  regions (from core and cladding) whereas at the back of the pulse 

this energy is returned. Even under CW conditions, this same reasoning is still applicable 

if one considers the time history (pulse-fronts) of this field at T . It is important to 

note that the mechanism responsible for setting up the power circulation in these 

nanowires is fundamentally different from the one involved in similar effects in negative-

index (metamaterial) waveguides [83]. As we pointed out before these effects arise 

because of high-index contrast and geometrical effects. 
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 One possible avenue to detect the presence of these wormholes is to observe the 

effect of negative zS  on nanoparticles given that these regions primarily exist in the 

air/vacuum cladding. Since the longitudinal radiation force component is parallel to the 

zS  vector [8,84,85], then particles located within the wormholes are expected to move 

towards the source. This is in contrast to what happens in similar configurations using 

low contrast waveguide structures (particles are repelled away from the source). From the 

previous discussion the direction of the force is expected to be polarization dependent. 

Other methods to detect this “negative wind” from dielectric waveguides are also 

currently considered.  

 

9.4. Conclusion 

In conclusion we have shown that that power circulation is possible during pulse 

propagation in high-contrast optical nanowires. This process is accomplished via negative 

energy-flux wormholes that are constantly exchanging energy with their surroundings. 

Our results explain how these zones are formed and provide a detailed account as to their 

energy balance. The implications of our results on other aspects concerning wave 

propagation in optical nanowires are currently investigated. 
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 CHAPTER TEN: THEORY OF COUPLED OPTICAL PT 

STRUCTURES 

 

 

10.1. Introduction 

Physical systems exhibiting PT (Parity-Time) symmetry have been the subject of intense 

investigation in the last few years [86-89]. It has been shown in a series of studies that 

PT -symmetric Hamiltonians can have a real eigenvalue spectrum-a surprising result 

given that in general these Hamiltonians are non-Hermitian [86].  Another intriguing 

aspect associated with this family of pseudo-Hermitian configurations is the possibility of 

an abrupt phase transition (from a real to a complex spectrum) because of a spontaneous 

breakdown of PT symmetry.  Following the work of Bender et al [87], an operator Â  is 

PT symmetric if it commutes with the TP ˆˆ  operator in which case they share a common 

set of eigenvectors, i.e. 0]ˆˆ,ˆ[ TPA . Here the parity operator P̂  is defined as 

ppxxP ˆˆ,ˆˆ:ˆ   while the time reversal operator leads to iippT  ,ˆˆ:ˆ , 

where p̂ is the momentum operator. From this latter requirement one can show that the 

potentials associated with these pseudo-Hermitian Schrödinger problems must satisfy the 

condition )()( *
xVxV   [87]. 

 In optics, such complex PT -symmetric structures can be realized within the 

context of the paraxial theory of diffraction by involving symmetric index guiding and an 

anti-symmetric gain/loss profile, that is    xnxn   . In other words, the index and gain 



96 
 

guiding [90] in such configurations must be judiciously realized. In these systems, the 

electric field envelope obeys a normalized complex Schrödinger equation, e.g.: 

      0,)(
,,

2

2








 







Vi          (10.1) 

where 2
02/ kxz is a scaled propagation distance, 0/ xx  is a dimensionless 

transverse coordinate, and 0x is an arbitrary spatial scale. Here, 00 /2 nk  , 0n is the 

background refractive index, and   )/()/2( 00
2
0

2
xxnnxkV   represents the normalized 

complex index distribution that satisfies the PT condition.  Note that in this physical 

model, the propagation distance   plays the role of time in quantum mechanics. Given 

the fact that PT arrangements may provide an additional degree of freedom in 

synthesizing novel optical structures and materials, of great interest will be to study their 

optical behavior and characteristics. One fundamental aspect associated with PT 

components, never considered before, has to do with their coupled-mode interactions.  

In this Letter we formulate a coupled-mode theory appropriate for PT symmetric 

optical elements, i.e. when each individual element as well as the entire system respects 

PT symmetry. This is done through a Lagrangian treatment of the problem and by 

employing the particular bra-ket algebra of these systems. As we will see, this new 

formulation is necessary since the conventional coupled mode theory (CMT) fails in this 

regime. Pertinent examples are provided to demonstrate the validity of our results. 
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10.2. Analysis 

We begin our analysis by considering the action of the TP ˆˆ  operator on Eq.(10.1), 

which yields: 

 

        0,
,,

2

2









 









Vi       .                       (10.2) 

Note that in Eq.(10.2)  V  remains invariant as a result of the assumed PT symmetry. 

From Eqs. (10.1) and (10.2) one can readily obtain the first conservation law of the 

system, i.e.    




   dQ ,, is a constant of motion independent of distance  . 

Note that, in contrast to conventional optical systems, this latter conserved quantity does 

not represent the actual power. In order to obtain the equations of motion describing the 

coupling interaction between PT elements, we employ the Lagrangian density associated 

with Eq.(10.1) which is given by: 

                     
V

i
L

2
     .        (10.3) 

Note that variation       0///,/    LLLL leads to 

Eq.(10.2) while   0,/  L  gives Eq.(10.1).  In addition, the Hamiltonian 

invariant of this system is given by 




Hd where             
xVH . 

We would like to emphasize that the two conserved quantities  Q  and the Hamiltonian 
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H  are not related to the optical power (defined as      dP ,, 



 ). In fact even 

below phase transition, where the PT system has a real spectrum, the power P  is not 

necessarily conserved. Next, let us consider two coupled identical PT waveguide 

elements as shown schematically in Fig. 10.1(a). Note that not only each element is PT, 

but also the entire structure respects PT symmetry with respect to the mirror axis M at 

0 .  

 

 

Figure 10.1 PT –coupled waveguide system: a) waveguide configuration (green 

represents gain region while yellow stands for loss region) and b) refractive index (blue) 

and gain/loss profile (red). M stands for the mirror symmetry axis.  

 

Here, for simplicity and without any loss of generality, we will consider a 1-D 

configuration. In addition we assume that the system is used below the phase transition 
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point (in the real spectrum domain). We proceed by further assuming that the solution of 

this coupled PT arrangement can be expressed as a superposition of the local modes of 

the individual elements, i.e.: 

                             iubua exp, 21                            (10.4) 

where  2,1u  represent the local eigenfunctions of these two waveguides and  stands 

for their corresponding propagation eigenvalue. By substituting Eq.(10.4) into the 

Lagrangian density of Eq. (10.3) and by integrating over   we obtain the reduced 

Lagrangian of this system 




 dLL  as a function of the modal amplitudes 

)(,)(),(,)( *  bbaa
 and their respective derivatives, that is, ddaa / etc. The two 

coupled mode equations can then be obtained by extremizing the reduced Lagrangian 

with respect to the modal amplitudes. By doing so we find, 

01222122212  bJaJIbiIai  and 02111211121  bJbJIaiIbi  . The first equation 

was obtained from 0/ 
bL  and the second from 0/ 

aL  . In these latter 

equations,   duuI kmkm 




  )()(  and 




   duVuJ kjmjkm )()()( . Because of the 

reflection  used in these inner products (overlap integrals) and the localization of the 

eigenfunctions 1u  and 2u around their respective potentials (see Fig. 10.1(b)), one finds 

that 2212 II   and 1121 II  . As a result, the coupled mode equations describing this 

PT symmetric system are given by: 
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0 ba
d

da
i a 


                 (10.5a) 

0 ab
d

db
i b 


                 (10.5b) 

where  is the coupling coefficient ( 2121112122 // IJIJ  ) and ba, represent shifts in 

the propagation constants as a result of the coupling interaction.  

 We next show that the coupling constant in such an arrangement is real. From the 

assumed PT symmetry shown in Fig. 10.1(b) it is evident that )()( 21   
uu . 

Expressing 1u  in terms of its real and imaginary parts, IR iuuu 111  , we 

get  








  duiuuuduI IRIR )()(2)()()( 11
2
1

2
1

2
112 . Since for a parity-time 

symmetric potential )(1 Ru is an even/odd function while )(1 Iu is an odd/even function 

with respect to its local center, it turns out that 12I  is a real quantity and so is 21I . We will 

next prove that both 122J  and 211J  are real. To do so, we consider the evolution equation 

associated with the first potential in isolation, i.e. Eq.(10.1) with )()( 1  VV  . By 

substituting the stationary solution     )exp(, 1  iu in this equation we get 

0)()()()( 1111    uVuu . Multiplying this latter expression by )(2 
u and by 

integrating, one can easily show (using integration by parts) 

that   duuduuduuVJ )()()()()()()( 2121211122    . The first term 

in the right hand side, 12I , has already been shown to be real and using similar reasoning  

the second term is also real. The reality of 211J  is also guaranteed because of symmetry, 
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e.g. 122211 JJ  . Thus the coupling constant 2121112122 // IJIJ  happens to be real. 

Finally, by considering the PT symmetry of the coupled structure, it is straight forward 

to show that  212J  and 121J  are complex conjugate of each other and so are the 

perturbations introduced in the propagation constant of each waveguide, e.g.  *
ba  .   

 In retrospect, we could have arrived at this same formalism by projecting the 

evolution equations on the PT symmetric base-functions (bras) )(*
1,2 u as opposed to 

)(*
2,1 u used in conventional coupled-mode theory [71, 91]. We also note that had we 

used the standard coupled-mode equations it would have erroneously resulted into a 

complex coupling constant and real propagation constant shifts ba, .  

 

10.3 Numerical verification 

We will now illustrate our results using relevant examples. Figure 10.2 (inset) 

shows the evolution of an input optical beam in a PT symmetric coupler when each 

potential in isolation has the 

form        2/tanh2/sec2/sec 2
DDhiBDhAV   , where 9/2 2

BA   

and D is the separation between the two potentials.  

The choice for these particular potentials is motivated by their analytical solutions 

which in this case are given by:        2/sinhtan3/exp2/sec 1
DBiDh    . Using 

the formalism developed above, we have computed the normalized coupling length for 

various separations D. These results are in excellent agreement with numerical results 
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obtained from supermode analysis and beam propagation methods as shown in Fig. 10.2. 

We note that the coupled evolution in this example is affected by the fact that a and 

b are complex conjugate of each other (effectively one arm exhibits gain and the other 

loss).  

 

Figure 10.2 Normalized coupling length calculated from supermode analysis (solid 

curve) compared with that obtained from the PT-coupled mode theory (dots) as a 

function of waveguide separation D. Inset shows a simulation of beam propagation when 

the separation between the two waveguides is D=4. 

 

Fig. 10.3 on the other hand depicts the evolution of a single channel excitation in 

an array made of PT potentials (below phase transition), used in the previous example. 

In this configuration, the phase-shift of the diffracted beams at the left and right channels 

( m ) is compared and found to be zero, in excellent agreement with the predictions of 

D 
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the coupled mode theory derived here (suggesting a real coupling constant). Because of 

this arrangement, in this infinite array both the propagation shifts n  and the coupling 

constant are now real and hence the modal amplitudes (associated with the bound states 

of the first band) evolve as if the array was entirely lossless [92], e.g. 

  0)/( 11   mnn aaddai  . 

 

 

Figure 10.3 Discrete diffraction in a PT-waveguide array resulting from a single channel 

excitation. 

 

As a result, if the array is excited at the middle, the discrete diffraction pattern follows the 

familiar Bessel distribution, that is )2()( n

n

n Jia  .  
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We would also like to stress that the Lagrangian formalism can also be used to 

obtain shifts in the propagation constant due to PT perturbations (i.e. a perturbations that 

preserve the parity-time symmetry) below the phase transition. In this case we assume a 

solution of the form         iua exp,   where     iu exp  is the eigenfunction 

of the unperturbed system. Following exactly the same procedure as before and by 

solving the resultant differential equation we find: 

     

   
























duu

duVu

             .   (10.6) 

where   is the perturbation in the propagation constant  due to the PT perturbation in 

the optical potential  V . We note that the result of Eq.(10.6) is again fundamentally 

different from that known from standard perturbation theory [93]. Excellent agreement 

was obtained between the numerically found solution and the result of Eq.(10.6). 

In conclusion, starting from Lagrangian principles we have developed a 

formalism suitable for describing coupled optical PT (Parity-Time) symmetric systems.  

In addition, we showed that the same technique can be used to derive a perturbation 

analysis for PT waveguide operating below the phase transition point. 
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 CHAPTER ELEVEN: CONCLUSIONS 

 

In conclusion, this thesis is comprised of two main parts. In the first one we have studied 

the nonlinear optical response of nano-particle suspensions. Starting from first principles 

and in the absence of particle-particle interactions, we analyzed the nonlinear response as 

well as the nonlinear Rayleigh losses associated with nano-particle suspensions. This was 

done by directly solving the underlying Nernst-Planck and Smoluchowski equations 

under equilibrium conditions. We have demonstrated that in such systems both the 

optical nonlinearity and Rayleigh losses vary exponentially with optical intensity. This 

exponential dependence was shown to be saturable or supercritical depending on the sign 

of the particle polarizability. The soliton solutions corresponding to these two cases were 

obtained and their dynamics as well as stability properties were investigated for both 1D 

and 2D geometries.  

The modulational and transverse modulational instabilities of nonlinear beams 

propagating in transparent colloids were also studied systematically. We have shown that 

the process of modulational instability (MI) depends on the boundary conditions, i.e. on 

the overlap between the exciting beam and the colloidal cell with the result that the MI 

behavior can display either Kerr or non-Kerr characteristics.  Transverse modulation 

instabilities of soliton stripe beams were investigated and a new instability regime was 

identified as a result of the 1D collapse caused by the exponential nonlinearity.  

In order to gain more understanding of the system’s behavior, we have expanded 

our model so as to take into account many-body effects on the nonlinear optical response 
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of stabilized colloidal systems. Starting from a “non-ideal gas” equation of state and by 

taking into account the screened Coulomb interactions between suspended nano-particles, 

we have shown that the nonlinear optical behavior of these colloids can range anywhere 

from exponential to polynomial depending on their filling density, composition, and 

chemistry.  It was then demonstrated that this in turn has a profound effect on optical 

beam dynamics.  The stability of optical beams in systems with positive polarizabilities 

was also studied in both 1D and 2D configurations. Experimental data carried out by one 

of our collaborative groups was also presented. By using semi-analytical variational 

techniques as well as fully numerical beam propagation methods, we compared the 

measurements with the different proposed models and we found good agreement with the 

many-body interaction model.   

Conservation laws of the system are typically used to check the validity and 

accuracy of simulations. In nonlinear optics, among the most commonly used constants 

of motion are those associated with the power and the Hamiltonian. The advantage of 

using the Hamiltonian is that, as opposed to the power, its form is unique for each 

evolution equation. For problems such as that of nonlinear propagation in interacting 

colloidal suspensions it was thus far impossible to calculate the numerical value of the 

Hamiltonian. To overcome this obstacle we introduced the concept of the shifted 

Hamiltonian density. We have shown that for localized initial conditions and for a finite 

simulation window, the shifted Hamiltonian will be conserved and we described in detail 

how to obtain its numerical value in both one and two dimensions. 
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The second part deals with linear and nonlinear properties of optical nano-

waveguides. In particular we have demonstrated that optical solitons can exist in 

dispersion-inverted highly-nonlinear AlGaAs nanowires. This is accomplished by 

strongly reversing the dispersion of these nano-structures to anomalous over a 

broad frequency range. We have shown that these self-localized waves are 

possible at very low power levels and can form in millimeter long nanowire 

structures. The intensity and spectral evolution of solitons propagating in such 

AlGaAs nanowaveguides were also investigated in the presence of loss, 

multiphoton absorption and higher-order dispersion. 

We have also shown that energy circulation within a pulse is possible when 

it propagates in a high-contrast dielectric nanowire. Our analysis revealed that this 

process is accomplished through electromagnetic “wormhole” regions, in which 

the Poynting vector associated with the guided mode is negative with respect to the 

direction of propagation. For demonstration purposes this mechanism was 

elucidated in  AlGaAs and silicon nanowaveguides where the effect of dispersion 

on the power circulation was also considered. 

Finally we have developed a coupled mode theory (CMT) for parity-time 

(PT) symmetric waveguide couplers. For this type of structures, it was found that 

the conventional coupled mode theory completely fails and thus it was necessary 

to develop a new CMT. In this work we have started from the Lagrangian 

formalism of the problem and we were able to derive a suitable CMT. Our results 
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were checked using numerical simulations and excellent agreement with theory 

was demonstrated. 
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APPENDIX A: OPTICAL GRADIENT FORCE 
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Here we present a full derivation of the optical gradient force expression. Figure 1 depicts 

an optical dipole consisting of equal and opposite electric charges  and . In our frame 

of reference the position vector of the first charge is assumed to be 1r


and 2r


 where 

1 1 1 1( , , )r x y z


and 2 2 2 2( , , )r x y z


. 

 

 

Figure A.1 Electric dipole equivalent to electrically small dielectric sphere 

 

Let 1 2 ( , , )r r r x y z     
  

and  1 2
1 2 0 0 0, ,

m m
R r r x y z

M M
  

  
  

where R


 is the center of mass of the electric dipole. Solving the previous equation, one 

can easily show that 2
1

m
r R r

M
 

 
 and 1

2

m
r R r

M
 

 
. Under the action of electromagnetic 

field, the equations of motion of the positive and negative charges are given by: 

   1 1 1 1 1, , bm r q E r t r B r t F     
                               (A.1) 

                               2 2 2 2 2, , bm r q E r t r B r t F     
                             (A.2) 
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Where F


is the binding force between the two charges. Next we express both the electric 

and magnetic fields in terms of the vectors r


, R


and using Taylor series expansion. For 

the electric field component, the expansion is given by:  

 

 

   

 
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2 2 2 2
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E R t e
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   

   
          

   
             

 







    



      

        2,i i
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Writi

ng a similar expression for the magnetic field, we get: 

           2 2 2 2
1  , , , ,

m m m m
m R r q E R t r E R t R r B R t r B R t F

M M M M

                                

                

                                                                             

(A.3) 

           1 1 1 1
2 , , , ,

m m m m
m R r q E R t r E R t R r B R t r B R t F

M M M M

                                 

                

                                                                                                       

(A.4) 

Setting 1 2m m  and adding Eq.(3) and (4), one gets: 

                                  , , ,MR q r E R t r B R t R r B R t       
 

             

Since R


 is not a vector field,  r 


 does not act on R


 and the last equation can be 

written as: 
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        

       

 , , ,

, , ,

    

MR q r E R t R B R t r B R t

p E R t R B R t p B R t

        

      
 

          

         
 

The last term in eq.(A.5) can be expressed as: 

      , , ,
d d

p B R t p B R t p B R t
dt dt

    
        

where 

     

   

     

0 0 0
0 0 0

0 0 0

0 0 0

0 0 0

, , , , ,

, ,

, ,

d d x B y B z B
B R t B x y z t B R t

dt dt t t x t y t z

x y z
B R t B R t

t t x t y t z

B R t R B R t
t

      
    

      

       
           


  


     

   

    

 

But from Maxwell’s equations, we have    , ,B R t E R t
t


 



 
. 

          , , , ,
d

p B R t p B R t p E R t p R B R t
dt

        
              

Because  R 


 is a scalar vector that does not act on p


, we get: 

           , , , ,
d

p B R t p B R t p E R t R p B R t
dt

       
           

 

Substituting in eq.(A.5) gives: 

               , , , , ,
d

MR p E R t R B R t p B R t p E R t R p B R t
dt

           
 

                  

 

                                                                                                                                                                              

(A.5) 

(A.6) 
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Using the vector identities         p R B R p B R B p           

           
 and 

   p E E p p E     
      

, eq.(6) can be written in the following simple form: 

                                       d
MR p E R B p B

dt

         

      
                                   (A.7)                                        

Several comments have to be made at this point. First the ratio between the magnetic 

field to the electric field is of the order of 1/ c where c is the speed of light and thus the 

second term can be neglected. Second the time average of the third term is zero and 

hence we have 

                                    MR p E  
 

                                                 (A.8) 

Using p E


 we get  

                               Optical force     2

2
F MR p E E


     

  
                 (A.9)                                            

If write the electric field as: 

     

 2 2 2

22

1
, , , , , . . , , ,

2

1
. 2

4

1 1

2 2

j t j t

i i i

j t

i i i i

i i i i

E x y z t A x y z e A x y z e i x y z

E A e c c A A

E A A A

 



 





    

   

  

 

Since the time average operator  does not act on the space operators, then we get  

2
2i
i

i i

E
E

x x

 


 
 which finally gives: 

                                      
4

F E p I


    
 

                                                 (A.10) 



114 
 

Where 
2 2 2

x y zI A A A   . 

Equation (A.10) is the main result of this section and it expresses the optical gradient 

force on nano/micro particles in terms of the applied electric field components. 
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APPENDIX B: CALCULATION OF THE THIRD VIRIAL 

COEFFICIENT (B3) 
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Here we give a brief description of  Katsura’s Fourier Transform method [94] that was 

used for the calculations of the third virial coefficient   3B T . In order to do so, we start 

from the expression for  3B T , i.e.      3 12 13 12 13 12 13( ) 1/ 3 u u uB T f r f r f r r dr dr  
     

. If 

the potential energy between any two particles depends only on their relative positions 

(as it is in our case), and by using the substitution 1i ir r  
  

, we obtain: 

                                 3 2 3 3 2 2 3( ) 1/ 3 u u uB T f f f d       
     

     .      (B1) 

The Fourier transform of  uf 


 can be written as 

       3/ 2
2 uk f exp ik d       

    
 where k


 is a conjugate vector in the Fourier 

space. If we denote  


 and k k 


 , then one can write the above expression in the 

spherical coordinate system  , ,   as:  

         
2

3/ 2 2

0 0 0

2 cos sinuk f exp ik d d d

 

          


       ,      (B2) 

where in the last equation k


 were chosen to coincide with the z


axis of the spherical 

coordinate system  , ,   . This choice is allowed since the function  uf 


 depends 

only on the magnitude of 


. The last integral can be further simplified to obtain: 

     
0

sin2
u

k
f d

k






    





      .                          (B3) 

Similar expression can also be derived for the inverse transform. Substituting in Eq.(B1), 

and after some mathematical manipulations, it can be shown that: 
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   

3/ 2

2 3
3

0

2
4

3
B k k dk  


 


    .                          (B4) 

Eqs. (B3) and (B4) can then be used together to obtain numerical values of the third virial 

coefficient 3B . Note that by using this technique, the calculations are reduced to only two 

dimensional integral (Eqs. (B3) and (B4)) instead of the six dimensional of Eq.(B1). 
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APPENDIX C:  NEGATIVE POWER FLOW IN HIGH INDEX 

NANO-FIBERS 
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Here we present detailed derivation for Eqs.(9.6) of chapter nine.  The electric and 

magnetic fields of a pulse propagating in a nano-fiber within the 11HE  mode can be 

written as: 

 

   0 0 0

0

0

( , )1
( )

2 ( , )

i t z
e rE

d e
H h r

   

 


    

 

  
     

   


  
     (C.1) 

 

where 0 is the carrier angular frequency of the wavepacket,  0   is the 

propagation constant of the 11HE  having a frequency 0   and r


 is a position 

vector. In the above equation e


 and h


 are the electric and magnetic field components of 

the 11HE  mode, respectively and )(0  is the pulse envelope frequency spectrum with 

 being a frequency deviation from 0 . If we define the dispersion function as 

   0 0 0F            where  0 0    and 
0

0 / 1/ gv
 

  


     , then 

Eq.(C.1) becomes: 

 

   
0 0

/ 0

0

0

( , )
( )

2 ( , )

g

i t z
i t v z F z e rE e

d e
H h r

  

 

           

 

  
     

   


  
      (C.2) 
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Next we adopt a moving frame of reference with / gT t z v  , and we introduce the 

quantity 

 

   
0

1
, ( )

2

iF zi T
z T d e e




 



           (C.3) 

 

Assuming slowly varying envelop, one can expand the field vectors according to: 

 

 

 
 

0 0 1

0 10

,

,

e r e e

h hh r








          
       

   
               (C.4) 

 

Where  0 0,e e r 
  

and 
0

1 /e d e d



 

 and similarly for the magnetic field 

components h


. Subsituting Eqs (C.4) in Eq.(C.2) we obtain: 

 

 
0 0

0 1

0

0 1

( )
2

i t z

i T F z
e eE e

d e
H h h

 



   
    



     
          

      


  
 

      (C.5) 

 

Using the properties of Fourier transform and by taking into account the definition of 

 ,z T in Eq. (C.3), this last equation reduces to 
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 0 0 0 1

0 1

,
i t z e eE

e z T i
TH h h

    
      

              

  
 

       (C.6) 

The time average Poynting vector is now obtained from: 

  0 1 0 1

1 1
Re Re

2 2
E H e i e h i h

T T

  


                     

     
P      (C.7) 

By neglecting terms that include 1 1e h


, we finally arrive at:  

 2

0 0 0 1 1 0

1 1
Re Re

2 2
e h i e h i e h

T T

   


     
        

     
P

      (C.8) 

Note that  0 0Re e h



 is parallel to the direction of propagation, ẑ  [71]. By writing in 

the polar representation, i.e. 
i

Ae
  , we get 

i i

T T TA e i Ae
    . It then 

immediately follows that 
2

T T TAA iA     and 
2

T T TAA iA     . Substituting 

this last result in Eq.(C.8), and by noting that  2 / 2T T
AA A , we find that the expression 

of  the Poynting vector takes the form: 

 

   
    

2 2
0 0 0 1 1 0

2

0 1 1 0

1 1
Re Re

2 2

4

T

T

A e h A e h e h

A
i e h e h

  

 

     

   

     

  

P

     (C.9) 

For a finite energy pulse,  2 2 0
T

A dT A







  . Note also that:  
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     

        

00

0 0

0 1 1 0 0 0Re Re

Re Re

h e
e h e h e h

e h e h



   

 
 

   
 


  

 

 

             
                

     

  
           (C.10) 

It is worth noting that in the above expression, the interchange of the “real part” operator 

( Re ) with the differentiation operator ( /   ) is valid because   itself is real.   

Since       ˆRe //e h z 


 irrespective of the value of  , it follows that 

     ˆRe //e h z 


   


. In other words, the term  0 1 1 0Re e h e h

   
  

is parallel to 

the propagation direction ẑ  and hence, for pulses conveying finite energy dT







P  is also 

a vector pointing in the propagation direction ẑ . This result should have been anticipated 

since we are dealing with pulse propagation in a guiding structure. Assuming an initial 

Gaussian pulse of the form 2 2 2 2
0 0 0 0( 0, ) exp( / ) exp( / )z T E t E T        and by 

considering only group velocity dispersion, i.e. 2/)( 2''
0 F , it is straight 

forward to show that    2 2
0 0 0 0exp / 4E       . At any distance z , we have: 

   22 2
0

/ 2/ 40 0,
2

i zi TE
z T d e e e

 



  



        (C.11) 

By writing  ''02
0 2/ dz , and 0/ T , the integration in (C.11)  yields: 
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 
   

     
 
 

2
0

22
0

2 21/ 4 2 22 1
0 0

, exp
1 /1 /

/
exp exp

1 / 1 /1 / exp tan /
2

dd

d

d d
d d

E
z T

i z zi z z

iT z zE T

i z z z zz z z z



 

 
    

      
                     

    (C.12) 

 

In other words: 

   

2
0

1/ 4 222
0

exp
1 /1 / dd

E T
A

z zz z 

  
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Finally, by differentiation, we find that: 
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Eq. (C14) together with (C.9) directly lead to Eq.(9.6) of chapter 9. 
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