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Abstract

A (v, k, λa, λc) optical orthogonal code C is a family of (0, 1)-sequences of length v
and weight k satisfying the following two correlation properties: (1)

∑
0≤t≤v−1xtxt+i ≤

λa for any x = (x0, x1, . . . , xv−1) and any integer i 6≡ 0 mod v; and (2)
∑

0≤t≤v−1xtyt+i ≤
λb for any x = (x0, x1, . . . , xv−1), y = (y0, y1, . . . , yv−1) with x 6= y, and any integer
i, where subscripts are taken modulo v. The study of optical orthogonal codes is
motivated by an application in optical code-division multiple-access communication
systems. In this article, upper bounds on the size of an optical orthogonal code
are discussed. Several new constructions for optimal (v, k, 1, 1) optical orthogonal
codes are described by means of optimal cyclic packing families. Many new optimal
optical orthogonal codes with weight k ≥ 4 and correlation constraints λa = λc = 1
are thus produced.

1 Introduction

Let v, k, λa, λc be positive integers. A (v, k, λa, λc) optical orthogonal code, or briefly
(v, k, λa, λc)-OOC, C, is a family of (0, 1)-sequences of length v and weight k satisfying
the following two properties:

(1) (The auto-correlation property)∑
0≤t≤v−1xtxt+i ≤ λa for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i 6≡ 0 mod v;

(2) (The cross-correlation property)∑
0≤t≤v−1xtyt+i ≤ λc for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0, y1, . . . , yv−1) ∈ C

with x 6= y, and any integer i.

The subscripts here are reduced modulo v so that only periodic correlations are con-
sidered. The numbers λa and λc are referred to as auto- and cross-correlation constraints
of the optical orthogonal code respectively.

A convenient way of viewing optical orthogonal codes, especially when k is much
smaller than v, is from a set-theoretic perspective. A (v, k, λa, λc)-OOC C can be consid-
ered as a collection of k-sets of integers modulo v, in which each k-set corresponds to a
codeword and the numbers in each k-set specify the nonzero bits of the codeword. One
can reformulate the correlation properties in this set-theoretic frame-work as follows:
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(3) (The auto-correlation property)
|(X + s1) ∩ (X + s2)| ≤ λa for any X ∈ C and any integers s1 6≡ s2 mod v;

(4) (The cross-correlation property)
|(X + s1) ∩ (X + s2)| ≤ λc for any X,Y ∈ C with X 6= Y , and any integers s1 and
s2.

Note that X + s = {x + s mod v : x ∈ X} represents a cyclic shift of a codeword X
of amount s.

The study of optical orthogonal codes has been motivated by an application in optical
code-division multiple-access communication systems. Optical orthogonal codes also find
applications in mobile radio, frequency-hopping spread-spectrum communications, radar,
sonar signal design, constructing protocol-sequence sets for the M -active-out-of T users
collision channel without feedback, etc. For detailed discussions, the interested reader is
referred to [11, 18, 24, 30, 31, 32, 34].

Research on optical orthogonal codes has concentrated on the case when λ = λa =
λc, in which the notation of the code is abbriviated to (v, k, λ)-OOC, see, for example,
[2, 12, 35]. However, it does not mean that a (v, k, λa, λc)-OOC with λa 6= λb is not of
interest, although we can regard such an OOC as a (v, k, λ)-OOC with λ = max(λa, λc).

In this article, we will not outline the known applications of optical orthogonal codes,
nor try to exploit their potential applications; instead, we will focus our attention on their
combinatorial constructions. A simple upper bound on the maximum possible size of a
(v, k, λa, λc)-OOC with λa 6= λb will be derived, which might be tighter than the Johnson
bound when λa is much larger than λc. When λa = λb = λ, the Johnson bound could
be applied, and an OOC achieving this bound is in fact equivalent to a combinatorial
structure called optimal cyclic packing family. As a consequence, in order to construct
such (v, k, λ)-OOCs, we need only to construct the corresponding optimal cyclic packing
families. Several combinatorial structures such as V (m, t) vectors, nested cyclic packings,
perfect Mendelsohn difference families, are utilized to construct optimal cyclic 2-packing
families, or equivalently, ”good” (v, k, λ)-OOCs with λ = 1, which are optimal from the
point of view of correct detection by the receiver. Many new optimal optical orthogonal
codes with weight k ≥ 4 and correlation constraints λa = λc = 1 are produced by this
approach. More new optimal optical orthogonal codes can also be obtained if we use our
new optimal optical orthogonal codes as ingredients in various recursive constructions in,
for example, [35].

2 A Simple Upper Bounds on Code Size

For a given set of positive integers v, k, λa and λc, the largest possible size of a (v, k, λa, λc)-
OOC is denoted by Φ(v, k, λa, λc). An optical orthogonal code achieving this maximum
size is said to be optimal. The determination of the exact values of Φ(v, k, λa, λc) and the
specific construction of optimal optical orthogonal codes are of interest. However, since
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it is difficult to determine the exact value of Φ(v, k, λa, λc) in general, upper and lower
bounds on Φ(v, k, λa, λc) are also of interest. Some of these bounds have been already
found in, for example, [11, 12]. In this section, we try to derive a simple upper bound on
Φ(v, k, λa, λc).

Let C be a (v, k, λa, λc)-OOC with |C| = M where M = Φ(v, k, λa, λc). Now let
C = (cij) be the vM × v matrix whose rows are codewords and their cyclic shifts. Each
rows of C contains k 1’s.

Calculate the sum of the scalar products of pair of rows of C in two ways:

(5)
∑

1≤i≤vM

∑
1≤j≤vM,j 6=i

∑
1≤n≤vcincjn.

By the definition of a (v, k, λa, λc)-OOC, for each row of C, say i, there are v− 1 rows
j (those in the same orbit) such that

∑
1≤n≤vcincjn ≤ λa, and there are (M − 1)v rows

(those in different orbits) such that
∑

1≤n≤vcincjn ≤ λc. Therefore the sum (5) does not
exceed

∑
1≤i≤vM [(v − 1)λa + (M − 1)vλc] = vM [(v − 1)λa + (M − 1)vλc]. On the other

hand, this sum is equal to
∑

1≤n≤v

∑
1≤i≤vM

∑
1≤j≤vM,j 6=icincjn. If kn denotes the number

of 1’s in the nth column of C, then this column contributes kn(kn− 1) to this sum. Thus

∑
1≤n≤v

kn(kn − 1) ≤ vM [(v − 1)λa + (M − 1)vλc].

But clearly kn = kM for each n ∈ {1, 2, . . . , v}. So we have that

vkM(kM − 1) ≤ vM [(v − 1)λa + (M − 1)vλc],

which implies
M(k2 − vλc) ≤ v(λa − λc) + k − λa.

If k2 − vλc > 0, then

M ≤ v(λa − λc) + k − λa

k2 − vλc

.

Theorem 2.1

Φ(v, k, λa, λc) ≤ bv(λa − λc) + k − λa

k2 − vλc

c

provided that the denominator k2 − vλc is positive.

This upper bound is of no interest when λa = λc = λ. Let Φ(v, k, λ) be the shorthand
notation of Φ(v, k, λa, λc) when λa = λc = λ. Chung and Kumar [12] showed that
Φ(v, k, λ) ≤ 1 if k2 > vλ and Φ(v, k, λ) = 0 if k(k − 1) > (v − 1)λ. However, when λa is
much greater than λc, this bound might be tighter than the well-known Johnson bound
described below.

Taking every sequence in a (v, k, λ)-OOC, C, and all its cyclic shifts as codewords, we
get a constant-weight binary error-correcting code of length v and weight k. The corre-
lation properties of the optical orthogonal code guarantee that the minimum Hamming
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distance of the derived constant-weight code is 2(k−λ) provided that there exists at least
one sequence x = (x0, x1, . . . , xv−1) ∈ C such that

∑
0≤t≤v−1xtxt+i1 = 1 for some integer

i1 6≡ 0 mod v, or there exist at least two distinct sequences x = (x0, x1, . . . , xv−1) ∈ C and
y = (y0, y1, . . . , yv−1) ∈ C such that

∑
0≤t≤v−1xtyt+i2 = 1 for some integer i2. Since the

number |C|v of its codewords is upper bounded by the Johnson bound A(v, 2(k−λ), k) [20],
where A(n, d, w) denotes the maximum size of a constant-weight binary error-correcting
code of length n, weight w and minimum Hamming distance d, we have

|C| ≤ 1

v
A(v, 2(k − λ), k)

≤ 1

k
A(v − 1, 2(k − λ), k − 1)

≤ 1

k
bv − 1

k − 1
bv − 2

k − 2
b . . . bv − λ

k − λ
c. . .ccc,

where bxc denotes the largest integer not exceeding x.

Theorem 2.2 (Johnson bound)

Φ(v, k, λ) ≤ b1
k
bv − 1

k − 1
bv − 2

k − 2
b . . . bv − λ

k − λ
c. . .cccc.

When λa 6= λc, we can set λ = max(λa, λc) and apply the above Johnson bound.
However, for the case when λa is much greater than λc, some detailed information on
the structure of such OOC has been ignored in the Johnson bound, and we would not be
surprised if we find that the Johnson bound is weaker than the upper bound we obtained
in Theorem 2.1 in such a case. For example, the upper bound for a (23, 7, 3, 1)-OOC
given by Theorem 2.2 is 11, while that given by Theorem 2.1 is only 1.

3 Optimal Optical Orthogonal Codes and Optimal

Cyclic Packing Families

Optimal optical orthogonal codes are closely related to some combinatorial structures.
For example, Yin [35] showed that an optimal (v, k, 1)-OOC is equivalent to a combi-
natorial configuration called optimal cyclic 2-packing family. In this section, we define
some terminology in combinatorial design theory, and describe the relationship bwtween
(v, k, λ) optical orthogonal codes and cyclic t-packing families.

Let v ≥ k ≥ t ≥ 2 be positive integers. A t-(v, k, λ) packing design is a pair (V ,B),
where V is a v-set of elements (points) and B is a collection of k-subsets of V (blocks),
such that every t-subset of points occurs in at most λ blocks in B. If λ > 1, then B
is allowed to contain repeated blocks. The packing number Dλ(v, k, t) is the maximum
number of blocks in any t-(v, k, λ) packing design. It is clear that Dλ(v, k, 0) = λ and
Dλ(v, k, 1) = bvλ

k
c.
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Suppose that (V ,B) is a t-(v, k, λ) packing design. Deleting one point x0 from V , we
can obtain a (t−1)-(v−1, k−1, λ) packing design (V−{x0},B0), where B0 = {B−{x0} :
x0 ∈ B,B ∈ B}. Counting the number of the flags

∑
x∈V,B∈B,x∈B|(x,B)| in two ways, we

have
kDλ(v, k, t) ≤ vDλ(v − 1, k − 1, t− 1),

which implies the following well-known result due to Schonheim [33].

Theorem 3.1 (Schonheim bound)

Dλ(v, k, t) ≤ bv
k
bv − 1

k − 1
bv − 2

k − 2
b . . . b(v − t + 1)λ

k − t + 1
c. . .cccc.

For a t-(v, k, λ) packing design (V ,B), let σ be a permutation on V . For any block
B = {b1, . . . , bk}, define Bσ = {bσ

1 , . . . , b
σ
k}. If Bσ = {Bσ : B ∈ B} = B, then σ is called

an automorphism of the t-(v, k, λ) packing design. The set of all such permutations forms
a group under composition called the full automorphism group of the packing design.
Any of its subgroups is called an automorphism group of the packing design. A t-(v, k, λ)
packing design admitting a cyclic and point-regular automorphism group is called a cyclic
t-(v, k, λ) packing design. For a cyclic t-(v, k, λ) packing design (V ,B), the point set V
can be identified with Zv, the residue ring of the integers modulo v. In this case, the
packing design has an automorphism σ : i −→ i + 1mod v.

For a cyclic t-(v, k, λ) packing design (Zv,B), let B = {b1, . . . , bk} be a block in B.
The block orbit containing B is defined to be the set of the following distinct blocks

Bσi

= B + i = {b1 + i, . . . , bk + i} mod v

for i ∈ Zv. If a block orbit has v distinct blocks, i.e. its stabilizer GB = {0}, then this
block orbit is said to be full, otherwise short. Choose an arbitarily fixed block from each
block orbit and then call it a base block.

Now consider a cyclic t-(v, k, λ) packing design (V ,B) containning only full block
orbits, that is, for any base block B ∈ B, the stabilizer GB = {0}. Set F to be the family
of all base blocks of such a t-(v, k, λ) packing design. Then the pair (Zv,F) is called a
cyclic t-(v, k, λ) packing family.

We use CDλ(v, k, t) to denote the maximum number of base blocks in any cyclic
t-(v, k, λ) packing family. Then clearly we have

CDλ(v, k, t) ≤ 1

v
Dλ(v, k, λ) ≤ 1

k
Dλ(v − 1, k − 1, t− 1).

Theorem 3.2

CDλ(v, k, t) ≤ b1
k
bv − 1

k − 1
bv − 2

k − 2
b . . . b(v − t + 1)λ

k − t + 1
c. . .cccc.
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Cyclic t-(v, k, λ) packing family with b 1
k
b v−1

k−1
b v−2

k−2
b . . . b (v−t+1)λ

k−t+1
c. . .cccc base blocks is

called optimal.

Given an optimal cyclic (λ+1)-(v, k, 1) packing family with b 1
k
b v−1

k−1
b v−2

k−2
b . . . b v−λ

k−λ
c. . .cccc

base blocks, we can construct a (0, 1)-sequence of length v and of weight k from each base
block whose nonzero bit positions are exactly indexed by the base block. It is easy to see
that the derived (0, 1)-sequences constitute a (v, k, λ)-OOC which is in fact optimal.

Conversely, let C be an optimal (v, k, λ)-OOC with b 1
k
b v−1

k−1
b v−2

k−2
b . . . b v−λ

k−λ
c. . .cccc code-

words. For each codeword, we construct a k-subset of Zv by taking the index set of its
nonzero bit positions. This creates a family F of b 1

k
b v−1

k−1
b v−2

k−2
b . . . b v−λ

k−λ
c. . .cccc k-subsets

of Zv. The correlation properties of the OOC gurantee that |(X + s1)∩ (Y + s2)| ≤ λ for
any integers s1, s2 ∈ Zv and any X, Y ∈ F except when X = Y and s1 ≡ s2 mod v. Thus
we can take F as the family of the base blocks to form an optimal cyclic (λ + 1)-(v, k, 1)
packing family with the automorphism σ : i −→ i + 1 mod v, which is in fact optimal.

Theorem 3.3 An optimal (v, k, λ)-OOC is equivalent to an optimal cyclic (λ+1)-(v, k, 1)
packing family, provided that λ < k holds.

By virtue of Theorem 3.3, in order to construct optimal (v, k, λ)-OOCs, we need only
to construct their corresponding optimal cyclic (λ + 1)-(v, k, 1) packing families. But in
general, the construction of optimal cyclic t-(v, k, 1) packing families is not an easy task.
Fortunately, when t = 2, there is a feasible approach to settle this problem.

Let F = {B1, B2, . . . , Bt} be a collection of k-subsets of Zv with Bi = {bi1, bi2, . . . , bik},
1 ≤ i ≤ t. For any i, 1 ≤ i ≤ t, the differences in Bi are

∆Bi = {bij − bis : 1 ≤ j, s ≤ k, j 6= s},
while the differences in F are defined to be

∆F =
⋃

1≤i≤t
∆Bi

= {bij − bis : 1 ≤ i ≤ t, 1 ≤ j, s ≤ k, j 6= s}.
If the setwise stabilizer GBi

of each Bi, 1 ≤ i ≤ t, is the identity {0}, and ∆F covers
Zv − L − {0} exactly once, where L, the difference leave of F , is a subset of nonzero
elements of Zv, then the pair (Zv,F) is in fact a cyclic 2-(v, k, 1) packing family. If the
difference leave L can be partitioned into leaves L1, L2, . . . , Ln such that each leaf Li

along with the element zero forms a subgroup of Zv of order gi, then this cyclic 2-(v, k, 1)
packing family is said to be (g1, g2, . . . , gn)-regular. When n = 1, we simply say g-regular.
The members of F are the base blocks of the cyclic packing family.

Counting the differences in two ways, we can easily know that there are exactly v−|L|−1
k(k−1)

base blocks in a (v, k, 1)-CP with difference leave L. As an immediate consequence, we
have the following result.

Theorem 3.4 A necessary condition for the existence of a cyclic 2-(v, k, 1) packing fam-
ily with difference leave L is that v − |L| − 1 ≡ 0 mod k(k − 1).
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By a simple counting arguement, we get a criteria for a cyclic 2-(v, k, 1) packing family
with difference leave L to be optimal.

Theorem 3.5 A cyclic 2-(v, k, 1) packing family with difference leave L is optimal if the
cardinality of L satisfies 0 ≤ |L| < k(k − 1).

Two special cases of cyclic 2-packing families need to be mentioned. The first one
is a 1-regular cyclic 2-(v, k, 1) packing family, that is, a cyclic 2-(v, k, 1) packing family
with the empty set as its difference leave. In this case, the cyclic 2-packing family is
commonly called a (v, k, 1) cyclic difference family, or briefly, a (v, k, 1)-CDF (see, for
example, [1]). The second one is a k-regular cyclic 2-(v, k, 1) packing family in which the
difference leave is (v/k)Zk, the unique subgroup of Zv with order k. These special cyclic
2-packing families are clearly optimal.

By means of an optimal cyclic 2-packing family, an optimal (v, 3, 1)-OCC was shown
in [2] to exist except for v = 6t+2 where t ≡ 2, 3 mod 4, in which an optimal (v, 3, 1)-OOC
does not exist. When k ≥ 4, despite the vast amount of energy spent (see, for exacmple,
[11, 30, 31, 32, 35]), the existence problem for an optimal (v, k, 1)-OOC remains unsettled.

Here we list some examples of known 1- and k-regular cyclic 2-(v, k, 1) packing familis
with k ≥ 4. They can be used as ingredients in this article to yield more optimal
cyclic 2-packing families with k ≥ 4 and λ = 1, or equivalently, more optimal optical
orthogonal codes with weight k ≥ 4 and λ = 1. Note that this list of series of examples
is not comprehensive at all, and is used only to illustrate our constructions and their
corresponding existence results.

Lemma 3.6 [15] Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr

are all prime numbers congruent to 1 modulo 12. Then there exists a 1-regular cyclic
2-(v, 4, 1) packing family.

Lemma 3.7 [15] Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr

are all prime numbers congruent to 1 modulo 20. Then there exists a 1-regular cyclic
2-(v, 5, 1) packing family.

Lemma 3.8 [15] Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr

are all prime numbers congruent to 1 modulo 30 but not equal to 61. Then there exists a
1-regular cyclic 2-(v, 6, 1) packing family.

Lemma 3.9 [10] Let p ≡ 1 mod k(k−1) be an odd prime number, and let m = k(k−1)/2.
Then there exists a 1-regular cyclic 2-(p, k, 1) packing family whenever p > D(k) = (E +√

E2 + 4f)2/4, where

(1) when k = 2a + 1, E = 2[((a2− 3a + 4)aa− 1
2
(a− 1)3aa−1 + (4a− 3)(a− 1)a−1)ma +

(k − 4)aa+1(m− 1)ma−1]− 5aa + 1 and F = [dk + 2(k − 5)a + 4]ma−1aa, dk = 0 if
k ≤ 7, or dk = m(a− 3) otherwise;
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(2) when k = 2a, E = 2[((a− 2)(a− 1)aa − 1
2
(a− 1)3aa−1 + (4a− 3)(a− 1)a−1)ma−1 +

(k− 3)(a− 1)aa(m− 1)ma−2]−aa +1 and F = [dk +2(k− 3)(a− 1)]ma−2aa, dk = 0
if k ≤ 6, or dk = m(a− 3) otherwise.

Lemma 3.10 [35] Let p ∈ {5, 7, 11}. Let v = p1p2· · ·pr be the prime factorization of v
where p1, p2, . . . , pr are all prime numbers congruent to 1 modulo 12. Then there exists
an optimal cyclic p-regular 2-(pv, 4, 1) packing family.

Lemma 3.11 [35] Let p ∈ {5, 7, 11, 13, 17, 19}. Let v = p1p2· · ·pr be the prime factor-
ization of v where p1, p2, . . . , pr are all prime numbers congruent to 1 modulo 20. Then
there exists an optimal cyclic p-regular 2-(pv, 5, 1) packing family.

Lemma 3.12 [35] Let p ∈ {7, 11, 13, 17, 19, 23, 29}. Let v = p1p2· · ·pr be the prime
factorization of v where p1, p2, . . . , pr are all prime numbers congruent to 1 modulo 30 but
not equal to 61. Then there exists an optimal cyclic p-regular 2-(pv, 6, 1) packing family.

Lemma 3.13 [35] Let pk be a prime number such that k ≤ pk < k(k − 1). Let p ≡
1 mod k(k − 1) be an odd prime number. Then there exists an optimal cyclic pk-regular
2-(pkp, k, 1) packing family whenever p > D(k), where D(k) was defined in Lemma 3.9.

We wish to point out that the results in Lemmas 3.6, 3.7 and 3.8 are based on the
existence of (q, k, 1) difference families with q a prime and k = 4, 5, which has been
completely settled in [4, 5, 6, 7]. Also note that the results in Lemmas 3.10– 3.13 are
based on the existence of difference families described in Lemmas 3.6– 3.9.

4 V (m, t) Vectors

As shown in Theorem 3.3, in order to construct optimal optical orthogonal codes with
λ = 1, we need only to construct optimal cyclic 2-packing families with λ = 1. In this
section, we will describe a construction for optimal cyclic 2-packing families with λ = 1
from V (m, t) vectors.

For any two positive integers u and v, if gcd(u, v) = 1, then it is clear that Zv ×Zv '
Zuv. So we can use Zv × Zv, instead of Zuv, as the set of points. Sometimes, if there is
no confusion arises, we will identify Zv × Zv with Zuv. Note that for a set S, n·S will
denote the set {ns : s ∈ S}.

Let q = mt+1 be a prime power and let C0
m be a multiplicative subgroup of GF (q)−

{0} of order t and index m. Let the cosets of this subgroup be C0
m, C1

m, . . . , Cm−1
m .

These are called the cyclotomic classes of GF (q) of index m. They evidently partition
GF (q)− {0}. The cyclotomic classess {C0

m, C1
m, . . . , Cm−1

m } will be denoted by Cm.

Given a set of m distinct elements in GF (q), if they belong to m distinct cyclotomic
classes C0

m, C1
m, . . . , Cm−1

m , then we say that this set of m elements form a system of
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distinct representatives of the cyclotomic classes C0
m, C1

m, . . . , Cm−1
m , and it is denoted by

SDRC(Cm).

For q = mt + 1 a prime power, Mullin et al. [27] defined a V (m, t) to be a vec-
tor (b1, b2, . . . , bm+1) with elements from GF (q) satisfying the property that for k =
1, 2, . . . , m + 1, the set

{bi − bj : i ∈ {1, 2, . . . , m + 1} − {k}, i− j ≡ k mod (m + 2) and 1 ≤ j ≤ m + 1}
is a system of distinct representatives of the cyclotomic classes SDRC(Cm). The V (m, t)
vector is often written with a ∼ in the 0th position. For each k, we speak of the kth set
of differences, denoted by Dk. These are the differences of elements that are k apart in
the vector.

It has been shown in [25] that a V (m, t) exists in GF (mt + 1) only if m and t are not
both even. For m = 2, 3, 4, 5, 6 and 7, the spectrum for V (m, t) has been determined in
[8, 17, 23, 25, 29].

Lemma 4.1 All V (m, t) exist whenever m = 2, 3, 4, 5, 6, 7, t ≥ m − 1 and mt + 1 is a
prime number except when both m and t are even.

There are systematic tables of V (m, t) vectors in [3]. These were extended in [13] to
produce systematic tables for m = 8, 9, 10 and mt+1, a prime, less than 5000, which can
be summarized as follows:

Lemma 4.2 All V (m, t) exist whenever m = 8, 9, 10, t ≥ m − 1 and mt + 1 is a prime
less than 5000, except when m = 9 and t = 8, or when both m and t are even.

For general m, Chen and Zhu [9] showed the following existence result.

Lemma 4.3 Let q = mt + 1 be a prime power. If m and t are not both even, then
there exists a V (m, t) in GF (q) whenever q > B(m) = (E +

√
E2 + 4F )2/4, where

E = (u− 1)(m− 1)mu −mu−1 + 1, F = (u− 1)mu and u = b(m + 1)/2c.

In particular, they [9] determined the spectrum for V (m, t) with m = 8.

Lemma 4.4 Let q = 8t + 1 be a prime power with t > 7 odd. Then there exists a V (8, t)
in GF (q) with possible exceptions q = 112, 132, 292, 36, 310.

V (m, t) vectors were first introduced by Mullin et al. [27] to simplify a construction for
mutually orthogonal latin squares. They are also proved to be useful in the construction
of perfect Mendelsohn designs (see [26]). Here we provide one more application of these
vectors in the construction of optical orthogonal codes. Remember that for any subset
B = {(bi, i) : bi ∈ Zm, i ∈ Zn} ⊂ Zm × Zn, ∆kB denotes the set of differences {bi2 − bi1 :
i2 − i1 ≡ k mod n}.
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Theorem 4.5 Let p = mt + 1 be a prime number. If there exists a V (m, t), then there
exists a cyclic (m + 2,mt + 1)-regular 2-((mt + 1)(m + 2),m + 1, 1) packing family with
difference leave {0} × (Zm+2 − {0}) ∪ (Zmt+1 − {0})× {0}.

Proof Let Zmt+1×Zm+2 be the set of points, and (b1, b2, . . . , bm+1) be the vector V (m, t).
Consider the following (m + 1)-subset of Zmt+1 × Zm+2:

B = {(b1, 1), (b2, 2), . . . , (bm+1,m + 1)}.
Then

∆kB = {bi − bj : i ∈ {1, 2, . . . , m + 1} − {k}, i− j ≡ k mod (m + 2)

and 1 ≤ j ≤ m + 1}
= Dk.

Since (b1, b2, . . . , bm+1) is a V (m, t) vector, by its definition, ∆kB forms an SDRC(Cm) for
any k, 1 ≤ k ≤ m + 1.

For any element c ∈ GF (p), we define c·B to be the set

c·B = {(cb1, 1), (cb2, 2), . . . , (cbm+1,m + 1)}.
Now set F = {c·B : c ∈ C0

m}. Then it is easy to see that

∆F =
⋃

A∈F∆A

=
⋃

c∈C0
m
c·∆B

=
⋃

c∈C0
m
c·(⋃

1≤k≤m+1
{k} ×∆kB)

=
⋃

1≤k≤m+1
{k}×(

⋃
c∈C0

m
c·∆kB)

= Zmt+1 × Zm+2 − {0} × (Zm+2 − {0})− (Zmt+1 − {0})× {0} − {(0, 0)}.
Therefore F is a cyclic (m+2,mt+1)-regular 2-((mt+1)(m+2),m+1, 1) packing family
with difference leave {0} × (Zm+2 − {0}) ∪ (Zmt+1 − {0})× {0}. 2

According to Theorem 3.5, the resultant cyclic (m+2,mt+1)-regular 2-((mt+1)(m+
2),m + 1, 1) packing family is optimal if and only if

(m + 2− 1) + (mt + 1− 1) < (m + 1)m,

which requires that t be a positive integer less than or equal to m− 1. However, if there
exists a cyclic 2-(mt + 1,m + 1, 1) packing family with difference leave L, then we can
embed this ingredient cyclic packing family into the cyclic packing family constructed in
Theorem 4.5.

Theorem 4.6 Let p = mt + 1 be a prime number. If there exist a V (m, t) and a cyclci
2-(mt + 1,m + 1, 1) packing family with difference leave L, then there exists a cyclic 2-
((mt+1)(m+2),m+1, 1) packing family with difference leave {0}×(Zm+2−{0})∪L×{0}.
Moreover, if |L| < m2−1, the resultant cyclic 2-((mt+1)(m+2),m+1, 1) packing family
is optimal.
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Proof Let B be the cyclic 2-(mt + 1,m + 1, 1) packing family with difference leave L.
Then F ∪ {B × {0} : B ∈ B} is the desired cyclic packikng family with difference leave
{0} × (Zm+2 − {0}) ∪ L × {0}. In order that the resultant cyclic packing family to be
optimal, by Theorem 3.5, we need only that 0 < |L| + m + 1 < (m + 1)m, which means
that 0 ≤ |L| < m2 − 1. 2

We give an example to illustrate our construction.

Example 4.7 Let p = 13,m = 3, s = 1. 2 is a primitive element of GF (13), and
C0

3 = {1, 8, 12, 5}, C1
3 = {2, 3, 11, 10}, C2

3 = {4, 6, 9, 7}. Clearly, (0, 1, 3, 9) is a V (3, 4)
vector, and {0, 1, 4, 6} is the base block of a (13, 4, 1)-CDF. Then

B1 = {(0, 1), (1, 2), (3, 3), (9, 4)},
B2 = {(0, 1), (8, 2), (11, 3), (7, 4)},
B3 = {(0, 1), (12, 2), (10, 3), (4, 4)},
B4 = {(0, 1), (5, 2), (2, 3), (6, 4)}

are the base blocks of a cyclic (5, 13)-regular 2-(65, 4, 1) packing family with difference
leave (Z5 − {0})× {0} ∪ {0} × (Z13 − {0}). Adding

B5 = {(0, 0), (1, 0), (4, 0), (6, 0)}
to the collection of base blocks, we get an optimal cyclic 5-regular 2-(65, 4, 1) packing
family with difference leave Z5 − {0}. 2

Here are some special cases of Theorem 4.6.

Theorem 4.8 Let p = (m+1)mt+1 be a prime number. If there exist a V (m, (m+1)t)
and a ((m + 1)mt + 1,m + 1, 1)-CDF, then there exists an optimal cyclic (m + 2)-regular
2-((m + 1)mt + 1)(m + 2),m + 1, 1) packing family.

Corollary 4.9 If p = 12t + 1 is a prime number, then there exists an optimal cyclic
5-regular 2-(5p, 4, 1) packing family.

Proof Apply Theorem 4.8 with Lemmas 3.6 and 4.1. 2

Corollary 4.10 Let t be an odd integer. If p = 20t + 1 is a prime number, then there
exists an optimal cyclic 6-regular 2-(6p, 5, 1) packing family.

Proof Apply Theorem 4.8 with Lemmas 3.7 and 4.1. 2

Corollary 4.11 If p = 30t + 1 is a prime number 6= 61, then there exists an optimal
cyclic 7-regular 2-(7p, 6, 1) packing family.

Proof Apply Theorem 4.8 with Lemmas 3.8 and 4.1. 2

11



For general k, Theorem 4.8 can also yield optimal cyclic (k+1)-regular 2-((k+1)p, k, 1)
packing family, where p = k(k − 1)t + 1 is a prime number.

Corollary 4.12 Let p = k(k−1)t+1 be a prime number where k−1 and kt are not both
even. If p > max{B(k−1), D(k)}, where B(k−1) and D(k) were defined in Lemmas 4.3
and 3.9 respectively, then there exists an optimal cyclic (k + 1)-regular 2-((k + 1)p, k, 1)
packing family.

Proof Apply Theorem 4.8 with Lemmas 3.9 and 4.3. 2

5 Nested Cyclic 2-Packing Families

The concepts of nested designs were introduced by Preece [28] and Federer [16] in different
ways for some statistical applications. These designs were further discussed by Kageyama
and Miao [21], in which the two concepts were unified and generalized. They have ap-
plications in the constructions of several types of codes. Recently Yin [35] generalized
this notion to nested 2-packing families, and by using nested optimal cyclic 2-packing
families, he did produce a handful of optimal OOCs with k = 4 and λ = 1.

Let (Zv,B) be a cyclic 2-(v, k, λ) packing family. If each of its base blocks has a
distinct subblock of size k′ so that the collection of these subblocks constitute a cyclic
2-(v, k′, λ′) packing family having the automorphism ψ : i −→ i + 1 mod v, then this
cyclic 2-packing family is called a nested cyclic 2-(v, k, λ) p-acking family of form (k′, λ′).

Theorem 5.1 [35] Let v be an odd integer. If a nested optimal cyclic 2-(v, 4, 2) packing
family of form (3, 1) exists, then so does an optimal cyclic 2-(2v, 4, 1) packing family.

What Yin had actually done in [35] is to find an optimal cyclic (v, 3, 1) packing family
with v odd in which the b(v − 1)/6c base blocks can be chosen so that for any nonzero
integer x of Zv, at most one of x and its complement v − x occurs in the base blocks
and no base block can contain the element 0. This is equivalent to find a nested optimal
cyclic 2-(v, 4, 2) packing family of form (3, 1) by adding zero to each of its base blocks. For
convenience, Yin [35] called the collection of the base blocks so chosen as a perfect base
of the nested optimal cyclic 2-(v, 4, 2) packing family of form (3, 1). He conjectured that
for every odd v, there exists an optimal cyclic 2-(v, 3, 1) packing family with a perfect
base, and verified this conjecture for all odd v up to 50.

In this section, we present a recursive construction for optimal cyclic 2-(v, 3, 1) packing
families with a perfect base. By virtue of Theorem 5.1, this would allow us to produce
more optimal cyclic 2-packing families with k = 4 and λ = 1.

Let D = (dij) be a t× λu matrix with entries from Zu. If every element of Zu occurs
exactly λ times among the differences di1j − di2j, j = 1, . . . , λu, for any i1 6= i2, where
1 ≤ i1, i2 ≤ t, then D is called a (u, t, λ) difference matrix, or briefly, (u, t, λ)-DM.
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Theorem 5.2 Let u and v be two odd integers such that u ≡ 1 mod 6. Suppose that the
following exist:

(1) a (u, 3, 1)-CDF with a perfect base;

(2) an optimal cyclic 2-(v, 3, 1) packing family with a perfect base in which L is its
difference leave; and

(3) a (v, 4, 1)-DM.

Then there exists an optimal cyclic 2-(uv, 3, 1) packing family with a perfect base in which
u·L = {u` : ` ∈ L} is its difference leave. Furthermore, if the optimal cyclic 2-(v, 3, 1)
packing family is (g1, . . . , gn)-regular, then so is the resultant cyclic 2-(uv, 3, 1) packing
family.

Proof Let D be a (u, 3, 1)-CDF with a perfect base {Di : i = 1, 2, . . . , s}, where
Di = {di1, di2, di3} and s = (u − 1)/6. Let F be an optimal cyclic 2-(v, 3, 1) packing
family with a perfect base {Fh : h = 1, 2, . . . , t} , where Fh = {fh1, fh2, fh3} and t =
b(v − 1)/6c. Without loss of generality, we may also assume that in the (v, 4, 1)-DM
A = (aij), 0 ≤ i ≤ 3, 1 ≤ j ≤ v, all a0j are zero. Then every element of Zv appears
exactly once in every row, except the first one, of the (v, 4, 1)-DM.

Now for each Di ∈ D, we define v new base blocks

Eij = {di1 + a1ju, di2 + a2ju, di3 + a3ju}, 1 ≤ j ≤ v,

and for each Fh ∈ F , we define one new base block

F
′
h = u·Fh = {ufi1, ufi2, ufi3}.

Let E = {Eij : 1 ≤ i ≤ s, 1 ≤ j ≤ v}, F ′
= {F ′

h : 1 ≤ h ≤ t}, and E ′ = E ∪ F ′
. Then

it can be readily checked that E ′ is the desired optimal cyclic 2-(uv, 3, 1) packing family
with a perfect base in which u·L = {u` : ` ∈ L} is its difference leave.

In fact, we have that

∆E ′ = ∆(E ∪ F ′
)

= ∆E ∪∆F ′

=
⋃

1≤i≤s,1≤j≤v
∆Eij ∪

⋃
1≤h≤t

∆F
′
h

= (Zuv − u·Zv) ∪ (u·Zv − u·L− {0})
= Zuv − u·L− {0}.

If the optimal cyclic 2-(v, 3, 1) packing family is (g1, . . . , gn)-regular, then clearly the
resultant cyclic 2-(uv, 3, 1) packing family is also (g1, . . . , gn)-regular.

We can also prove that E ′ is in fact a perfect base.
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If
di1m1 + am1j1u ≡ di2m2 + am2j2u mod uv,

then
di1m1 − di2m2 ≡ 0 mod u,

which implies that i1 = i2 and m1 = m2 since D is a perfect base of the (u, 3, 1)-CDF. In
this case, we have that

am1j1 − am2j2 ≡ 0 mod v,

which implies that j1 = j2 since there is no element of Zv can appear twice in any row,
except the first one, of the difference matrix.

If
di1m1 + am1j1u ≡ −di2m2 − am2j2u mod uv,

then
(di1m1 + di2m2) + (am1j1 + am2j2)u ≡ 0 mod uv,

which implies that di1m1 + di2m2 ≡ 0 mod u. This is impossible since D is a perfect base
of the (u, 3, 1)-CDF.

If
dim1 + am1ju ≡ ±fhm2u mod uv,

then
dim1 ≡ 0 mod u,

which is impossible since D is a perfect base of the (u, 3, 1)-CDF.

Finally if
fh1m1u ≡ ±fh2m2u mod uv,

then
fh1m1 ≡ ±fh2m2 mod v,

which is impossible since F is a perfect base of the (v, 3, 1)-CDF.

The proof is then completed. 2

By applying Theorem 5.1 with Theorem 5.2, we can obtain the following result.

Corollary 5.3 Let u and v be two odd integers such that u ≡ 1 mod 6. Suppose that the
following exist:

(1) a (u, 3, 1)-CDF with a perfect base;

(2) an optimal cyclic 2-(v, 3, 1) packing family with a perfect base; and

(3) a (v, 4, 1)-DM.

Then there exists an optimal cyclic 2-(2uv, 4, 1) packing family.
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One series of (u, 3, 1)-CDFs with a perfect base can be constructed in the following
way. Let ε be a unit of order 3 in Z6t+1 such that {1− ε, 1− ε2} is a set of units of Z6t+1.
Consider the relation ∼ defined in Z6t+1 − {0} by

x ∼ y if and only if y = εsx for some s ∈ {0, 1, 2}.

It is easy to see that ∼ is an equivalence relation whose equivalence classes are the cosets
〈ε〉·r = {r, εr, ε2r} of the multiplicative subgroup 〈ε〉 of order 3 for r ∈ Z6t+1 − {0}.
Since {1 − ε, 1 − ε2} is a set of uints, each of these equivalence classes has actually
size 3. Hence a complete system of distinct representatives for the equivalence classes
of ∼ has cardinality 2t. Let X be such a system. If there exists a set X0 such that
X = ±X0, then each of X0·〈ε〉 and −X0·〈ε〉 forms a (6t + 1, 3, 1)-CDF with a perfect
base. The differences arising from 〈ε〉, ∆〈ε〉, is±〈ε〉·(1−ε). Then ∆(X0·〈ε〉) = X0·∆〈ε〉 =
X0·±〈ε〉·(1− ε) = ±X0·〈ε〉·(1− ε) = X·〈ε〉·(1− ε) = (Z6t+1−{0})·(1− ε) = Z6t+1−{0},
and ∆(−X0·〈ε〉) = −∆(X0·〈ε〉) = Z6t+1 − {0}.

Lemma 5.4 Let ε be a unit of order 3 in Z6t+1 such that {1−ε, 1−ε2} is a set of units of
Z6t+1. Let X be a complete system of distinct representatives for the equivalence classes
of ∼ defined above. Then there exists a set X0 such that X = ±X0.

Proof For any x ∈ X we claim that x·〈ε〉 ∩ (−x·〈ε〉) = ∅. Otherwise there would
exist x0 ∈ X and s ∈ {0, 1, 2} such that −x0 = x0ε

s. Since ε is a unit of order 3,
−x0ε

3 = x0ε
s, which means −x0 = x0ε

3−s. So we know that x0ε
3−s = x0ε

s, which implies
x0(ε

3−2s − 1) = 0. If 3− 2s 6≡ 0 mod 3, then by our hypothesis, ε3−2s − 1 is a unit, and
then x0 = 0, which is impossible. So we must have 3−2s ≡ 0 mod 3, that is, s ≡ 0 mod 3,
and thus s = 0. This means −x0 = x0, which is impossible too since 6t + 1 is odd.

Therefore we can separate X into two t-subsets X0 and −X0 so that x ∈ X0 if and
only if −x ∈ −X0. 2

As a summary, we have the following result.

Theorem 5.5 Let ε be a unit of order 3 in Z6t+1 such that {1 − ε, 1 − ε2} is a set of
units of Z6t+1. Then there exists a (6t + 1, 3, 1)-CDF with a perfect base.

For example, we have the following series of cyclic difference families with a perfect
base.

Lemma 5.6 There exists a (p, 3, 1)-CDF with a perfect base whenever p ≡ 1 mod 6 is a
prime number.

Proof Let θ be a primitive element of GF(p) = Zp, while p = 6t + 1 is a prime number.
Then it is easy to see that θ2t is a unit of order 3 of Z6t+1 such that {1− θ2t, 1− θ4t} is
a set of units of Z6t+1. 2

15



In Theorem 5.2, the existence of a difference matrix is assumed. Difference matrices
have been investigated extensively, see for example, [14]. Here are two examples.

Lemma 5.7 [15] Let v and k be positive integers such that gcd(v, (k − 1)!) = 1. Let
dij ≡ ij mod v for i = 0, 1, . . . , k − 1 and j = 0, 1, . . . , v − 1. Then D = (dij) is a
(v, k, 1)-DM. In particular, If v is an odd prime number, then there exists a (v, k, 1)-DM
for any integer k (≤ v).

Lemma 5.8 [19] Let k be a prime power. If there exists a (v, k, 1)-CDF with v ≡
1 mod k(k − 1), then there exists a (v, k, 1)-DM.

We can produce many more optimal cyclic difference packings with k = 4 and λ = 1.
Below we provide one example to illustrate this construction.

Example 5.9 Take u = 7 and v = 11. {1, 2, 4} is a perfect base for a (7, 3, 1)-CDF and
an optimal cyclic 2-(11, 3, 1) packing family respectively.




0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10
0 2 4 6 8 10 1 3 5 7 9
0 3 6 9 1 4 7 10 2 5 8




is a (11, 4, 1)-DM in which every entry in the first row is 0. Then

{{1, 2, 4}, {8, 16, 25},
{15, 30, 46}, {22, 44, 67},
{29, 58, 11}, {36, 72, 32},
{43, 9, 53}, {50, 23, 74},
{57, 37, 18}, {64, 51, 39},
{71, 65, 60}, {7, 14, 28}}

gives an optimal cyclic 2-(77, 3, 1) packing family with a perfect base, while

{{(1, 0), (2, 0), (4, 0), (0, 1)}, {(8, 0), (16, 0), (25, 0), (0, 1)},
{(15, 0), (30, 0), (46, 0), (0, 1)}, {(22, 0), (44, 0), (67, 0), (0, 1)},
{(29, 0), (58, 0), (11, 0), (0, 1)}, {(36, 0), (72, 0), (32, 0), (0, 1)},
{(43, 0), (9, 0), (53, 0), (0, 1)}, {(50, 0), (23, 0), (74, 0), (0, 1)},
{(57, 0), (37, 0), (18, 0), (0, 1)}, {(64, 0), (51, 0), (39, 0), (0, 1)},
{(71, 0), (65, 0), (60, 0), (0, 1)}, {(7, 0), (14, 0), (28, 0), (0, 1)}}

gives an optimal cyclic 2-(154, 4, 1) packing family.
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6 Cyclic Perfect Mendelsohn Difference Families

In this section, we make use of cyclic perfect Mendelsohn difference families to construct
cyclic 2-packing families.

Given a cyclically ordered k-tuple (a0, . . . , ak−1) in Zv with orders a0 < a1 < . . . <
ak−1 < a0, the pair ai, ai+t is said to be t-apart in (a0, . . . , ak−1), where the subscripts
are taken modulo k. A (v, k, λ) cyclic perfect Mendelsohn difference family, or briefly a
(v, k, λ)-CPMDF, is a collection F = {Bi : i ∈ I} of cyclically ordered k-tuples of Zv such
that any element of Zv−{0} can be expressed in precisely λ ways as the t-apart difference
of two distinct elements lying in the same member of F for any t such that 1 ≤ t ≤ k−1.
The members of F are called the base blocks of the cyclic perfect Mendelsohn difference
family. The number of base blocks of a (v, k, λ)-CPMDF is equal to λ(v − 1)/k, and
hence a necessary condition for the existence of a (v, k, λ)-CPMDF is that λ(v − 1) ≡ 0
mod k holds.

Theorem 6.1 Let v be a positive integer relatively prime to k. If there exist a (v, k, λ)-
CP with difference leave L and a (v, k, λ)-CPMDF, then there exists a cyclic 2-(kv, k, λ)
packing family with difference leave {0}×L∪(Zk−{0})×{0}. Moreover, if the ingredient
cyclic 2-(v, k, λ) packing family is (g1, . . . , gn)-regular, then the resultant cyclic 2-(kv, k, λ)
packing family is (k, g1, . . . , gn)-regular.

Proof Let D = {Di : i ∈ I} with Di = {di0, . . . , di,k−1} and E ={Ej : j ∈ J} with
Ej = (ej0, . . . , ej,k−1) be a cyclic 2-(v, k, λ) packing family with difference leave L and a
(v, k, λ)-CPMDF respectively. We define

F = {{0} ×Di : i ∈ I} ∪ {{(s, ejs) : 0 ≤ s ≤ k − 1} : j ∈ J}.
It can be readily checked that F is a cyclic 2-(kv, k, λ) packing family over Zk ×Zv with
different leave {0} × L ∪ (Zk − {0})× {0}.

Since D is a cyclic 2-(v, k, λ) packing family with difference leave L, it is obvious that
the differences from {0}×Di’s cover {0}×(Zv−L−{0}) exactly λ times. Now let (t, y) be
a fixed element of Zk×Zv−{0}×(Zv−{0})−(Zk−{0})×{0}−{(0, 0)}. By the definition of
E , there are exactly λ pairs (s, j) ∈ {0, 1, . . . , k−1}×J such that ej,s+t−ejs = y, where the
subscripts are all taken modulo k. This implies that (s+t, ej,s+t)−(s, ejs) = (t, ej,s+t−ejs)
= (t, y). So every (t, y) ∈ Zk × Zv − {0} × (Zv − {0}) − (Zk − {0}) × {0} − {(0, 0)} is
representable as λ differences from {{(s, ejs) : 0 ≤ s ≤ k − 1} : j ∈ J}. Moreover, such
representations can not be more than λ times, because the number of differences from
{{(s, ejs) : 0 ≤ s ≤ k − 1} : j ∈ J} is k(k − 1)|J | = λ(k − 1)(v − 1), as k|J | = λ(v − 1)
from the definition of a cyclic perfect Mendelsohn difference family. But (k− 1)(v− 1) is
the cardinality of Zk × Zv − {0} × (Zv − {0})− (Zk − {0})× {0} − {(0, 0)}. So we can
conclude that the differences from F cover Zk×Zv−{0}×L− (Zk−{0})×{0}−{(0, 0)}
exactly λ times, and hence F is a cyclic 2-(kv, k, λ) packing family with difference leave
{0} × L ∪ (Zk − {0})× {0}, since gcd(k, v) = 1 by the hypothesis. The second assertion
is trivially true then. 2
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By Theorem 3.5, we can obtain the following result.

Theorem 6.2 If there exist a cyclic 2-(v, k, 1) packing family with difference leave L
such that 0 ≤ |L| < (k − 1)2, and a (v, k, 1)-CPMDF, then there exists an optimal
cyclic 2-(kv, k, 1) packing family. Moreover, if the ingredient cyclic 2-(v, k, 1) packing
family is (g1, . . . , gn)-regular, then the resultant optimal cyclic 2-(kv, k, 1) packing family
is (k, g1, . . . , gn)-regular.

Proof Note that in a (v, k, 1)-CPMDF, v ≡ 1 mod k, which implies that gcd(v, k) = 1.
Then apply Theorems 6.1 and 3.5. 2

Many infinite series of (v, k, 1)-CPMDFs can be found in [22]. Here we give one series
as examples.

Lemma 6.3 Let v =
∏

i∈Ip
ni
i be the prime power factorization of v such that pi ≥ k for

all i ∈ I. Let fi = gcd(k, pi − 1) for all i ∈ I, and f = gcd(fi : i ∈ I). If f = k, then
there exists a (v, k, 1)-CPMDF.

Theorems 6.1 and 6.2 together with the existence results on cyclic packing families
and cyclic perfect Mendelsohn difference families can yield many new infinite series of
optimal cyclic packing families. Here are a few examples.

Corollary 6.4 If p = 12t + 1 is a prime number, then there exists an optimal cyclic
(4, 5)-regular packing family.

Proof Apply Theorems 6.1 and 6.2 with Corollary 4.9 and Lemma 6.3. 2

Corollary 6.5 Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr are
all prime numbers congruent to 1 modulo 12. Then there exists an optimal cyclic 4-regular
2-(4v, 4, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.6 and 6.3. 2

Corollary 6.6 Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr are
all prime numbers congruent to 1 modulo 12. Then there exists an optimal cyclic (4, 5)-
regular 2-(20v, 4, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.10 and 6.3. 2

Corollary 6.7 Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr are
all prime numbers congruent to 1 modulo 20. Then there exists an optimal cyclic 5-regular
2-(5v, 5, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.7 and 6.3. 2
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Corollary 6.8 Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr are
all prime numbers congruent to 1 modulo 20. Then there exists an optimal cyclic (5, 11)-
regular 2-(55v, 5, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.11 and 6.3. 2

Corollary 6.9 If p = 30t+1 is a prime number 6= 61, then there exists an optimal cyclic
(6, 7)-regular 2-(42p, 6, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Corollary 4.11 and Lemma 6.3. 2

Corollary 6.10 Let v = p1p2· · ·pr be the prime factorization of v where p1, p2, . . . , pr are
all prime numbers congruent to 1 modulo 30 but not equal to 61. Then there exists an
optimal cyclic 6-regular 2-(6v, 6, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.8 and 6.3. 2

Corollary 6.11 Let p ∈ {7, 13, 19}. Let v = p1p2· · ·pr be the prime factorization of v
where p1, p2, . . . , pr are all prime numbers congruent to 1 modulo 30 but not equal to 61.
Then there exists an optimal cyclic (6, p)-regular 2-(6pv, 6, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.12 and 6.3. 2

Corollary 6.12 Let p ≡ 1 mod k(k − 1) be an odd prime number. Then there exists an
optimal cyclic k-regular 2-(kp, k, 1) packing family whenever p > D(k), where D(k) was
defined in Lemma 3.9.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.9 and 6.3. 2

Corollary 6.13 Let pk be a prime number such that k ≤ pk < (k − 1)2 + 1 and pk ≡
1 mod k. Let p ≡ 1 mod k(k − 1) be an odd prime number. Then there exists an optimal
cyclic (k, pk)-regular 2-(kpkp, k, 1) packing family whenever p > D(k), where D(k) was
defined in Lemma 3.9.

Proof Apply Theorems 6.1 and 6.2 with Lemmas 3.13 and 6.3. 2

Corollary 6.14 Let k + 1 be a prime number. Let p = k(k − 1)t + 1 be a prime number
where k − 1 and kt are not both even. If p > max{B(k − 1), D(k)}, where B(k − 1)
and D(k) were defined in Lemmas 4.3 and 3.9 respectively, then there exists an optimal
cyclic (k, k + 1)-regular 2-(k(k + 1)p, k, 1) packing family.

Proof Apply Theorems 6.1 and 6.2 with Corollary 4.12 and Lemma 6.3. 2
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7 Concluding Remarks

In this article, we established an equivalence between optimal optical orhtogonal codes
and optimal cyclic t-packing families. This relation allows us to construct optimal optical
orthogonal codes by way of optimal cyclic t-packing families. This approach was showed to
be quite accessible when t is 2 in this article. However, the construction for optimal cyclic
t-packing families is apparently a difficult task in general. Determining the spectrum
of optimal cyclic t-(v, k, 1) packing families is becoming an interesting and challenging
problem in design theory and coding theory.
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