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Abstract

An optical orthogonal code (OOC) is a collection of binary sequences with good auto-
and cross-correlation properties; they were defined by Salehi and others as a means of
obtaining code division multiple access on optical networks. Up to now all work on
OO0OC’s have assumed that the constraint placed on the auto-correlation and that placed
on the cross-correlation are the same. In this paper we consider codes for which the two
constraints are not equal. Specifically, we develop bounds on the size of such OOC’s and
demonstrate construction techniques for building them. The results demonstrate that a
significant increase in the code size is possible by letting the auto-correlation constraint
exceed the cross-correlation constraint. These results suggest that for a given performance
requirement the optimal OOC may be one with unequal constraints.

This paper also views OOC’s with unequal auto- and cross-correlation constraints as
constant-weight unequal error protection (UEP) codes with two levels of protection. The

bounds derived are interpreted from this viewpoint and are compared with previous work

on UEP codes.
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Table 1: The cardinality of (n,w,2,1) OOC’s constructed using the technique of
Section 5.1.

Table 2: The cardinality of (n,w,2,1) OOC’s constructed using the technique of
Section 5.2.

Table 3: The cardinality of (n,w,1,1) OOC’s constructed using the technique of

Section 5.3. All codes are optimal.

Figure 1: Lower bounds on the number of message bits that can be protected against
two errors while |log, n| bit are protected against single errors. The bound from Theorem

4 assumes constant weight codewords with w = [n/2],



1. Introduction

This paper concerns the use of optical fiber in a multi-user communication network.
Specifically, it considers the use of code-division multiple access techniques that permit
many users to share a single optical channel through the assignment of unique “signature
sequences’ .

This approach has a long history as applied to communication channels where the
modulated signals can have both positive and negative components — e.g. binary phase
shift keying. However, in optical systems - where incoherent processing means that
only signal intensity is measured — there are no negative components, and the effect
on code design is profound. This was noted by Salehi and others in their design of optical
orthogonal codes (O0OC’s) [1-4].

The results in this paper extend previous work on optical orthogonal codes in that we
consider codes for which the auto- and cross-correlation constraints are not equal. We
observe that the effects of the two constraints on system performance are not the same,
and so considering only codes for which the constraints are identical may lead to a sub-
optimal code. Bounds on such OOC’s are derived and techniques for constructing them

are described.

Finally, OOC’s with unequal auto- and cross-correlation constraints may be viewed as
constant-weight unequal error protection (UEP) codes; therefore we interpret the bounds

and constructions in that context and compare them with previous work on UEP codes.

2. Background and Motivation
In this section we briefly review previous work on optical orthogonal codes and indicate

why the problem considered in this paper is important.

2.1. Definitions and Past Work
What follows is the definition of an OOC given by Salehi et. al. [3].

Definition: An (n,w, A,, \.) optical orthogonal code C is a collection of binary n-

tuples, each of Hamming weight w, such that the following two properties hold:

¢ (Auto-correlation) For any x = [zg,...,2Z,-1] € C and any integer 7, 0 < 7 < n,
n-1
Z TiTigr < Age
t=0



¢ (Cross-correlation) For any x = [zg,...,2,—1] € C and any y = [yo, ..., Yn-1] €C

such that x # y and any integer 7,

n—1

Z TiYtpr S /\c-

t=0

Note: OO0C’s were defined in terms of periodic correlation; thus the addition in the

subscripts above — denoted “@” - is all modulo-n.

The definition of an OOC can be recast in terms of Hamming distance; doing so makes

clearer the parallels between OOC’s and constant weight error correcting codes.

Notation: Given a binary n-tuple x, let D'x denote the binary n-tuple obtained by

performing ¢ right-cyclic shifts on x.

Alternate Definition: An (n,w, A\, A.) optical orthogonal code C is a collection of
binary n-tuples, each of Hamming weight w, such that the following two properties hold:
o (Auto-correlation) For any x € C, d%,.(x) > 2w — 2A,, where d%, (x) is the min-
imum distance between x and its cyclic shifts — i.e., d%; (%) 2 min{dg(x, D7x) :
r=1,2,...,n—1}.

e (Cross-correlation) For any x € C and any y € C, d°, (x,y) > 2w — 2).. where

¢ (x,Y) 2 min{dy(x, D7y): 7 =0,1,...,n —1}.

min
Consider the partition of binary n-tuples into “clouds”, where every cloud consists
of cyclic shifts of the same n-tuple. Then constructing an OOC consists of picking at
most one n-tuple from every cloud under two constraints; the first constraint specifies
the minimum Hamming distance within a cloud, while the second specifies the minimum
Hamming distance between clouds. Thus if the two constraints are equal — ie., if A\, =
A: = A —then an OOC, taken together with all of the cyclic shifts of each OOC codeword,
represents a constant-weight cyclic error correcting code with minimum distance 2w — 2.
The use of OOC’s for multiple access is described in [1-2]. We assume that each user

may transmit a physical optical pulse — a chip — at any time. If we assume incoherent



processing — i.e., only the intensity and not the the phase of the signal is available at the
receiver — then multiple pulses transmitted simultaneously by different users sum.

Each user in the network is assigned a codeword from an optical orthogonal code. The
codeword assigned to a user is that user’s “signature sequence”, and when the user wishes
to convey a logical “1” he transmits the corresponding sequence of pulses and pauses;
when the user wishes to convey a logical “0” he transmits nothing for n chip durations.
At the receiver each user computes the correlation of the received sequence with that
user’s signature sequence; because of the low auto- and cross-correlation properties the
correlation typically stays low until a logical “1” is indicated by a correlation of w. In
this way each user can recover his own logical sequence.

In [1][2] Salehi introduced optical orthogonal codes and computed the error probability
assuming a channel where the only “noise” is interference from other users. In [3] Chung,
Salehi, and Wei described constructions of OOC’s for the case A\, = A. = | and derived
bounds on the cardinality on an (n,w, A, A) code. In [3] Chung and Kumar described a
construction technique for the case A\, = A, = 2 and derived new upper bounds on the

cardinality of an optimal OOC - again for the case A, = A, = A.

2.2. Why Consider Ay # A¢ ?
The two correlation constraints serve two purposes.

o The auto-correlation constraint guarantees that each signature sequence is unlike
cyclic shifts of itself. This property enables the receiver to obtain synchronization —
that is, to find the beginning of its message and subsequently locate the codeword
boundaries.

o The cross-correlation constraint guarantees that each signature sequence is unlike
cyclic shifts of the other signature sequences. This property is used to enable the
receiver to estimate its message in the presence of interference from other users.
Thus the cross-correlation constraint aids synchronization in the presence of mul-
tiple users and permits each receiver to “track” its message after synchronization

is achieved.

Thus the auto-correlation constraint contributes only to synchronization, while the
cross-correlation constraint affects both synchronization and operation.

A reasonable “figure of merit” for a code is the number of interfering users necessary



to cause the code to fail. For instance, assume synchronization has been achieved; then
the only errors the t* receiver can make in estimating its logical sequence are 0 — 1
errors, and they can only occur when enough other users interfere to make the correlation

at the *" receiver exceed a threshold w. Since each of those other users can contribute at

most A. to the correlation, the performance “figure of merit” is w/A.. In a similar vein,
the synchronization “figure of merit” is (w — A;)/A; for multiple-access synchronization
and w — A, for single-user synchronization.

Taking these as our performance criteria, we see why “asymmetric” OQOC’s - i.e., codes
with A, # A, — might be preferable to “symmetric” codes. If we compare (for instance) an
(n,w+m, A+ m, ) OOC with either an (n,w, A, A) code or an (n,w +m, A +m, A +m)
code, we see the asymmetric code is more robust.

So the performance of an (n, w+m, A\+m, A) OOC will be at least as good as compara-
ble “symmetric” OOC’s. However, we will demonstrate in this paper that the cardinality
of the (n,w+ m, A 4+ m, \) code can actually exceed that of the less robust codes — thus

more users can be provided even better performance. Clearly, this motivates the study of
such O0C’s.

3. Some New Bounds on Optical Orthogonal Codes

Define ®(n,w, A, A:) to be the cardinality of an optimal optical orthogonal code with

the given parameters — i.e.,

b(n,w, Ay, Ac) = max{|C |: C is an (n,w, A\,, A.) OOC}.

In this section we derive'some new bounds on ®(n,w, A, A;). Before this can be done,

however, we need to set up the notation and derive some preliminary results.

Definition: Let x = [2g,21, -+, 2n-1] be a binary n-tuple of weight w; assume z;, =
z; = -+ =z;, , = 1. The adjacent relative delay vector associated with x is denoted

tx = [to, 1, -, tw—1] and is defined by

t = Jiv1 — 75y fore=0,1,---,w—2.
l n+jvﬁjw_]7 for ¢ = w — 1.



More generally, the relative delay between two 1’s in a binary n-tuple is the number

(modulo n) of cyclic shifts required to “line up” the two 1’s; tx consists of the relative

delay between all adjacent 1’s in x.

Notation: Let x be a binary n-tuple of weight w and let tx = [to,?1,...,{y—1] be its
adjacent relative delay vector. Let Ry = [rx(¢,7)] denote the (w — 1) X w array of integers

whose (4, 7)™ element is given by

rx(1,5) = D tjok.
k=0

(Note: The subscript addition above and in the definition of My \ below is all modulo w

— denoted “@”.)

More Notation: For any x € {0,1}" and any integer A (1 <\ <w —1) let Mx\ be

the set of integer A-tuples given by

ig i)\—l

A 10 17
Mxy = {[X tiwke, D tiwks D liwkssros O bk )
ko=0 ky=ip+1 k2=i1+1 Ex-1=ix—2+1

O§i0<i1<---<z’,\_1Sw—?,jzo,l,---,w—l},

where tx = [to,t1,...,tz-1]

There are at most w(wxl) vectors in My ; there are (“’;1> ways to pick the 7,’s and w

ways to pick the j’s. If every such selection yields a different vector then |Mx \| = w(“’f);

otherwise |Myx | < w (wgl).

Example: Let x = [1001100010000]. Then

tx = [to,t1,12,t3] = [3,1,4,5].
Furthermore,
to t1 t2 I
RX - t0+t1 t1+t2 t2+t3 t3—+—t0

o+ttt titta+1s ta+iz+to t3+1t0+ 1



and

Mxz = {[to,t1], [t1, 8], [t2, 2a], [ts, 2],
[to + t1, 2], [t1 + 1o, ts), [t2 + ta, to), [t3 + o, t1],
[tg, 11+ tg], [tl, ty + t3], [tg, ts + to], [tg, to + 1]}
= {3,1],[1,4],[4,5],[5,3],
[4,4],[5,5],19,3],[8,1],
[3,5],[1,9],[4,8],[5,4]}.

The significance of Rx and My ) is given in the following three lemmas.

Lemma 1: Let x = [zo, 21, -+, 2,-1] be a binary n-tuple. Then the inequality

n—1

Z TyTyqyr < A

=0

holds for all 1 < 7 < n — 1 if and only if no component of Ry is repeated more than A
times.

Proof: The elements of Rx indicate the relative delay between every pair of 1’s in x.

Therefore, Ry contains A + 1 repeated elements if and only there exist two sequences

{t0,%1,...,22} and {7,7},...,74} such that for all j =0,1,..., A

T, =z¢y =1 and i;—if=7"#0.

I
J 7

But this is true if and only if Y77 24« > A + 1. QED.

Lemma 2: Let x = [zo,21,...,%5-1] and ¥ = [y0, Y1, .., Yn—1] be binary n-tuples. Then

the inequality

n—1

Z TiYtopr < A

t=0



holds for all 0 < 7 < n —1if and only if My \ and My \ are disjoint.

Proof: My ) is a collection of integer A-tuples. A vector m = [ag, a1,...,axr-1] is in My \
if and only if there exists a sequence of A 4+ 1 distinct integers — call them ig,%y,...,0) —
such that

r; =1 forj=0,1,...,A

and

tip1—t;=a; forg=0,1,...,A—1.
Therefore, My N My y = @ if and only if it’s impossible to “line up” A + 1 binary 1’s in
x with A+ 1 binary 1’s in y with cyclic shifts - i.e., if and only if 370 &g, < M. QED.

Lemma 3: Let x = [20,21,...,%,-1] be a binary n-tuple. Then the inequality

n—1

Z TyTyqyr < A

t=0
holds for all 7 = 1,2---,n — 1 if and only if |[Mx | = w(“’;l) - Le., if and only if the
vectors defining My » are all distinct.

Proof: Similar to the proof of Lemma 2. The presence of a A-tuple in My ) corresponds

to A + 1 non-zero components of x such that the relative delays between the non-zero
components are given by the A-tuple. If My ,| < w(wxl) then there are two different

sets of A + 1 non-zero components with the same relative delays between them; thus we

can “line up” the A 4+ 1 binary ones and obtain an auto-correlation of at least A + 1.
Conversely, if |[Mx\| = w(wgl) then every set of A + 1 non-zero components of x have a

different relative delay structure, so it’s impossible to obtain an auto-correlation of A + 1

or more. QED.

3.1. An Upper Bound

In this section we will use the characterizations developed above to provide an upper

bound on ®(n,w, A, A.).



First consider the case A\, = A. = A; the bound we derive is identical to one in [3]
derived from the Johnson bound for constant weight error correcting codes; it is re-derived

here to illustrate the approach that will be taken in the proof of the new bounds.
Theorem 1: [Johnson Bound] The following inequality holds:

(n~1)(n—2)...(n—/\).

d(n,w, A\ A) < w(w —1)...(w—\)

Proof: Let C be an optimal (n,w, A, 1) O0C - i.e., |C| = ®(n,w, A, A). From Lemma 3
we know that for every x € C the set My ) consists of w(“’;l) distinct integer A-tuples.

Furthermore, from Lemma 2 we know that for x,y € C, x # y, the sets My, and

My \ are disjoint. Therefore the union of My ) as x varies over all x € C consists of
O(n,w, A, A) - w(wgl) distinct integer A-tuples. However, if [ag, a1, ..., ar-1] € My then

ag+ar+...4+ay-1 <n—1. The number of ways to select A positive ¢;’s that sum to no

more than n — 1 is just the number of compositions of n with A + 1 positive parts — and

that is equal to (";1) We have thus shown that

@(n,w,A,A)-w(“’;l) < (”;1),

which was to be proven. QED.

Our next goal is to bound ®(n,w, ., A;) for A\, > A.. To do so we first need a

preliminary lemma.

Lemma 4: Let x € C, where C is an (n,w, A + m, A) optical orthogonal code. (Assume

w
A
1]\/[)“/\1 2 .

Adm

m > 0 is an integer.) Then

Proof: See Appendix A.

10



Theorem 2: Let m be a non-negative integer. Then

(n—l)(n—?)...(n——)\)()\+m).
w(w — 1w —2)...(w—2A)

O(n,w, A +m, ) <

Proof: Let C be an (n,w, A +m,A) OOC such that |C| = ®(n,w, A + m,\). By Lemma

4, for any x € C, |Mx| > w(wgl)/(m + A). Furthermore, by Lemma 2 My \ and My

are disjoint for x,y € C and x # y; therefore |Mx 1| summed up over all x € C cannot

exceed the total number of integer A-tuples that are “allowable” as elements of Mx , — a

number shown in the proof of Theorem 1 to be (";1) So:

Y

E ’Mx,/\l

()
)‘ xel

®(n,w, A +m,A) - min{|Mx | : x € C}

AV

(w—l)

D

> ‘P(n,w,/\+m,/\)'——T
m

which was to be proven. QED.

Examining Theorem 2, we find (for instance) that the upper bound on ®(n,w, X, 1) is
A times greater than the analogous bound on ®(n,w,1,1). It should also be noted that
a trivial upper bound on ®(n,w, A + m,A) is given by any upper bound on ®(n,w, A +
m, A +m). For “typical” OOC values - i.e., n 3> w — an upper bound derived this way
will be much looser than the bound in Theorem 2. For instance, considering (n,w,2,1)
00C’s, the bound in Theorem 2 is tighter than the Johnson bound for (n,w,2,2) codes
provided n > 2w — 2.

We note also that Theorem 2 is only a generalization of the Johnson bound for A = 1;
for A > 2 the bound on ®(n,w, A, X) obtained by setting m = 0 in Theorem 2 is weaker

than the bound in Theorem 1.

11



3.2. Lower Bounds
In [3][5] a lower bound on ®(n,w, A, A;) was derived for odd prime n. Subsequently,
Victor Wei [6] derived an alternate lower bound — again for odd prime n. In what follows

we use the general approach of Wei [6] to bound ®(n,w, A, A.) for A, # A and any n.

Theorem 3:

B 9
where
A =
n/2] lwé/n] § v c\{w—Nn/é—1 O\ [n—Nn/b -
2 e ) 2 (W)@
§=1 N=0 NI sy \W/ A e= N= b JANJ A e = N
8n
w et (o — 1\ (n
+ {8:1<8< [n/2],6m} > (C_1><C),
c=1
1, if z = 0;
A(x)—{ 0, otherwise,
and

n=n g (20)

Proof: As in [3][5], the proof consists of demonstrating that A is an upper bound on the

number of binary n-tuples that violate the auto-correlation constraint and B is an upper
bound on the number of binary n-tuples that violate the cross-correlation constraint for
a given binary n-tuple x. The result follows from an application of the greedy algorithm.
The validity of B as an upper bound was demonstrated in [3][5]. Thus the proof consists of
demonstrating that there are at most A binary n-tuples that violate the auto-correlation

constraint. A proof of this is given in Appendix B.



3.3. Asymptotic Bounds

In this section we examine how the cardinality of an optimal (n,w, A,, A;) optical or-

thogonal code behaves for large blocklength. The goal is to see how quickly the parameters

w, Ay, and A, should grow with blocklength n in an (n,w, A,, A;) OOC.

Lemma 5: Let A, be a positive integer, and let p and ¢ be a non-negative constants such

that p > (A; + ¢)/(Ac +1). Then

lim ®(n, [an®], [Bn],\.) =0,

n—0o0

for any positive real « and S.

Proof: From Theorem 2,

(n—1)...(n = A)(fn?+1)

an?(an? — 1) ... (an? — ;)

(I)(n7 |’anp'|’ ‘—671().' ) )‘C) <

1 de ] —(i/n)
—  plreta—p(Ac+1) o QDT
= n (ﬁ—*—nq)a El—(i/anp)'

Since by assumption A, + ¢ — p(A. + 1) < 0 we have the desired result. QED

Lemma 6: Let A\, and . be positive integers, and let p be a positive constant such that
p < min{A,/(2A; + 3), \./(2A; + 3)}. Then

lim ®(n, [an”], A, A:) = oo,

n—oo

for any positive real .

Proof: See Appendix C.

Considering the case A\, = A\ = 1, Lemma 5 tell us that if the codeword weight grows
faster than \/n we will be unable to find any codewords for large n. Lemma 6 suggests if

1/5

we let the weight grow slower than n'/® there is no limit to the number of codewords we

can construct.

Finally, we demonstrate that when the auto- and cross-correlation constraints are
growing like n* for a constant k, we are guaranteed the existence of codes provided the

codeword weight grows no faster than /n.

13



Lemma 7: Let p, ¢, and r be constants 0 < p,¢,r < 1. Then if p < 1/2,

lim ®(n, [an?], |fn?], [yn"]) = oo,

Ty~ OO

for any positive real «, # and 7.

Proof: See Appendix C.

4. OOC’s as Constant-Weight Unequal Error Protection Codes

In this section we briefly describe the connection between (n,w, A;, A.) optical orthog-
onal codes and unequal error protection (UEP) code with two levels of protection.

An unequal error protection code is an error control code with a “twist”; the code is
designed so that different digits in a message have varying levels of reliability. This may
be convenient in applications where the position of a digit in a message determines its
importance. The archetypical example of this is a message containing a hank balance; if
the balance is $1376.62 it’s much more important that the “1” be uncorrupted than that
the “2” be error-free.

An encoder for an (n,k) binary error control code is a mapping f : {0,1}F —
{0,1}". The message x € {0,1}* is represented by the codeword f(x) € {0,1}". If
min{d(f(x), f(¥)) : x,y € {0,1}F,x # y} > 2t + 1 then we say the code is t-error

correcting. (Here, d(cq,c2) is the Hamming distance between the n-tuples ¢; and cs.)

Definition: Given an encoder f:{0,1}* — {0,1}", the separation vector associated

with the encoder is an integer k-tuple s = [sq, s1,...,sk-1] defined by
i = minfd(F(x), f(y)) 3,y € {0,1)" and 2, # ).

Note that the separation vector is associated with the encoder rather than the code
- l.e., the image of the encoder. It’s possible that a code may have multiple separation
vectors associated with it — corresponding to different encoders for the same code.

Let f(-) be an encoder with separation vector s = [so, s1,...,85_1]. Suppose a message

k-tuple x is used to select a codeword f(x) € C which is then transmitted over a noisy

channel. Minimum-distance decoding will correctly recover the i** bit of the message

14



provided no more than ¢; = |(s; —1)/2] errors occur during transmission. A code with an
encoder whose separation vector has the property that ¢; # ¢; for some ¢ and j is called
an unequal error protection (UEP) code.

There is a substantial body of literature on UEP codes. (See [7-11] for references.)
However, there has been no investigation of constant weight UEP codes.

An (n,w, A, A;) OOC with A, > . can be used to construct a constant weight UEP
code. Suppose you have such an OOC with cardinality M. Now consider the error control
code consisting of all the n-tuples of the OOC and all their cyclic shifts. The resulting code
has nM codewords, each of weight w. Furthermore, such a code consists of M “clouds”
of codewords, where two codewords belong to the same cloud if and only if they’re cyclic
shifts of one another. The distance between any two codewords within the same cloud is
at least 2(w — A,); the distance between any two codewords from two different clouds is
at least 2(w — A.)

So, consider the following encoder. Take k; = |log, M| message bits and use them
to pick a cloud; then take k; = |log, n| message bits and use them to pick an n-tuple
from within the chosen cloud. Any two messages that differ in the first &y bits will have
codewords that differ in at least 2(w — A.) positions; any two messages that differ in the
last k; bits will have codewords that differ in at least 2(w — A,) positions. Therefore we

have described an encoder for a (ky + k2,n) code with separation vector

8= (2(w—Ae)y. o, 2(w — Ao), 20 = Ag),y .., 2(w — Ag) )
kg kl

This observation means that our lower bound for OOC’s may be interpreted as an

existence result for constant-weight UEP codes with two levels of protection.
Notation: Let M(n,w,\,, A.) denote the lower bound on ®(n,w, A,, A.) derived in
Theorem 3 - i.e., M(n,w, Ay, A) = ((Z) — A)/B, where A and B are given in Theorem 3.

Theorem 4: Let a and f be positive, even integers. Then there exists a weight-w

(n, k1 + k2) error control code with separation vector

8= [a7a7"'7a7ﬁaﬂa"'aﬁja
k2 ky

15



where
ky = log, M(n,w,w — (8/2),w — (/2))] and &k = |logyn].

It is interesting to compare the bound in Theorem 4 with existing bounds for non-
constant weight UEP codes. Bassalgyo et.al. [11] used Gilbert-Varshamov style reasoning
to derive the following result: There exists a UEP code with blocklength n and rate
R = R, + R, with a separation vector consisting of k; = Ryn entries of d; = 2¢; + 1 and

ky = Ryn entries of dy = 2t2 + 1 (¢1 < t3) provided the following inequality holds:

tl 10g2 n _ 3t2 IOgZ(l/Rl) + tl + 2

n n

Ry 21— Ry —

If we let &y = |log, n], this bound may be directly compared to the bound in Theorem
4. Figure 1 shows two different lower bounds on the number of information bits that can be
protected against two errors while simultaneously protecting &y = [log,(n)| information
bits against single errors. One bound is from Bassalgyo et.al and the other comes from
Theorem 4 when we set w = |n/2|. The lower bound in Theorem 4 is a clear improvement
over the bound in [11].

This may at first seem surprising; the bound from Theorem 4 is one on constant-
weight UEP codes, while the Bassalgyo bound has no such constraint. However, there
are similar results with regard to “regular” t-error correcting codes. For instance, the

traditional Gilbert-Varshamov bound for codes with blocklength n» = 8 and minimum
distance four is given by [28/(1 + (3) + (2) )] = 4. By comparison, if we use a Gilbert-
Varshamov-type technique to bound the cardinality of the optimal weight-four code with
blocklength n = 8 and minimum distance four we obtain ]—(i)/(l +4%)] = 5.

The phenomenon can be explained by the proof of the Gilbert-Varshamov bound. The
bound states that, when drawing codewords from a set X with the property that every
sphere of radius d — 1 contains V;_; elements, it is always possible to find a code with
minimum distance d and cardinality at least |[X'|/V;_1. In going to a constant weight code
we are taking a subset of X in such a way that the ratio of the cardinality of the set to

the sphere “volume” increases.

16



5. New Constructions
In this section we present four new techniques for constructing optical orthogonal
codes. Two of the new methods describe ways to construct (n,w,2,1) codes; another

describes an optimal (n,w, 1, 1) code, while the last is a method for designing an (n,w, 1,2)

00C.

5.1 Construction 1 — An (n,w,2,1) OOC

We now demonstrate a technique for constructing an (n,w,2,1) OOC. The method is
a variation on the technique proposed by Wilson [12] to construct (n,w,1,1) codes. We

begin by considering the specific values of w = 5,6, and we then generalize the technique.

An (n,5,2,1) OOC: Let n be a prime number such that n = 12¢ 4+ 1 for an integer
t. Let a be a primitive element of the field GF(n) such that o? = o® — 1 and o" = 2,
where ¢ and r are integers that are non-zero modulo three and are distinct from each
other modulo three.

Then we can construct an (n,5,2,1) OOC C with cardinality |C| = ¢ as {ollows. The
" codeword x; contains a “1” in positions 0, o, o®*+3% o543 and o”*+% and a “0”

everywhere else. This holds for : = 0,1,...,¢{ — 1. (Note: We say that the code consists

of the “blocks” {[0,a®, a31H3t 843 o943 .y =0, 1,...,t —1}.)

To see that this construction yields an (n,5,2,1) code let Ry, denote the array con-

sisting of all the relative delays between pairs of 1’s in x¢. Keeping in mind that 2'* = 1

and 2% = —1, simple algebra reveals that
1 a3t —1 a?)t(aiit _ 1) a6t(a3t . 1) OZBt
a3t 2a6t 2a9t 1 a9t(a3t _ l)
BRx, = oSt aBt( o3t — 1) %t 9 203t
a9t a6t CXGt(QBt . 1) a9t(a3t _ 1) a?)t -1

Every component of Ry is of the form Ba®? where 8 € {1,2,a%—1} and j € {0,1,2,3}.
Therefore as long as the base-a logarithms of 2 and o3 — 1 are not equivalent to each

other mod 3 and are not equivalent to zero mod 3,

Br# Baor i # o = Pradt 4 Bradnt.
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And so no element of Ey, is repeated more than twice; this implies the auto-correlation
constraint for xg is met. Furthermore, the matrix Ry, is obtained by multiplying Rx, by

a®, so the auto-correlation constraint is met for all x;.

To check the cross-correlation constraint, we note that Mx i is a set whose “vectors”
are just the 1-tuples from Rx. Therefore as long as the components of iy, and the
components of Ry, form disjoint sets for ¢ # ¢', we will have proven the cross-correlation
constraint is met. But (as mentioned above) Ry, is obtained by multiplying Ry, by o
thus the components of Ry, are of the form Ba®Ut); as long as 0 < ¢ < t — 1 the

components form disjoint sets and so the cross-correlation constraint is met.

Example: Let n = 37 and ¢ = 3. Choose o = 2 as the primitive element of GI'(37) and
s0 2% —1 =30 = 2" while 2 = 2! ~i.e., ¢ = 14 and r = 1. Then the code consists of the
blocks {[0,1,6,31, 36],[0,8,11, 26,29], (0,10, 14,23,27]} and so the three codewords are

Xg = [1100001000000000000000000000000100001]
x; = [1000000010010000000000000010010000000]
X2 = [1000000000100010000000010001000000000].

Note that, using Theorem 2, we know that ®(37,5,2,1) < (36-2)/(5-4) = 3.6 and so

this construction is optimal.

An (n,6,2,1) OOC: Let n be a prime number such that n = 18¢ + 1 for an integer
t. Let a be a primitive element of the field GF(n) such that a? = o® — 1 and o" = 2,
where ¢ and r are integers that are non-zero modulo three and are distinct modulo three,

Then we can construct a (n,6,2,1) OOC C with cardinality |C| = ¢ with the blocks

{[a.?n, a3t+317 a6t+31’ a9t+31’ a12t+31’ Q15t+31] . l — O, 1, L. ,t _ 1}

The proof that this construction yields an (n,6,2,1) code is analogous to the result
for the w = 5 code and is omitted. Furthermore, these techniques are easily generalized

to different values of w; the details are given below.

An (n,w,2,1) OOC for Even w: Let w = 2m and choose n to be a prime number

such that n = wzt/2 + 1 for an integer ¢. Let « be a primitive element of GF(n) such that
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{log,[e*™ — 1] : 1 < k < m} are all distinct modulo m. Then the code consisting of the

blocks
i I G I G GO DY P (I I

ydaee

is an (n,w,2,1) OOC.

An (n,w,2,1) OOC for Odd w: Let w = 2m + 1 and choose n to be a prime
number such that n = (w? — 1)t/2 4+ 1 for an integer t. Let a be a primitive element
of GF(n) such that {log, [o*™+V! —1]:1 < k < m} are all distinct modulo m + 1 and

non-zero modulo m 4+ 1. Then the code consisting of the blocks

{[0’ a(m+1)i’ a(m+1)(i+t)7 CY(m—i—l)(i-%—‘lt)’ e a(m+l)(i+(2m-—1)t)] c1=0,1,...,1— 1}
is an (n,w,2,1) OOC.

5.2 Construction 2 — Another (n,w,2,1) OOC

We now demonstrate another technique for constructing an (n, w, 2, 1) optical orthog-
onal code. The new technique is based on the approach of Hanani[13]. Codes derived from
Construction 2 have codeword weights equivalent to zero or one modulo four. Construc-
tion 2 is neither a generalization nor a special case of Construction 1; for each construction
one can “build” some codes for which it is impossible to build an equivalent code using
the other method. However, for some values of n and w the two constructions lead to

equivalent codes.

An (n,w,2,1) OOC for w =4m: Let n = w?t/2 + 1 be a prime number, where
w = 4m. Furthermore, assume that « is a primitive element of GF(n) such that all of the

following hold for some integer y, 1 <y <4mt —1:

o oMMty 1 =t fork=0,1,...,m—1;
o oMt _ ¥ =k for k=1,2,...,m;
o oMM 1 =™ fork=1,2,...,m;
o a¥(a*™t — 1) =% for k=1,2,...,m,
Here, the integers 29,21,y tm—1, J1, s Jms 15"+ Tm, and Sy, -, 8, are all distinct
modulo 4m. Then the blocks
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4me  y+4dmi  dmi+4mi  dmity44ams
{["™, a , , yeens

a%ﬁmqﬁHmidmmmJWWHm%:iZOJV.Wt_l}

Y

are the codewords of an (n,w,2,1) OOC.

An (n,w,2,1) OOC for w = 4m + 1: Let n = (w? — 1)¢/2 + 1 be a prime number,
where w = 4m + 1. Furthermore, assume that a is a primitive element of GF(n) such

that all of the following hold for some integer y, 1 <y < (4m + 2)t — 1:

o FUmEDIY 1 = o for k=0,1,...,m — 1;
o QFUmtNt v = ¥k for k=1,2,...,m;
o UMDt 1 = o for k=1,2,...,m;
o o¥(aFlimtDt _ 1) = o% for k=1,2,...,m,
Here, the integers y, 0,1, im1s J1,**»Jms> T1," 2 Tm, and s1,+- -, s, are all dis-

tinct modulo 4m + 2 and non-zero modulo 4m + 2. Then the blocks

{[0’a(4m+2)i, ay+(4m+2)i7 a(4m+2)t+(4m+2)i’a(4m+2)t+y+(4m+2)i L.

9 L]

O[(47%-&-2)(2m—1)t+(4m+2)i) a(4m+2)(2m——1)t+y+(4m+2)i)] c = 0, 1, - l}

are the codewords of an (n,w,2,1) OOC.

Example: Let n = 41 w = 4, and t = 5. Choose @ = 6 as the primitive ele-
ment of GF(41) and choose y = 3 and so 6Y —1 = 10 = 6%, 6 — ¥ = 29 = 67,
620 —1 = 39 = 6% and 6Y(6*° — 1) = 19 = 6° —ie., 4o = 8, j; = 7, 1, = 6,
and s; = 9. Furthermore, i, 51,71, 8, are distinct modulo 4. Then the code consists
of the blocks {[1,11, 30, 40], [12, 16, 25,29], [10, 13, 28, 31], [3, 4, 37, 38], [7, 18, 23, 34]} - i.e.,

the codewords are

[01000000000100000000000000000010000000001]

Xo

x; = [00000000000010001000000001000100000000000]
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[00000000001001000000000000001001000000000]

X2
X3 = [00011000000000OOOOOOOOOOOOOOOOOOOOOOO1100]
Xy = [00000001000000000010000100000000001000000].

Note that, from Theorem 2, ®(41,4,2,1) < 2-40/12 = 6.66, so we cannot say for sure

if this code is optimal; there may be a (41,4,2,1) code with six codewords.

Tables 1 and 2 show the parameters of some (n,w,2,1) OOC’s that can be constructed
using the approaches outlined above. Also included is the upper bound on ®(n,w,2,1)
derived in Theorem 2. Theorem 2 tells us it is impossible to construct an (n,w,2,1)
0O0C with more than 2(n — 1)/(w(w — 1)) codewords; the methods above tell us how to
construct (n,w,2,1) O0C’s with 2(n — 1)/w? codewords (for even w) as well as ones with
2(n — 1)/(w? — 1) codewords (for odd w).

These constructions also illustrate the point made in Section 2.2 that, for some block-
lengths, codes with A, # A, may be preferable to codes with equal constraints. Com-
paring an (n,w,1,1) code with an (n,w + 1,2,1) code, recall from Section 2.2 that the
performance figures of merit for the (n,w+1,2,1) code dominate those of the (n,w,1,1)
code. Yet we’ve just shown it is possible to construct an (n,w + 1,2,1) code with either
2(n — 1)/(w + 1)? codewords (for even w + 1) or 2(n — 1)/w(w + 2) codewords (for odd
w + 1); but Theorem 1 tells us it is impossible to construct an (n,w,1,1) code with more
than (n — 1)/(w(w — 1)) codewords. Therefore for w > 6 the (n,w + 1,2,1) codes offer
better performance and more codewords than any (n,w,1,1) code.

As a simple example, from Table 2 we see that it is possible to construct a (1801,9,2,1)
00C with 45 codewords. But to construct an (1801,8,1,1) code the Johnson bound tells

us it’s impossible to have more than 32 codewords.

5.3. Construction of an (n,w,1,1) OOC

In [14] Bose used balanced incomplete block design (BIBD) to design an (n,w,1,1)
OO0C for w = 3,4, and 5. Wilson generalized these results to arbitrary w in [12]. Hanani
also used BIBD (with different parameters) to construct an (n,6,1,1) in [13].

In the last two sections we have used similar approaches to construct (n,w,2,1) O0C’s.

While doing so, we were also able to generalize Hanani’s result to any w equivalent to two
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or three modulo four —i.e., we have constructed (n,w,1,1) OOC’s for w = 4m+2,4m+3.
The resulting codes meet the Johnson bound with equality and are thus optimal.
For completeness, we first present Wilson’s construction from [12]. These codes are

also optimal.

An (n,w,1,1) OOC for Odd w: Let w = 2m + 1 and choose n to be a prime
number such that n = w(w — 1)t + 1. Let « be a primitive element of GF(n) such that
{log,[@?™* — 1] : 1 < k < m} are all distinct modulo m. Then the code consisting of the
blocks

{[omi, rit?mt gmitdmt | gmitmit g0 — 1)

P

is an (n,w,1,1) OOC.

An (n,w,1,1) OOC for Even w: Let w = 2m and choose n to be a prime number
such that n = w(w—1)t+1. Let a be a primitive element of GF(n) such that {log_[a?™* —
1] :1 <k <m — 1} are all distinct modulo m and non-zero modulo m. Then the code

consisting of the blocks
{[0’ ami’ O/n,i—*-th’ ami+4mt, e ami+4m(m—1)t] = 07 1’ o ,t i 1}

is an (n,w,1,1) OOC.

The new construction follows. It is valid only for codeword weights that are equivalent
to two or three modulo four; so at first glance it may seem more restricted than Wilson’s
construction. However, for some blocklengths the new construction yields codes while
Wilson’s construction does not.

An (n,w,1,1) OOC for w = 4m + 2: Let n = w(w — 1)t + 1 be a prime number,
where w = 4m + 2. Furthermore, assume that « is a primitive root of GF(n) such that
all of the following hold for some integer y, 1 <y < (8m + 2)t — 1:

o oFBMIMY | — ik for k=0,1,...,m;

o oFBMIN _ v — ik for k=1,2,...,m;

o oA _ 1 — ok for k=1,2,...,m;
o (Pt 1) =% for k=1,2,...,m,
Here, the integers ig,%21,*,%m, J1,° " s Jms> T1,"* "y Tm, and 81, -+, 8, are all distinct

modulo 4m + 1. Then the blocks
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{[O{(le+1)i7 ay+(4m+1)i, a(8m+2)t+(4m+1)i7 a(8m+2)t+y+(4m+1)i .

3 k)

a(8m+2)2mt+(4m+1)i’ a(8m+2)2mt+y+(4m+1)i)] 15 =0, 1ot — l}

are the codewords of an (n,w,1,1) OOC.

An (n,w,1,1) OOC for w =4m + 3: Let n = w(w—1)¢t+1 be a prime number, where
w = 4m + 3. Furthermore, assume that « is a primitive root of GF(n) such that all of

the following hold for some integer y, 1 <y < (8m + 6)t — 1:

o By 1 — ok for k=0,1,...,m;
o oFBMIO _ oy — ik for k=1,2,...,m;
o oFBmIO 1 — "% for k=1,2,...,m;
o o¥(aFEHl _6) = o for k=1,2,...,m,
Here, the integers 1y, 40,71, * »%m, 15"+ Jms T1y" < 5 Tm, and S1,- -, 8m are all distinct

modulo 4m 4+ 3. Then the blocks

{0, a(4m+3)i’ay+(4m+3)i’a(8m+6)t+(4m+6)i’a(8m+6)t+y+(4m+3)i

Y bl

a(8m+6)2mt+(4m+3)i’ a(8m+6)2mt+y+(4m+3)i)] 1 =0,1, 1 — 1}
are the codewords of an (n,w,1,1) OOC.

Table 3 shows the parameters of some (n,w, 1,1) codes that can be constructed using
the above approach. We note again that for each code |C| = (n —1)/w(w — 1) and so the

Johnson bound is met with equality, meaning the codes are all optimal.

5.4. Construction of an (n,w,1,2) OOC

In Section 5.3 we presented four techniques for constructing optimal (n,w, 1, 1) codes.
In this section we demonstrate how we can use essentially the same techniques to construct
(n,w,1,2) codes with twice as many codewords as the (n,w,1,1) codes.

Let us consider only Wilson’s construction for odd weight codes; the extension to the

other three cases is straightforward. Specifically, let us construct a code using the same
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blocks that were used in the earlier construction, but extending the index 7 from 0 to

2t — 1 rather than from 0 to ¢t — 1; that is, consider the blocks

{[amz’ amz+2mt’ amz+4mt’ .

7ami+4m2t]:Z':O71’,_.,2'l—1}

where w = 2m+1, « is a primitive element of GF(n), n = w(w—1)t+1, and {log, [a>™* —

1] : 1 < k < m} are all distinct modulo m.

The claim is that this is an (n,w,1,2) OOC. Keeping in mind that o*(*~Y* = 1 and
a¥(=D42 = _1 it can be shown that the blocks corresponding to i =¢,1+1,...,2t — 1
are “coordinate reversed” images of the blocks corresponding to: = 0,2 =1,...,i = (—1.

That is, the code consists of the union of the following blocks:

mi . mi+2mt _ mit+4mi mi+dm3t) |, _
{[™, « , QY e ]:e=0,1,...,¢ -1},

P

and

{[_ami’ _ami+2mt mi+4mt _ami+4m2t} <y

—a ey :=0,1,...,t—1}.

?

So if x is a codeword from the first group with tx = [to,t1,...,%,_1] then there is a
codeword y from the second group with ty = [ty-1,...,%1,%0]. Clearly, the coordinate
reversal does not change the auto-correlation so the resulting code still has A\, = 1. Fur-
thermore, the inner-product of a (possibly shifted) codeword and its coordinate-reversed
“image” will be two, while the inner product of any codeword and any codeword other
than its reversed image will be at most one. Therefore, the resulting code is an (n,w, 1,2)

00C.

Example: Let n = 19 and w = 3; then using Wilson’s construction we can design an

optimal (19,3,1,1) code with three codewords:

Xo = [0100000100010000000]

I

[0011000000000010000]

X1

I

X2 [0000101001000000000]
If we now take the coordinate-reversed images of these codewords we obtain

x3 = [0000000100010000010]
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x; = [0000100000000001100]
x5 = [0000000001001010000]

and so C = {Xo,Xy,...,X5} is a (19,3,1,2) code.

6. Summary

In this paper we derived new bounds on the number of users that can be supported
on an optical network employing code division multiple access with binary signature se-
quences; in addition we presented a number of new methods for designing codes with good
auto- and cross-correlation properties. Unlike previous work in this area, we considered
the possibility that the auto- and cross-correlation constraints might not be identical;
indeed, the bounds and the constructions suggest that it may sometimes be preferable
to use such “asymmetric” OOC’s. Among the constructions presented, we note that the
(n,w,2,1) codes are near-optimal; their cardinality is 2(n — 1)/w? and we have demon-
strated that it’s impossible to get more than 2(n — 1)/(w® — w) codewords

We also noted the relationship between OOC’s with unequal constraints and constant-
weight unequal error protection codes with two levels of protection; the lower bound we
derived for OOC’s, when applied to UEP codes, was shown to be tighter than the best

previously known bound.
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Appendix A

Lemma 4: Let x € C, where C is an (n,w, A + m, \) optical orthogonal code. (Assume

w
A
|Mx,l\l Z — S

m > 0 is an integer.) Then

Proof: Let
I={i=(loyt1,..,0r-1,J):0< i <i1 <...<ir; <w-—2,0<j <w-—1}.
Define a function f:Z — Z* by

f([io,il,...,i,\_l])é [f: tiwke s lzl iwk, ’ZQ Liwkss """ uz_:l Ljuks_y]
ko=0 ey =ig+1 ky=i1+1 kaoq=ir_p+1
where tx = [to, t1,.. ., tw-1].

So My, is exactly the image of f(); to prove the lemma it is sufficient to show that
f(-) maps at most m + X elements of Z to the same element of My y; then we will have
shown |Mx | > |Z|/(m+ A) = w(w;1>/(/\ + m).

Now define a function g : T — Z such that ¢(z) is the sum of the components of f(z) -
i.e., if f(2) = [ao,a1,...,ar_1] then g(2) = ap + a; + ... + ar_;. Obviously, if f0) = f(&)
then g(z) = g(¢) so to prove the lemma it is sufficient to show that ¢(-) maps at most
m+ A elements of 7 to the same integer. For each i € 7 the integer g(z) is a component of

Ry, and we know no component of Ex can be repeated more than A +m times by Lemma

1. Therefore, the function g¢(-) is (at most) (m + A)-to-one and the Lemma holds. QED.

Appendix B

We now prove that the number A in Theorem 4 is an upper bound on the number of
binary n-tuples of weight w with auto-correlation exceeding A,,.

Associate the w-set S = {s1,59,...,5,} with the binary n-tuple containing ones in
positions sy, sg,. .. S, and zeroes everywhere else. We wish to (over) count the number of

w-sets associated with n-tuples that violate the auto-correlation constraint.
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Fix § to be a positive integer. Then a “chain” {ig,71,- -, 1.} is a set of integers modulo
n where i; = ;.1 + 6 for 1 £ j < z; the length of this chain is 1 4+ 2. By convention,
a cycle (i.e., 19 = t; + §) is considered a chain of length  + 1 with an arbitrary starting
point. A maximal chain is one not contained in another chain.

Now suppose the w-set S = {s1,82, -, 8, } can be partitioned into ¢ maximal chains

whose lengths are 1 + 21,1 + z2,...,1 4+ z,. Then clearly

C
w = c+in.
=1

Realize that the w-set S is specified exactly by:

1. The value é upon which the partitioning chains are based;

2. The number ¢ of maximal chains into which it can be partitioned;

3. The lengths of the maximal chains — i.e., zy, z9,..., 2

4. The chain “heads” - i.e., the starting point of each chain.

The auto-correlation of the n-tuple associated with S after é cyclic shifts is w—c+ N,
where N is the number of chains that are cycles. This is because a cycle of length z; + 1
adds z; + 1 to the auto-correlation, whereas a non-cyclic chain of length x; 4+ 1 adds only
x;. Our approach, therefore, will be to count the number of w-sets with the property that
w—c+ N > A in doing so we will let § vary from 1 to [n/2]|. (For § > n/2 we shall
have already counted the associated w-sets with §' =n —4.)

Once n,w, and 6 are fixed the only way a chain can be a cycle is il §|kn for some
integer k. Furthermore, if §|kn but 6 /n then there is some other value ¢’ such that
8'|6 and 8'|n and the cycle associated with ¢ is identical to a cycle associated with &
Therefore, in looking for cycles we need only look at values of § that divide n; when § fn
we will not find any cycles that have not already heen accounted for.

So how many cycles can there be 7 Each cycle “uses up” n/é of the w ones; therefore
there can be anywhere from zero to |wé/n| cycles —ie., 0 < N < [wé/n].

So, suppose we’ve fixed n,w, d, and N. We’re now going to specify the chains. How
many ways are there to pick ¢ non-negative integers a1, zs, ..., z, such that z; +x,+...+
z.=w—cand w—c+ N > A,. Note that ¢ must be at least [wé/n]; this is because the

smallest number of chains is caused by making each chain as large as possible, and the
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largest chain is a cycle. Thus ¢ is smallest when there are [wé/n] cycles and (possibly)

one “leftover” non-cyclic chain for a total of [wé/n] chains.

<

N) ways to pick the

So now suppose we’ve fixed n,w, 6, N, and ¢. Then there are (

chains that are cycles. Furthermore once we’ve picked those N cycles we’ve fixed exactly

N of the z;’s to be equal to (n/§) — 1; thus it remains to pick the remaining ¢ — N z;’s

to add up to w — ¢ — N((n/8) — 1). For ¢ > N there are (inN”/_‘Sl—l) ways to pick these
¢ — N z;’s. Note that the term A(N — wd/n) is included to count the case where there
are ¢ = N = wd/n chains and they are all cycles. For the case ¢ = N we must have
¢ = N = wd/n, since all of the 1I’s are used up in chains, and in this case the question of
picking the “remaining” z;’s becomes vacuous.

The last terms in the first sum are used to count the number of ways to pick the heads
of the chains. We know that any cycle must begin in one of the first § positions; we know
furthermore that the ¢ — N non-cyclic chains may begin in any of the n — Nn/é positions
not taken up by cycles.

The second sum counts the number of w-sets violating the auto-correlation constraint

when 6 /n and so there can be no cycles. There are (‘é’__ll

) ways to pick these ¢ z;’s to
add up to w — ¢ and (Z) ways to pick ¢ chain heads.

Therefore, A represents an upper bound on the number of binary n-tuples that violate

an auto-correlation constraint of A,. QED.

Appendix C

Lemma 6: Let A\, and A. be positive integers, and let p be a positive constant such that

p < min{A./(2A, +3),A:/(2A: + 3)}. Then

lim ®(n, [an?], A., A;) = oo,

n—oo
for any positive real .
Proof: We will demonstrate that for n prime the lower bound in Theorem 3 grows
unbounded with increasing n. For n prime the bound becomes
O(n,w, A\, As) > @—_—A
h Al a < — B 2
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where

and

r= 2 (0)

Let w = |an?|. Then for n sufficiently large — more precisely, for n such that 0 <

an? — 1 < n - the following inequality holds:

n n¥ a2n221
SIS
w w! n—anf+1
nw
= —+ (low order terms),
w!

where we’ve made use of the fact that p < 1/2 by assumption. Similarly, for n sufficiently

large we can show that

w Aa
A< ™ e -rg_
— w! 20, + D)V
and
1

B < w—Ac,  Ac+2 .
= I S DI 1 1)

Since p < A./(2A, +3), A is a low order term compared with n*/w!. Combining the

numerator and denominator,we have

nte(As + 1)!

w2)\c+3

®(n, lan®], Az, X)) >

+ (low order terms)

S pre=p(2Ae+3) (A +1)!

> PR + (low order terms).

Since p < A;/(2A; + 3) we obtain the desired result. QED.
Lemma 7: Let p, ¢, and r be constants, 0 < p,q,r < 1. Then if p < 1/2,
lim &(n, Lan?), |fn?], |yn"]) = oo,
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for any positive real «, # and ~.
Proof: Define A\,(n) = |An?]| and A.(n) = |yn"]. Then

lim min{A,(n)/(2A.(n) + 3), Ac(n)/(2A:(n) + 3)} = 1/2.

=00

Noting this, the result can be proved using an approach essentially identical to that used

in proving Lemma 6. If p < 1/2 then for n sufficiently large p < min{\,(n)/(2A,(n) +
3), Ac(n)/(2A:(n) +3)} and the bounds employed in the proof of Lemma 6 can be invoked
to obtain the desired result. QED.
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Bound Bound Bound Bound
n |wl|C|]| from n |w]||C|]| from n |w||C|]| from n |w]|l|C|| from
Thm. 2 Thm. 2 Thm. 2 Thm. 2
5 13| 1 1 17 14| 2 2 131511 1 19 161 1 1
13 131 3 4 31419 12 37 15| 3 3 199 | 6 | 11 13
29 3| 7 9 89 {4 |11 14 61 [ 51 5 6 487 | 6 | 27 32
37 {319 12 97 | 4 | 12 16 731516 6 829 | 6 | 46 55
53 | 3 {13 17 193 | 4 | 24 32 97 | 5| 8 9 883 | 6 | 49 58
61 [ 3|15 20 233 | 4 | 29 38 18115 |15 18 * | % | ok *
101 | 3 | 25 33 241 | 4 | 30 40 193 | 5| 16 19 * | ok | % *
109 | 3 | 27 36 281 1 4| 35 46 24115 | 20 24 * | % | % *
149 | 3 | 37 49 401 { 4 | 50 66 313 | 5| 26 31 S I *
157 1 3 | 39 52 S T * 337 | 5| 28 33 * LK |k *
173 | 3 | 43 57 * | % | % * 349 | 5| 29 34 S R *
1811 3 | 45 60 * | ok |k * 3731 5 | 31 37 * |k | ok *
197 | 3 | 49 65 * | ok | * 409 | 5 | 34 40 | ok |k *
* * | % * * * | % * 421 1 5 | 35 42 * * | % *
* * * * | ok | % * 5411 5 | 45 54 * * | ok *
* * * * * [ * * 577 | 5 | 48 57 * * | ok *

Table 1: The cardinality of (n,w,2,1) OOC’s constructed using the technique of Section

3.1,

32




Bound Bound Bound Bound
n Jw!|C|]| from n |wl|C|| from n |w|]|C|| from n |w|]|C]| from
Thm. 2 Thm. 2 Thm. 2 Thm. 2

41 | 4] 5 6 13 |51 1 641 | 8 | 20 22 281 {9 | 7 7
3149 12 37 | 5| 3 3 929 | 8 | 29 33 401 {9 | 10 11
89 [ 4|11 14 61 | 5| 5 6 1217 | 8 | 38 43 521 | 9 | 13 14
97 | 4 | 12 16 3 [ 5| 6 7 1409 | 8 | 44 50 601 {9 ]| 15 16
1131 4 | 14 18 97 | 5| 8 9 1601 | 8 | 50 57 761 |9 |19 21
13 4 | 17 22 109151 9 10 * * | % * 881 |9 | 22 24
193 | 4 | 24 32 157 | 5 | 13 15 * * | % * 1201 | 9 | 30 33
2331 4|29 38 181 | 5| 15 18 * * | % * 1361 | 9 | 34 37
241 | 4 | 30 40 193 | 5 | 16 19 * * | % * 1481 | 9 | 37 41
257 1 4| 32 42 229 1 5 | 19 22 * * | x * 1601 | 9 | 40 44
281 | 4| 35 46 241 1 5| 20 24 * * | % * 1721 | 9 | 43 47
313 |4 | 39 52 277 1 5 | 23 27 * * | * * 1801 | 9 | 45 50
337 | 4 | 42 56 3131 5} 26 31 * * | % * * * | x *
353 | 4 | 44 58 337 5| 28 33 * x| % * * k| % *
401 | 4 | 50 66 349 | 5| 29 34 * * | % * * * |k *
* | x| % * 37131 5| 31 * * * | * * * * | *
* [ x| % * 397 | 5 | 33 * * * | * * * * | ok *
* * | * 400 | 5 | 34 * * * | * * * * | % *
* * | % * 421 [ 5 | 35 * * * | * * * * | ok *
* * | % * 541 | 5 | 45 * * * | % * * T *
* * * * 5771 5 1 48 * * * * * * * * *

Table 2: The cardinality of (n,w,2,1) OOC’s constructed using the technique of Section

5.2.
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n jw|lClf n [w||C]]| n |w]|]|C]
7T 131 31 |61 337 | T | 8
13 3] 2 151 | 6| 5 379 |71 9
19 | 3| 3 181 [ 6| 6 421 | 7 | 10
31 |3 5 211 [ 6| 7 463 | 7 | 11
37 13| 6 241 [ 6 | 8 547 | 7 | 13
43 | 3| 7 271 161 9 631 {7 |15
61 {3110 331 {6 |11 ]| 673 | 7 |16
67 | 3 | 11 | 421 | 6 | 14 | 967 | 7 | 23
73 13112 ] 541 | 6 [ 18 || 1009 | 7 | 24
79 3113 | 571 | 6 [ 19 || 1051 | 7 | 25
97 |3 116 | 601 | 6 |20 | 1093 |7 | 26
103 (3 |17 631 | 6|21 || 1303 |7 |31
109 | 3 |18 ) 661 | 6 | 22 || 1429 | 7 | 34
12713 |21 ) 691 | 6 |23 | 1471 |7 | 35
139 | 3 | 23 751 | 6 | 25 || 1723 | 7 | 41
15113 | 25| 811 | 6|27 {1933 | 7 | 46
157 [ 3 |26 | 991 | 6 | 33 || 2017 | 7 | 48
163 | 3|27 || 1021 | 6 | 34 * * | x
181 | 3 (30 ||1051]6 | 35 * * | %
193 13 |32 11716 | 39 * * | x
199 | 3 | 33 {1201 | 6 | 40 * * | ok
211 1 3 135 ]/ 1231 | 6 | 41 * * | x
223 | 3 | 37 || 1291 | 6 | 43 * * | %
229 | 3 | 38 || 1321 | 6 | 44 * * | %
241 | 3 | 40 || 1381 | 6 | 46 * * | %
2711 3 | 45 || 1471 | 6 | 49 * * | ok
277 | 3 | 46 * * | % * * | ok
283 | 3 | 47 * * |k * * | %

Table 3: The cardinality of (n,w,1,1) OOC’s constructed using the technique of Section
5.3. All codes are optimal
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60 — ——— Lower bound from Theorem 4
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Figure 1: Lower bounds on the number of message bits that can be protected against two
errors while |log, n| bit are protected against single errors. The bound from Theorem 4
assumes constant weight codewords with w = |n/2].
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