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1. INTRODUCTION
Several scientific and technological applications require
short optical pulses with large peak power [1]. A number
of practical mode-locked femtosecond oscillators are avail-
able, but scaling from nanojoule pulse energies to milli-
joules and above generally requires optical amplification
[2]. The chirped-pulse amplification technique [3], which
avoids the undesired effects associated with large peak
power by first stretching the optical pulse and then re-
compressing it after the amplification stage, made ampli-
fication possible over 9 orders of magnitude while en-
abling high-pulse energies.

Solid-state optical amplifiers have played a major role
in the development of high-power laser systems [1,2].
However a limitation of solid-state laser amplifiers lies in
the fact that their gain spectrum is determined by a par-
ticular atomic transition. This determines the operating
wavelength and limits the amplification bandwidth.

Optical parametric amplifiers (OPAs) provide a solu-
tion to this problem. OPAs allow a wider choice of pump
and signal wavelengths. Their large single-pass gain
avoids the need for complex multipass or regenerative
configurations. Moreover, parametric amplifiers do not
rely on optical absorption as a pumping mechanism, thus
eliminating the problem of thermal lensing common to
high average-power systems. Their use as femtosecond
pulse amplifiers [4–6] and their use in chirped-pulse am-
plification systems [7] has been successfully demon-
strated.

There are two techniques commonly used to broaden
the amplification bandwidth of OPAs. The first one is to
operate at degeneracy, where the signal and idler wave-
lengths are equal. In this case the group velocities of the
waves are matched, which leads to a broad amplification
bandwidth. Chirped-pulse amplification systems using
this technique are described in [8–10]. A drawback of op-

erating at degeneracy is that the wavelength required
from the pump laser is fixed once the center of the gain
spectrum is chosen, precluding the use of convenient
pump lasers in some applications. Another disadvantage
is that the bandwidth, although larger than in a nonde-
generate case, remains limited by the dispersion of the
material.

The second bandwidth-broadening technique involves a
noncollinear geometry [11]. The input signal beam is dis-
persed angularly using diffraction gratings in order to en-
sure simultaneously phase matching and group-velocity
matching between the signal and idler waves. Amplifica-
tion of pulses as short as 5 fs was achieved using this
method [12,13].

A less complicated approach, collinear in nature, is to
use chirped quasi-phase-matching (QPM) gratings in or-
der to build broadband OPAs. This is the technique ex-
plored in this paper.

The QPM technique consists of a periodic reversal of
the sign of the nonlinear coefficient in order to compen-
sate for the accumulated phase mismatch [14]. Since the
period of the sign reversal is a controlled parameter, QPM
devices operate equally well over a range of wavelengths.
QPM allows more freedom over the choice of polarization
of the waves than birefringent phase matching, enabling
the use of the largest component of the nonlinear suscep-
tibility tensor. For these reasons, QPM gratings have be-
come a widely used alternative to traditional birefringent
phase matching. In particular, femtosecond-pulse amplifi-
ers based on QPM materials have been successfully dem-
onstrated [15–17].

In addition to the benefits mentioned above, QPM of-
fers a distinct advantage over conventional nonlinear
crystals. It allows the engineering of nonuniform phase-
matching profiles, which can be used to obtain desirable
and highly tunable gain and phase spectra. For instance,
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chirped QPM gratings have been used to broaden the
second-harmonic acceptance bandwidth [18] and to ma-
nipulate the phase of the generated wave in order to
achieve pulse compression [19–23]. Previous work in the
context of OPA includes the calculation of the single-pass
gain [24], the use of aperiodic QPM gratings in optical
parametric oscillators [25], and the proposal of a tandem-
grating design for the simultaneous control of the gain
and group delay [26].

This paper is an investigation of the properties of
chirped QPM gratings used as broadband OPAs. The easi-
est model to describe OPAs is the Rosenbluth model [27],
which is presented in Section 2. In Section 3, we give ex-
pressions for the amplitude and phase response of any
slow-varying QPM grating profile and explore a variety of
designs in Section 4. We look at the linear phase-
matching profile in depth. It is the most important in
practice because it allows one to achieve an essentially
constant gain over a wide bandwidth. We also consider
apodization techniques to reduce the gain and phase
ripple. We then explore the effect of a sinusoidal modula-
tion of the grating profile, which provides selective ampli-
fication at certain frequencies. Finally, we describe a
tandem-grating design that achieves constant gain and
constant group delay across the spectrum. We also give a
short discussion of parametric amplification in the low-
gain regime, showing the connection with the work done
in the context of the second-harmonic generation (SHG)
and the difference-frequency generation (DFG) [22,23].

In this paper, the analysis is carried out in the fre-
quency domain. A companion paper [28] investigates the
evolution of the amplified pulses in time.

2. OPTICAL PARAMETRIC AMPLIFICATION
IN NONUNIFORM QUASI-PHASE-
MATCHING GRATINGS

A diagram illustrating OPA in nonuniform QPM gratings
is shown in Fig. 1. We consider three copropagating
waves, the pump, the signal, and the idler, with frequen-
cies �p, �s, and �i, respectively. For their coupling to be
most efficient, these three waves must satisfy the
frequency-matching condition �p=�s+�i. We denote by
����s−�s0 the frequency shift of the signal wave with
respect to a nominal frequency �s0 and consider the pump
frequency fixed for the present discussion. Due to the dis-
persive properties of the material, the three wavenum-
bers will not necessarily be matched [29]. We define
�k�����kp−ks−ki to be the intrinsic k-vector mismatch.
In ��2� materials, perfect wave vector matching also maxi-
mizes the parametric gain.

The contribution of the QPM grating cancels most of
the intrinsic wave vector mismatch. Here we consider
rather general grating profiles. The only requirement that
we impose on the grating period ��z� is that it be a piece-
wise slow-varying function of position. We define Kg�z�

=2� /��z� as the associated grating wavenumber. The
overall wavenumber mismatch, �, is the difference be-
tween the intrinsic mismatch and the potentially spa-
tially nonuniform QPM grating:

��z,��� = �k���� − Kg�z�. �1�

The chirp rate ���z� is the rate of change of the wavenum-
ber mismatch in the axial direction:

���z� =
���z,���

�z
= −

dKg�z�

dz
. �2�

We define the perfect phase-match point (PPMP) to be
at the position zpm where ��zpm ,���=0. The usual treat-
ment of OPAs makes use of the slow-varying envelope ap-
proximation [29,30]. The frequency-domain signal and
idler envelope functions Es,i�z , ±��� are obtained from the
Fourier-domain representations of the electric fields

Ẽs,i�z ,�s,i� by extracting their fast carrier phases, namely,

Ẽs,i�z ,�s,i�=Es,i�z , ±���exp�iks,i��s,i�z�. The wavenumbers
ks,i��s,i� introduced here are frequency-dependent; they
account for material dispersion. [The conventional enve-
lope description uses constant k-vectors for the envelopes,

e.g., Ẽ�z ,�s,i�=E�z , ±���exp�iks,iz�. The relationship be-
tween these two envelopes is discussed in more detail in
[22].] We normalize the optical fields to make them pro-
portional to the photon fluxes by introducing As,i

= �ns,i /�s,i�
1/2Es,i, where ns,i are the refractive indices at

the respective frequencies of the two waves. We treat the
pump as an undepleted, monochromatic plane wave. The
resulting steady-state rate equations for the spatial evo-
lution of a pair of signal and idler frequency components
are

dAs

dz
= i��z,���A

i
*ei	�z,���, �3�

dA
i
*

dz
= − i��z,���Ase

−i	�z,���. �4�

The coupling coefficient is ��z ,���
= ��s�i /nsni�

1/2�deff�z� /c� �Ep�, where deff is the amplitude
of the effective nonlinear coefficient of the QPM grating
(i.e., the amplitude of the Fourier coefficient of the spa-
tially modulated structure), �Ep� is the magnitude of the
pump wave electric field, and c is the speed of light in
vacuum. We allow the coupling coefficient � to vary slowly
with position and frequency. The phase mismatch accu-
mulated between the three waves is

	�z,��� =�
z0

z

��z�,���dz�, �5�

where z0 is the position of the input plane of the grating.
Finally, we will in general allow both signal and idler
waves to be incident on the grating, with amplitudes
As�z0 ,���=As0 and Ai�z0 ,−���=Ai0, respectively.

With the change of variables As,i=as,i�
1/2ei	/2, we com-

bine the coupled-mode Eqs. (3) and (4) to eliminate one of
the fields, leading to a second-order linear differential
equation in standard form [31]:Fig. 1. Illustration of OPA in a chirped QPM grating.

464 J. Opt. Soc. Am. B/Vol. 25, No. 4 /April 2008 Charbonneau-Lefort et al.



d2as,i

dz2
+ Q�z�as,i = 0, �6�

where

Q�z� = ��

2
−

i

2

��

�
	2

− �2 +
i��

2
+

1

2
���

�
	�

, �7�

and where prime denotes differentiation with respect to z.
The solutions to Eq. (6) will have an oscillatory charac-

ter when Re�Q�
0 and will be exponentials when Re�Q�
�0. The two regimes are separated by the turning points,
given by the condition 1/2 �� � 
� (here we assume that
�� /� is small and can be neglected). Located on either side
of the PPMP, the turning points define the limits of the
amplification region. A typical grating profile ��z ,�� is
shown in Fig. 2, together with the location of the PPMP
and the two turning points, which define the extent of the
amplification region.

3. PRACTICAL FORMULAS FOR OPTICAL
PARAMETRIC AMPLIFICATION
DESIGN

A. Wentzel–Kramers–Brillouin Solution
We use the WKB formalism and notation developed by
Heading [32]. In this notation, the end points of the phase
integrals as well as the order of dominance of the solu-
tions are easily conveyed. We set the phase reference level
at one of the complex turning points, where the function
Q vanishes. Two such turning points exist, ztp1 and ztp2,
located in the complex plane on the left- and right-hand
sides of the PPMP, respectively (see Appendix B, Fig. 11).
The general WKB solutions using the left-hand-side turn-
ing point ztp1 as the phase reference level are written as

�ztp1,z� � Q−1/4�z�exp�i�
ztp1

z

Q1/2�z��dz�	 , �8�

�z,ztp1� � Q−1/4�z�exp�i�
z

ztp1

Q1/2�z��dz�	 . �9�

A linear combination of these two expressions defines ap-
proximate solutions that are valid away from the turning
points. The “complex WKB method” consists of finding the
linear combination of the general solutions that satisfy

the boundary conditions in a given region and then in ex-
tending this solution to the entire complex plane by find-
ing the coefficients that ensure continuity (asymptoti-
cally) between adjacent regions [32–34]. The details of the
calculation are shown in Appendix B and C; here we only
state the result. The signal at the end of the grating zL is

As�zL� 
 ���zL�

��z0��
1/2

ei	�zL�/2�C+ − iC−�i�ztp2,ztp1���zL,ztp2�

− i�ztp2,zL��, �10�

with

C+ =
1

�ztp1,z0���1 +
�2�z0�

�2�z0�
	As0 −

��z0�

��z0�
A

i0
* � , �11�

C− =
1

�z0,ztp1��−
�2�z0�

�2�z0�
As0 +

��z0�

��z0�
A

i0
* � , �12�

�ztp2,ztp1� � exp�i�
ztp2

ztp1

Q1/2�z�dz	 . �13�

As mentioned before, z0 is the position of the input plane
and ztp1 and ztp2 are the turning points such that
Q�ztp1,2�=0. The frequency argument has been sup-
pressed to simplify the notation.

The factor C+− iC− together with the phase term ei	/2

represent the contribution of the portion of grating lo-
cated before the amplification region where the waves
propagate, accumulate a relative delay and are combined
before entering the amplification region. The factor
i�ztp2 ,ztp1� is the contribution from the amplification re-
gion where the waves grow with little phase accumula-
tion. Propagation over the remaining portion of the grat-
ing is given by �zL ,ztp2�− i�ztp2 ,zL�.

B. Design Formulas for a Single PPMP
We can simplify Eq. (10) further by retaining only its
most significant contributions. An adequate approxima-
tion (derived in Appendix F) is given by

As 
 R�As0 + iA
i0
* ei��z0,zpm��eg�ztp1,ztp2�, �14�

with R= ���zL� /��z0��1/2. The phase integral is

��z0,zpm� ��
z0

zpm

��z�dz, �15�

and the gain integral is

g�ztp1,ztp2� ��
ztp1

ztp2

��2 − �2/4�1/2dz, �16�

where the integration is carried out between the two
turning points ztp1 and ztp2.

Equation (14) is the central result of this paper. It is
the basis of the design procedure explained below. It will
be used repeatedly in several examples.

In a majority of cases we can linearize the grating pro-
file around the PPMP. The amplification factor G=eg then
becomes

Fig. 2. Nonuniform grating profile showing the PPMP, the turn-
ing points, and the nature of the solutions in each region.
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Glinear = exp���2�zpm�

����zpm��
	 , �17�

where the chirp rate and the coupling coefficient are
evaluated at the PPMP. This is the Rosenbluth amplifica-
tion formula [27], an important result first obtained in the
context of laser–plasma interactions. For polynomial pro-
files the gain is given in terms of beta functions [24]. In
particular, a case that we will be using later is the cubic
profile �=���z−zpm�3, for which

Gcubic = exp��2�4�zpm�

����
	1/3�

−1

1

1 − u6du� , �18�

with �−1
1 �1−u6�1/2du= 1

3� 1
6 , 3

2
�
1.82.

C. Design Formulas for Multiple PPMPs
When a profile contains multiple PPMPs, the output of
each monotonic segment becomes the input of the next.
This situation is illustrated in Fig. 3.

A subtlety arises because the phase mismatch at the in-
put of a given segment is not zero but results from the
phase accumulation over the previous segments. This
problem can be solved by absorbing the accumulated

phase into the fields, i.e., letting As,i
�j� =Bs,i

�j�ei	�j�/2, where the
superscripts refer to the segment number, and 	�j�

��
z

0
�1�

z0
�j�

��z�dz is the phase mismatch accumulated before

segment j. Then the new fields obey the coupled-mode

Eqs. (3) and (4) with initial conditions Bs,i0
�j� =As,i0

�j� e−i	�j�/2,
and we can use the results derived above. Consequently,
the contribution of a segment j can be written

As
�j� = R�j��As0

�j� + iA
i0

�j�*ei��z0
�1�

,zpm
�j� ��eg�ztp1

�j�
,ztp2

�j� �, �19�

Ai
�j� = R�j��Ai0

�j� + iA
s0

�j�*ei��z0
�1�

,zpm
�j� ��eg�ztp1

�j�
,ztp2

�j� �. �20�

In the case of periodic profiles, As0
�j�=As

�j−1�, Ai0
�j�=Ai

�j−1�.
However, when multiple gratings are used in a cascaded
configuration this is not necessarily the case. A typical ex-
ample is the tandem configuration discussed in Subsec-
tion 4.E.

4. ANALYSIS OF VARIOUS GRATING
PROFILES

This section illustrates the engineering of chirped grat-
ings. We first review the well-known case of a uniform

QPM grating. Then, we examine the linear profile, which
essentially yields constant gain over a large bandwidth,
and we also examine ways of eliminating the ripple affect-
ing the spectrum. Then, as an example of nonuniform
chirp rate we discuss a sinusoidal modulation superposed
onto a linear ramp providing enhanced amplification at
selected frequencies. Finally, we examine a tandem de-
sign for simultaneous gain and group delay control.

A. Uniform Profile
In the case of a uniform QPM grating, there are no turn-
ing points since the wave vector mismatch � is constant,
and as a consequence the nature of the solutions (i.e., real
or complex exponentials) remains unchanged throughout
the medium. The WKB analysis developed herein does
not apply in this simple case.

When the wave vector mismatch � and the coupling co-
efficient � are constant, the coupled Eqs. (3) and (4) can be
solved exactly [29,30]:

As�zL� = As0ei�L/2�cosh �L −
i�

2�
sinh �L�

+ i
�

�
A

i0
* ei�L/2 sinh �L, �21�

Ai�zL� = Ai0ei�L/2�cosh �L −
i�

2�
sinh �L�

+ i
�

�
A

s0
* ei�L/2 sinh �L, �22�

where L=zL−z0 is the length of the grating and

� =�2 − ��

2
	2

�23�

is the growth rate in the presence of constant wave vector
mismatch. With input at the signal wave only and in the
large-gain regime ��L≫1�, the amplitudes of the waves
are approximately

�As,i�zL�� 
 As0

�

2�
e�L. �24�

The peak gain, achieved when �=0, is

Guniform =
1

2
e�L. �25�

The gain increases exponentially with the length of the
device. The FWHM bandwidth is reached when the wave
vector mismatch is equal to

�FWMH = ±
2

L
�2L2 − �ln 2�2. �26�

The amplification bandwidth takes a simple form if we
neglect group-velocity dispersion at the signal and idler
wavelengths and assume off-degenerate operation. In this
case, the intrinsic wave vector mismatch isFig. 3. Grating profile with multiple PPMPs.
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�k���� = kp − ks − ki


 kp − ks0 −� �k

��
�

�s0

�� − ki0 +� �k

��
�

�i0

��

= kp − ks0 − ki0 + � 1

vs

−
1

vi
	��, �27�

where ks0 and ki0 are the signal and idler wave vectors at
the nominal frequencies and vs,i=�� /�k��s0,i0

are the group
velocities. The grating wave vector is equal to Kg=kp

−ks0−ki0 (by definition of the nominal frequencies), so
that the overall mismatch, given by Eq. (1), is simply

����� = � 1

vs

−
1

vi
	��. �28�

We define the group-velocity mismatch parameter, �v, as

1

�v
�

1

vs

−
1

vi

. �29�

Substituting into Eq. (26), we find the following expres-
sion for the FWHM bandwidth:

��uniform =
4��v�

L
�2L2 − �ln 2�2 
 4��v��, �30�

where the approximation is valid in the large-gain re-
gime. Therefore the bandwidth of a uniform QPM grating
in the high-gain limit is essentially independent of the
grating length. It depends only on the strength of the cou-
pling coefficient and on the dispersive properties of the
material.

B. Linear Profile for Broadband Amplification

1. Application of the Design Formula
The most basic chirped QPM grating profile is the linear
chirp. We consider an input signal wave only, as this is
the most common situation in practice and let the idler
develop from the interaction. For simplicity, we neglect
group-velocity dispersion at the signal and idler wave-
lengths so that the phase mismatch varies linearly with
frequency. (The extension to higher-order dispersion is
straightforward if somewhat more tedious.) The total
wave vector mismatch, Eq. (1), is given by

��z,��� = ���z − zpm0� −
��

�v
, �31�

where �� is the constant chirp rate and zpm0 is the posi-
tion of the PPMP at the nominal frequency. As the input
frequency is varied, the PPMP is shifted linearly with fre-
quency according to

zpm = zpm0 +
��

���v
. �32�

The mismatch then takes the simple form

� = ���z − zpm�. �33�

The two turning points are located at a distance given by
2� / ���� on each side of the PPMP; therefore the length of
the amplification region is

Lg =
4�

����
. �34�

The present approximate treatment is valid for gratings
for which L≫Lg. If this condition is satisfied, then the
dephasing effects due to the chirp of the grating dominate
the behavior of the device. Conversely, if L≪Lg, then the
grating is essentially uniform.

The limits of the amplification spectrum are reached
when the frequency shift results in one of the turning
points being at the edge of the grating. Therefore the am-
plification bandwidth is

��chirped = ����v��L − Lg�. �35�

As expected, the bandwidth is proportional to the product
of the chirp rate and the grating length, i.e., to the range
of grating k-vectors in the device. The bandwidth takes
this simple form when the group-velocity dispersion of the
material can be neglected. Otherwise, higher dispersive
orders have to be included in Eq. (31), and the bandwidth
may have to be calculated directly from the dispersion re-
lation, as discussed in [26].

The application of Eq. (14) for each wave gives

As = As0e��2/����, �36�

Ai = iA
s0
* e��2/����e−i���zpm − z0�2/2. �37�

Both waves experience the constant amplitude gain given
by the Rosenbluth gain formula:

GRosenbluth = e��2����/����. �38�

However, they differ in their phases. While the signal ex-
periences negligible phase shift, the idler accumulates a
quadratic phase corresponding to a time delay (with re-
spect to a reference traveling at the idler velocity) of

�i =
zpm − z0

�v
. �39�

Since this delay is linear itself in the input frequency
[through its dependence on zpm����], the idler experiences
group delay dispersion, the magnitude of which depends
on the chirp rate. Alternatively, the idler group delay with
respect to the corresponding signal wave Fourier compo-
nent is

�i−s = −
zL − zpm

�v
. �40�

It is important to keep in mind that these phases rep-
resent the contribution from the grating only; the disper-
sive properties of the material must be considered sepa-
rately. They are accounted for by the carrier phase ks,iz

−�s,it, which must be added to the envelopes in order to
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recover the Fourier representation of the fields. Material
dispersion is in fact buried in the wave vectors ks,i

=�s,in��s,i� /c.

2. Comparison with Wentzel–Kramers–Brillouin Solution
The approximate design formulas lead to simple expres-
sions for the gain, bandwidth, and phase. It is natural to
expect that this simplicity comes at the price of a loss of
accuracy. The accuracy of our expressions can be verified
by comparing it with the fuller WKB and numerical solu-
tions.

The WKB solution, Eq. (10), is valid for general grating
profiles. In Appendix E, we obtain an explicit expression
in the special case of a linear profile [see Eq. (E7)]. The
spatial evolution of the waves is plotted in Fig. 12 along
with the numerical solution. The underlying assumptions
behind the WKB solution are also discussed there.

Figure 4 compares the gain spectra obtained from the
explicit WKB solution, Eq. (E7), with the numerical solu-
tion, together with the simplified result obtained in Sub-
section 4.B.1, Eqs. (36) and (37). Figure 5 shows the phase
spectra. The signal has a small phase drift that is not cap-
tured by the simplified expressions. However, the idler
has a large quadratic spectral phase predicted by Eq. (37).
Finally, Fig. 6 shows the relative group delay, �, with re-
spect to the input signal. As expected, the idler experi-
ences a linear group delay, reflecting the linear relation-
ship between the position of the PPMP and frequency.

A striking feature of those plots is the significant ripple
on the gain, phase, and group delay spectra. While the
WKB solution in Eq. (10) recovers this ripple correctly,
the small-scale features of the amplification are lost when
making the simplifications leading to the design formula
in Eq. (14). The origins of the ripple and the ways to re-
duce it will be discussed in Section 5.

Figure 6 indicates that the magnitude of the group de-
lay ripple is typically of the order of 10% of the delay ac-
cumulated between the signal and idler, and that it de-
creases with an increasing chirp rate or increasing
length. For femtosecond pulse amplification, the pulse
distortion resulting from this group delay ripple is often
unacceptable.

3. Comparison with Uniform Gratings
From the point of view of applications, the clear advan-
tage of linearly chirped QPM gratings lies in their arbi-
trarily wide amplification bandwidth. For a fixed grating
length, the bandwidth is essentially proportional to the
chirp rate ��. Naturally, an increase of bandwidth comes
at the expense of a reduction of gain since the Rosenbluth
factor is proportional to 1/��. The trade-off between gain
and bandwidth is expressed by the fact that the
logarithmic-gain-bandwidth product is a quantity inde-
pendent of the chirp rate:

ln GRosenbluth � ��chirped 
 ���v��2L. �41�

In the case of a uniform grating, the peak gain and the
amplification bandwidth are given by Eqs. (25) and (30),
respectively. The logarithmic-gain-bandwidth product in
this case is approximately

ln Guniform � ��uniform 
 4��v��2L. �42�

The logarithmic-gain-bandwidth products of uniform and
chirped gratings are essentially the same (except for a
factor of 4 instead of �).

The advantages of chirped gratings over uniform grat-
ings are to enable (in principle) arbitrarily large band-
widths and to allow shaping of the gain and group delay
spectra. However, this increase of bandwidth is accompa-
nied by a reduction of the gain, according to Eq. (41).

Fig. 4. Gain spectrum of a linear profile comparing the numeri-
cal solution with the WKB solution and the Rosenbluth gain fac-
tor for various grating lengths. The numerical values used are
�2 /��=2 and (a) ��

1/2L=20, (b) ��
1/2L=30, and (c) ��

1/2L=40.
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4. Concrete Design Example
To give an idea of typical experimental values, let us con-
sider an OPA consisting of a chirped QPM grating de-
signed to offer a (power) gain of 50 dB over a bandwidth of
100 nm�1550 nm. The nonlinear crystal is made of peri-
odically poled lithium niobate (PPLN) and has a length of
5 cm. We assume that the OPA is pumped by a Nd:YAG
laser �1064 nm�. The numerical values of the various ex-
perimental parameters involved are listed in Table 1. The
chirp rate required is ��=4.13�105 m−2. To obtain the de-
sired gain, the coupling coefficient must be �=870 m−1.
The required pump intensity to achieve this is
438 MW/cm2. In terms of normalized quantities, the gain
parameter is �2 /��=1.8, and the length is ��

1/2L=32. This
situation is very similar to the one illustrated in Fig. 4(b).

By comparison, the pump intensity required to achieve
the same gain in a uniform grating of equal length is
7.6 MW/cm2. However, in this case the bandwidth is
�6 nm only. The 1D model studied here assumes that the
pump, signal, and idler are plane waves. In a free-space
experiment, however, the light pulses are localized in
space and time. A reasonable approximation (neglecting
diffraction and dispersion) is to average the gain over the
entire pulse:

G3D =��� exp���2�x,y,t�

����
	dxdydt, �43�

where now the coupling coefficient has a transverse and
temporal profile related to the intensity of the pump

Fig. 5. Phase spectrum of a linear profile comparing the numerical solution with the WKB solution and the simplified expressions, Eqs.
(36) and (37), for various grating lengths. Plots (a)–(c) correspond to the signal, plots, (d)–(f) correspond to the idler. The numerical values
used are �2 /��=2 and (a), (d) ��

1/2L=20; (b), (e) ��
1/2L=30; and (c), (f) ��

1/2L=40.
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pulse, �2�x ,y , t��Ip�x ,y , t�. If we assume that the pump
pulses are Gaussian in space and time with a spot size of
300 �m (1/e2 intensity diameter) and a duration of 1 ns
(1/e2 intensity full duration) but the same peak intensity
as the plane wave example just given, then the gain of the
OPA is 35 dB instead of 50 dB. Diffraction, inevitable
when gain narrowing occurs, will decrease this value even
further.

5. Comparison with Noncollinear Phase Matching
As mentioned in Section 1, a common way of broadening
the amplification bandwidth of OPAs is to use a noncol-
linear geometry [11]. This technique consists of introduc-
ing an angle between the signal and the pump beams and
in spatially dispersing the input signal, so that at each
frequency component the signal group velocity is equal to
the projection of the idler group velocity along the signal
direction. This approach effectively cancels the group-

velocity mismatch between the two waves. Consequently,
the bandwidth is limited not by group-velocity dispersion
but by higher dispersive orders in a manner similar to a
degenerate OPA.

The drawback of noncollinear phase matching is that
spatial walk-off limits the gain length of the amplifier. As-
suming a pump beam of a width 2w0 and a noncollinear
angle � between the pump and signal beams, the effective
gain length is approximately Leff
2w0 / tan �.

By comparison, chirped QPM gratings do not attempt
to correct for group-velocity mismatch. Instead, they offer
a broad range of phase-matching periods. Since they op-
erate in a collinear geometry, spatial walk-off does not
limit the gain length. Other major advantages of chirped
QPM OPAs are the possibility of engineering the gain and
group delay spectra. Their drawback is that, unlike with
the noncollinear phase-matching technique, there exist a
trade-off between gain and bandwidth.

Fig. 6. Group delay spectrum of a linear profile normalized with respect to the delay between the waves � / �1/vs−1/vi �L=� ��v � /L. The
delays are relative to reference waves traveling at the signal and idler velocities, respectively. These plots compare the numerical solu-
tion with the WKB solution and the simplified expressions, Eqs. (36) and (37), for various grating lengths. Plots (a)–(c) correspond to the
signal, plots (d)–(f) correspond to the idler. The numerical values used are �2 /��=2 and (a), (d) ��

1/2L=20; (b), (e) ��
1/2L=30; and (c), (f)

��
1/2L=40.

470 J. Opt. Soc. Am. B/Vol. 25, No. 4 /April 2008 Charbonneau-Lefort et al.



Since the performance of each approach depends on dif-
ferent physical quantities (e.g., high-order dispersive or-
ders in the case of noncollinear phase matching and the
available grating length in the case of chirped QPM
OPAs), it is impossible to assert in an absolute manner
which approach is best. We can work out an example
based on the experimental conditions reported in [35].
The authors report a noncollinear OPA in periodically
poled lithium tantalate. They use a pump laser at 785 nm
with a spot size of 180 �m to achieve gain over a band-
width ranging from 1.1 to 1.6 �m. Material dispersion at
those wavelengths imposed a noncollinear angle �
2°.
Consequently, spatial walk-off limits the effective gain
length to Leff
5.2 mm. We will assume that the power
gain is given as in the case of a uniform medium by G

=exp 2�Leff. Then, in order to achieve, for instance, a gain
of 40 dB, the required coupling coefficient is �
893 m−1.
Let us now calculate the gain obtained by the same pump
beam in a chirped QPM OPA assuming a grating length of
5 cm. Neglecting high-order dispersion, the chirp rate re-
quired to achieve the desired bandwidth, given by Eq.
(35), is ��
8.8�105 m−2. The Rosenbluth gain parameter
is then �2 /��
1.65, corresponding to a power amplifica-
tion of 45 dB.

In the example given above, the performances of the
two techniques are similar. Chirped QPM OPAs would be-
come advantageous if the grating length were increased.
On the other hand, noncollinear OPAs would perform bet-
ter if the material were less dispersive.

C. Tapered Profiles for Ripple Reduction
The gain, phase, and group delay ripple affecting the am-
plification spectrum of chirped gratings can be relatively
large. Subsection 4.C explores ways of reducing the ripple
by tapering the magnitude of the coupling coefficient or
the grating profile.

The ripple is due to the fact that some amount of idler
wave is generated before reaching the gain region. When
they reach the phase-matching region, contributions from
the signal and idler are superposed, and their relative
phase affects the magnitude of the gain.

This phenomenon can be understood using the WKB
description. The solution is constructed by the superposi-
tion of the two elementary WKB solutions given by Eqs.
(8) and (9). These positive and negative complex exponen-
tials interfere, causing small oscillations in the signal and
idler amplitudes.

From a physical point of view, the ripple is caused by
the “hard” edges of the grating where the interaction is
turned on and off abruptly. Therefore, ripple reduction
schemes should aim at making the transition into and out
of the interaction region as smooth as possible. There are
two ways of accomplishing this. One way is to turn on the
coupling coefficient adiabatically; the other consists of
starting from a completely mismatched interaction that is
then brought progressively into phase matching.

Tapering of the coupling coefficient ��z� can be accom-
plished, for example, by varying the duty cycle of the
QPM grating or by omitting domain reversals [36]. For in-
stance, let us consider the profile:

��z�

�max

= a + b � tanh� z − z0 − l1

w1
	 � tanh�L − z + z0 − l2

w2
	 .

�44�

The various constants can be chosen to achieve satisfac-
tory ripple reduction. The Rosenbluth gain factor is now
frequency-dependent with �=��zpm����� and zpm����
given by Eq. (32). The reduction of the gain at the edges of
the spectrum causes a narrowing of the amplification
bandwidth. Figure 7 shows the tapering function and the
corresponding amplification and group delay spectra. For
this particular bandwidth and gain, the amplitude of the
gain ripple could be reduced from �100% of the average
gain (peak-to-peak variation) to 2% with the parameters
l1= l2=w1=w2=0.04�L and a and b chosen so that ��z0�
=��zL�=0 and max ��z�=�max.

Let us now turn our attention to the tapering of the
phase mismatch profile of the grating, ��z�. As an ex-
ample, we consider a profile that is linear for most of the
grating, but becomes large at the ends. This is accom-
plished for instance by adding a large, odd power to the
linear grating profile:

� = �0��z − zpm0� + �� z − zpm0

L/2
	�

− �1/vs − 1/vi���, �45�

where � is the amplitude of the departure from linearity
and � is a large, odd integer. The Rosenbluth amplifica-
tion factor is now dependent on frequency through the
nonuniform chirp rate ��=���zpm�����. The gain is re-
duced at the edges of the spectrum corresponding to re-
gions of large chirp rate.

Figure 8 shows the grating profile and the correspond-
ing amplification and group delay spectra. The amplitude
of the ripple could be kept below 5% of the average gain
using the parameters � /�0�

1/2=100 and �=21. These nu-
merical results show that tapering of the coupling coeffi-

Table 1. Numerical Values for the OPA Design

Specifications

Material LiNbO3

Center signal wavelength 1550 nm

Bandwidth 100 nm

Pump wavelength 1064 nm

Grating length, L 5 cm

Power gain 50 dB

Operating temperature 150°C

QPM Grating

QPM grating period range 28.3–31.2 �m

Chirp rate, �� 4.13�105 m−2

Normalized length, ��L 32

Pump Intensity

Effective nonlinear coefficient, deff 2/��27 pm/V

Coupling coefficient, � 870 m−1

Gain parameter, �2 /�� 1.83

Gain length, Lg 8.4 mm

Pump intensity 438 MW/cm2
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Fig. 8. Ripple reduction using tapering of the QPM profile: (a) grating profile, (b) gain spectrum, (c) signal group-delay spectrums and
(d) idler group delay spectrum. The group delays are defined with respect to reference waves traveling at the signal and idler velocities,
respectively. The grating profile is given by Eq. (45) with � /�0�

1/2=100 and �=21. The gain parameter is �2 /�0�=2 and the length is
��

1/2L=20.

Fig. 7. Ripple reduction using tapering of the coupling coefficient: (a) coupling coefficient profile, (b) gain spectrum, (c) signal group
delay spectrum, and (d) idler group delay spectrum. The group delays are defined with respect to reference waves traveling at the signal
and idler velocities, respectively. The tapering profile is given by Eq. (44) with l1= l2=w1=w2=0.04�L. The gain parameter is �2 /��=2
and the length is ��

1/2L=20. The gain and group delay spectra without apodization were shown in Figs. 4 and 6, top case.
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cient seems more effective at eliminating the group delay
ripple than tapering of the phase profile of the grating.

As a concrete example, we consider the design de-
scribed in Subsection 4.B.4. To obtain a 100 nm wide am-
plification bandwidth, the QPM period must range from
28.3 to 31.2 �m over a length of 5 cm. Tapering of the
QPM profile can be done by keeping �90% of the central
portion of the grating unchanged and by progressively in-
creasing the chirp rate at the two ends so that the grating
period reaches, for example, 25.3 �m at one end and
33.2 �m at the other.

D. Sinusoidal Profile for Selective Frequency
Amplification
According to the design formulas, the amplification in the
case of a monotonic profile with no input idler is simply eg,
where g is the gain integral given in Eq. (16). Thus the
amplification depends predominantly on the local proper-
ties of the grating in the vicinity of the PPMP. This opens
the possibility of engineering the amplification spectrum
through careful design of the grating profile.

By way of illustration, we consider a sinusoidal modu-
lation superposed onto a linear profile and show that it
gives rise to an amplification spectrum with enhanced
gain around certain frequencies only. Such a profile is de-
scribed by

� = �0��z − zpm0� − � sin�k��z − zpm0�� − �1/vs − 1/vi���,

�46�

where � and k� are the amplitude and spatial frequency
of the modulation, respectively. If the amplitude of the
modulation is small (i.e., �k�≪�0�), then the linearization
of the profile is valid everywhere and the gain is obtained
from the Rosenbluth formula using the frequency-
dependent chirp rate ��=�0�−�k� cos k��zpm−zpm0

�, where
zpm is now the solution of the transcendental equation
��zpm�=0. However, as the amplitude of the modulation
increases the chirp rate becomes close to zero at certain
locations inside the grating. When �k�=�0� the profile can
be approximated by a cubic at those locations where ��

vanishes, and in these cases we can use the gain formula
in Eq. (18), which in our particular case becomes

G = exp�4.17� �4

�0�k�
2	1/3� . �47�

The amplification spectrum of this sinusoidal profile is
shown in Fig. 9 for parameters �2 /�0�=2, �0�

1/2L=40, k�

=2� / �L /3�, and �=�0� /k�. The minimum channel spacing
that can be achieved with a sinusoidal profile is roughly
equal to the bandwidth of a uniform QPM grating given
by Eq. (30). It is typically of the order of a few nanom-
eters.

Let us take as an example the design introduced in
Subsection 4.B.4. We keep the same range of QPM peri-
ods, namely, 28.3–31.2 �m, and grating length �5 cm�.
The profile described in Fig. 9 is achieved by introducing
a sinusoidal modulation such that the chirp rate reaches
zero at three locations (0.83, 2.5, and 4.17 cm), corre-
sponding to QPM periods of approximately 28.8, 29.8, and
30.8 �m.

E. Tandem Gratings for Simultaneously Flat Gain and
Group Delay Spectra
The examples presented above illustrate how one can tai-
lor the amplification spectrum through careful engineer-
ing of the grating profile. Little has been said about de-
signing the phase response. Nevertheless, control of the
phase spectrum is often critical, especially for applica-
tions in ultrafast optics.

Recently, we proposed the use of a pair of gratings in a
tandem configuration in order to achieve simultaneous
control of the gain and group delay spectra [26]. This idea
of using the idler wave in a cascaded geometry has also
been used to reduce the amplified spontaneous emission
and improve the pulse contrast in high-gain OPAs [10].
Here is an analysis of this design using the simple design
expressions. We will see that the equations governing the
design procedure follow in a straightforward manner.

The tandem configuration is shown in Fig. 10. Its prin-
ciple of operation is the following. The signal to be ampli-
fied is incident on the first grating. After the first grating,
we block the signal wave so that only the pump and the
idler are incident on the second grating. The output idler
of the first grating is used as the input signal of the sec-
ond. The “idler” generated by the second grating then has

Fig. 9. Sinusoidal profile for selective frequency amplification: (a) QPM grating profile and (b) amplification spectrum, comparing the
numerical values with the Rosenbluth amplification formula. The cubic approximation to the grating profile gives the peak amplification
(marked by the dots on the plot), while the linear approximation (dashed curve) is valid away from the peaks but not in the vicinity of
the maxima. The numerical parameters in this example are �2 /�0�=2, �0�

1/2L=40, k�=2� / �L /3�, and �=�0� /k�.
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the same frequency as the original signal. By choosing the
position of the PPMPs in the two gratings and their local
chirp rates, we can control the gain and group delay spec-
tra at the same time.

Let us now describe the output of the tandem-grating
design. We use the expressions describing the amplifica-
tion in the presence of multiple PPMPs, Eqs. (19) and
(20), with Ai0=0. The output of the first grating is

As
�1� = R�1�As0eg�1�

, �48�

Ai
�1� = iR�1�A

s0
* eg�1�

ei��z0
�1�

,zpm
�1� �, �49�

where g�1� denotes the gain integral around the PPMP of
the first grating [Eq. (16)]. For a locally linear chirp rate,

g�1�=���zpm
�1� � /���zpm

�1� �. Before entering the second grating,
the signal is filtered out. The inputs to the second grat-

ings are therefore As0
�2�=0, Ai0

�2�=Ai
�1�. A second application

of Eq. (19) then gives

As
�2� = A

s0
* R�1�R�2�eg�1�+g�2�

ei��zpm
�1�

,zpm
�2� �. �50�

This expression contains all the information needed to
design grating profiles with the desired gain and phase
spectra. First, the total logarithmic gain is equal to the
sum of the individual gains. Using the Rosenbluth fac-
tors, we obtain the total logarithmic gain in terms of the
chirp rates:

ln G���� =
��2�zpm

�1� �

����zpm
�1� ��

+
��2�zpm

�2� �

����zpm
�2� ��

. �51�

Second, the accumulated phase corresponds to the delay
accumulated by the propagation at the idler velocity be-
tween the two PPMPs. Differentiating the total phase
with respect to frequency, we can express the total group
delay in terms of the positions of the PPMPs:

����� =
zpm

�1� − z0
�1�

vs

+
zL

�1� − zpm
�1�

vi

+
zpm

�2� − z0
�2�

vi

+
zL

�2� − zpm
�2�

vs

.

�52�

The group delay for a particular spectral component
corresponds to traveling from the input to the first PPMP
at the signal group velocity, from the first to the second
PPMPs at the idler group velocity, and then from the sec-
ond PPMP to the end of the crystal at the signal group ve-
locity. By choosing the lengths of the two crystals and the
trajectory of the two PPMPs as a function of frequency,
there are enough degrees of freedom to flatten the group
delay over a broad spectrum [26].

5. OPTICAL PARAMETRIC AMPLIFICATION
IN THE LOW-GAIN LIMIT

When the gain is low, we can assume that the signal wave
remains unamplified and that only the idler grows. This
process is called DFG. DFG and SHG in chirped QPM
gratings have been studied in detail by Imeshev et al.

[22,23]. They have shown that the spectrum of the gener-
ated wave is related to the spectrum of the input by a
transfer function that is given by the Fourier transform of
the grating profile. In the case of linearly chirped grat-
ings, this transfer function can be expressed in terms of
Fresnel integrals. Its spectrum is broad and flat with
rapid oscillations, similar to the gain spectrum of chirped-
grating OPAs.

We can recover these results by considering parametric
amplification, Eqs. (3) and (4), in the low-gain limit. In
this case, the signal amplitude is constant, and the evolu-
tion of the idler is described by a single first-order differ-
ential equation that can be integrated in a straightfor-
ward manner:

Ai�z� = i�A
s
*�

z0

z

ei	�z��dz�. �53�

In the case of linearly chirped gratings, 	�z� is quadratic,
and the solution can be expressed in terms of error func-
tions or Fresnel integrals [22,23]. Alternatively, the inte-
gral can be approximately evaluated using the stationary
phase method [31]:

Ai�z� 
 iei�/4�2�

��
A

s
*e−�i/2����z0 − zpm�2

. �54�

The gain, which was given by the Rosenbluth gain factor
in the case of parametric amplification, is now equal to

�2� /��≪1. Nevertheless, both regimes are similar in
two aspects: their gain is essentially constant over a wide
bandwidth, and the idler wave experiences group-velocity
dispersion through the frequency dependence of the
PPMP. Although their mathematical descriptions differ,
the physics of OPA and DFG are very similar.

6. CONCLUSION

In this paper, we presented a general procedure for the
design of OPAs using nonuniform QPM gratings. The
model used was 1D and assumed an undepleted, time-
independent pump wave. We considered slow-varying but
otherwise general profiles for the coupling coefficient and
the wave vector mismatch. We treated the problem in the
frequency domain.

We solved for the wave evolution using the complex
WKB method. These expressions were then simplified to
reveal the main features of the amplification process. We
illustrated the use of the design formula by studying a va-
riety of QPM grating profiles. We considered the canoni-
cal linear profile, which provides gain over wide band-
widths; tapered profiles for ripple reduction; sinusoidal
profiles for selective frequency amplification; and finally,
a tandem-grating design for engineered gain and group
delay spectra (such as flat profiles for both).

Fig. 10. Tandem configuration.
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We also discussed the similarities existing between
parametric amplification in chirped QPM gratings and its
low-gain limit DFG. The analysis presented here dealt ex-
clusively with the spectral properties of the amplifiers. In
a companion paper [28], we present the time-domain
analysis, which will lead to a discussion of the temporal
properties of the amplified pulses.

The 1D model presented here ignored transverse ef-
fects such as diffraction and noncollinear interactions. A
2D model including those effects will be described in fu-
ture publications.

APPENDIX A: DERIVATION OF THE
GENERAL
WENTZEL–KRAMERS–BRILLOUIN
SOLUTIONS

We consider profiles for which ��z� is a smooth, monotonic
function of position. The smoothness condition is required
for the validity of the WKB method. Monotonicity is also
important because it ensures that there exists only one
PPMP at any given input frequency. We can define a char-
acteristic chirp rate, �0�, which sets the scale of ��z�. [In
other words, we decompose the wavenumber mismatch
into a linear part, �0��z−zpm0�, and another function that
represents the departure from linearity.] We assume that
this chirp rate is positive. The solution for the negative
chirp rate can then be obtained using the substitutions
��→−��, As→A

s
*, and Ai→−A

i
*.

We normalize the position axis using the characteristic
chirp rate �0�:

� = �0��z − zpm�, �A1�

where zpm is the PPMP satisfying ��zpm�=0. Then Eq. (6)
becomes

d2as

d�2
+ Q̄���as = 0, �A2�

where

Q̄��� = � �̄

2
−

i

4

��

�
	2

− � +
i�̄�

2
+

1

4
���

�
	�

. �A3�

In this expression, �̄=� /�0�
1/2 is the normalized wavenum-

ber mismatch, �=�2 /�0� is the Rosenbluth gain exponent,
and the primes denote differentiation with respect to �.
Since the profiles � and � are, by assumption, smooth
functions of position, we neglect small terms such as �� or
����2 from now on. The solution is also subject to the
boundary conditions:

as��0� = �−1/2��0�As0, �A4�

das��0�

d�
= �−1/2��0��i�1/2��0�A

i0
* −

i

2
�̄��0�As0 −

1

4

����0�

���0�
As0� .

�A5�

These come from the input conditions As�z0�=As0, Ai�z0�
=Ai0, where z0 is the position of the input plane in real
units.

Equation (A2) is in a form suitable for WKB analysis.
Its two linearly independent WKB solutions are [31–34]

Q̄−1/4 exp�±i��

�Q̄�����1/2d��	 . �A6�

The conditions of validity of the WKB approximation will
be discussed below. As observed in Section 2 and illus-
trated in Fig. 2, the solutions are of an exponential type

between the turning points, where Re�Q̄��0 (region II)
and of an oscillatory type outside the interaction region

where Re�Q̄�
0 (regions I and III).
Approximations to the signal and idler waves can be

written as linear combinations of these elementary WKB
solutions. As we will see, different linear combinations
are required in each of regions I–III. One way of calculat-
ing the correct coefficients is to use connection formulas to
match the WKB solutions on either side of each turning
point [31]. Another, possibly more elegant, approach is to
employ the complex WKB method [32,34], which consists
in extending the solution to the entire complex plane and
enforcing continuity asymptotically far from the turning
points. In this paper we will take the second approach.
The procedure for doing so is detailed in Appendix B.

APPENDIX B: APPLICATION OF THE
COMPLEX
WENTZEL–KRAMERS–BRILLOUIN METHOD

In this section we apply the complex WKB method to ex-
tend each elementary solution to the entire complex
plane. We establish the Stokes diagram corresponding to
the function Q and the use of the usual rules for crossing
Stokes and anti-Stokes lines. (Complete accounts of these
procedures are given by Heading [32], Budden [34], and
White [37].)

To uniquely define the WKB solutions we have to
specify the lower bound of integration. It is typical to take
one of the two complex turning points �1 and �2, which are

the values of � for which Q̄=0. Following Heading [32], we
represent the WKB solutions by the notation

��1,�� � Q̄−1/4 exp�i�
�1

�

�Q̄�����1/2d��	 , �B1�

��,�1� � Q̄−1/4 exp�i�
�

�1

�Q̄�����1/2d��	 . �B2�

Moreover, and still following Heading, we will use the
subscripts d or s according to whether a solution is as-
ymptotically dominant (exponentially growing) or sub-
dominant (exponentially decaying) as �� � →�.

The Stokes diagram of the function Q̄ is shown in Fig.
11. We assume that the turning points are well separated.
From each turning point emerges a branch cut, which we
specify to be away from the real axis: three Stokes lines

on which Re�Q̄1/2d��=0, where the magnitude of the two
WKB solutions are most different; and three anti-Stokes

lines on which Im�Q̄1/2d��=0, where the two solutions
have equal magnitude. We number the various regions
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from 1 through 8 as shown in Fig. 11. Our goal is to de-
termine how each global WKB solution becomes a differ-
ent linear combination of ��1 ,�� and �� ,�1� or ��2 ,�� and
�� ,�2� when � moves from one region to another in the
complex plane.

Let us start from ��1 ,�� in region 8 �Re���→−� �. This
solution being dominant in this sector, we write

region 8: ��1,��d. �B3�

To go to region 7 we cross a Stokes line in the counter-
clockwise direction, so we must add the subdominant so-
lution multiplied by the Stokes coefficient i:

region 7: ��1,��d + i��,�1�s. �B4�

To get to region 6, we cross an anti-Stokes line and the
roles of dominance and subdominance are interchanged

region 6: ��1,��s + i��,�1�d. �B5�

Again, as we cross the Stokes line to go to region 5, we
must add the subdominant solution:

region 5: ��1,��s + i���,�1�d + i��1,��s� = i��,�1�d. �B6�

We can match regions 5 and 3 by connecting turning
points �1 and �2:

region 3: i��2,�1���,�2�s, �B7�

where we have introduced the coefficient

��2,�1� � exp�i�
�2

�1

�Q�����1/2d��	 . �B8�

In region 2, this solution becomes dominant:

region 2: i��2,�1���,�2�d. �B9�

Finally, as we cross the Stokes line between regions 2 and
1 in the clockwise direction, we add the subdominant so-
lution multiplied by −i:

region 1: i��2,�1����,�2�d − i��2,��s�. �B10�

Thus we obtain the continuation in the complex plane. In
particular, we have a representation of the asymptotic be-
havior of this solution over the entire real axis.

Now let us consider the second solution. We start from
�� ,�1� in region 8. Proceeding as before, we have the fol-
lowing connections:

region 8: ��,�1�s, �B11�

region 7: ��,�1�s, �B12�

region 6: ��,�1�d, �B13�

region 5: ��,�1�d + i��1,��s, �B14�

region 3: ��2,�1���,�2�s + i��1,�2���2,��d 
 ��2,�1���,�2�s,

�B15�

region 2: ��2,�1���,�2�d, �B16�

region 1: ��2,�1����,�2�d − i��2,��s�. �B17�

In going from regions 5 to 3, we have dropped the term
with the coefficient ��1 ,�2� because it is exponentially
small compared to ��2 ,�1�. (This follows the assumption
that the turning points are well separated.) We note that
the two global solutions, which can be represented in re-
gion 8 by ��1 ,�� and �� ,�1�, only differ in region 1 by a fac-
tor of i.

APPENDIX C:
WENTZEL–KRAMERS–BRILLOUIN
SOLUTIONS FOR THE SIGNAL AND IDLER
WAVES

In Appendix B we have given the proper asymptotic rep-
resentations for two global, linearly independent solu-
tions. Now we are left with the task of determining the
linear combinations that satisfy the boundary conditions
in Eqs. (A4) and (A5). Then each solution can be contin-
ued over the entire real axis using the results from Ap-
pendix B. We obtain the following solutions in each re-
gion:

as
I 
 Cs

+��1,�� + Cs
−��,�1�, � ≪ − �tp, �C1�

as
II 
 �iCs

+ + Cs
−���,�1�, − �tp ≪ � ≪ �tp, �C2�

as
III 
 �iCs

+ + Cs
−���2,�1���,�2��1 − i

��2,��

��,�2��, � ≫ �tp.

�C3�

The coefficients Cs
± are given approximately (provided

�0≪−�tp) by

Cs
+ 


1

��1,�0��1/2��0���1 +
���0�

�̄��0�2	As0 −
�1/2��0�

�̄��0�
A

i0
* � ,

�C4�

Fig. 11. Stokes diagram of the function Q̄ defined by Eq. (A3).
Solid curve, anti-Stokes curves; dashed curves, Stokes curves;
zig–zag, branch cut.
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Cs
− 


1

��0,�1��1/2��0��−
���0�

�̄2��0�
As0 +

�1/2��0�

�̄��0�
A

i0
* 	 . �C5�

The corresponding coefficients for the idler wave are ob-
tained by interchanging the role of the signal and idler.

We recover the frequency-domain envelope functions by
multiplying by �1/2 exp�i	 /2�, resulting in the expression
given in the text, Eq. (10). Even when only one wave is
present initially (e.g., Ai0=0), the coefficients Cs

± are in
general both nonzero. The solution is then the superposi-
tion of a positive and a negative complex exponential,
which interferes and causes the ripple observed on the
amplification spectrum (as discussed in Subsection 4.C).
These oscillations can be suppressed by letting either
���0�→0, ���L�→0 or �̄��0�→�, �̄��L�→� (where �L refers
to the output plane). This is accomplished by the ripple-
reduction techniques presented in Subsection 4.C.

APPENDIX D: VALIDITY OF THE
WENTZEL–KRAMERS–BRILLOUIN
SOLUTIONS

A few key assumptions have been made to obtain Eqs.
(C1)–(C3). They will be examined in this section.

We have assumed when obtaining the continuation of
the solution in the complex plane that the turning points
are well separated. This requirement is necessary for the
WKB solutions to be valid between the turning points. It
also allowed us to drop the exponentially decaying solu-
tion when connecting between the turning points. In the
case of a linear grating for which the magnitude of the
amplification factor is ���2 ,�1� � =exp����, neglecting the
decaying exponential is valid provided �≫1/�. This
value can be considered as the threshold of significant
gain.

Second, we have assumed that neither turning point is
close to the edges of the grating. This allowed us to define
unambiguously the three regions I–III. The assumption
that �0≪−�tp was used to obtain the coefficients C+ and
C−. Similarly, when obtaining expressions involving the
position of the output of the grating, �L, we assume that
�L≫�tp. Consequently, the description given here ceases
to be valid at the edges of the spectrum because our re-
sults cannot be applied if the gain region reaches the
edges of the grating.

To summarize, the WKB formalism developed here is
best suited when (i) the gain is large, (ii) the gain region is
short compared to the grating length, and (iii) the PPMPs
are far from the edges of the grating. In the case of the
linear profile described in Subsection 4.B, these condi-
tions are satisfied when �=�2 / ��� � ≫1/�, Lg=4� / ��� � ≪L,
and ��≪��BW.

APPENDIX E: EXPLICIT EXPRESSIONS FOR
THE LINEAR PROFILE

Linear grating profiles are given simply by �̄=�. There-
fore, assuming a constant coupling coefficient, we have

Q̄=�2 /4−�+ i /2. The complex turning points are then
given by �1 ,�2= �2��− i /2�1/2.

In this case the integrals appearing in the WKB expres-
sions can be evaluated exactly; approximate and simpler
expressions are useful, however. First, for �0≪−�tp:

�
a

�0

Q1/2d�� = �� − i/2�� �0

2� − i/2
 �0

2

4�� − i/2�
− 1

+ ln� ��0�

2� − i/2
+ �0

2

4�� − i/2�
− 1��


 −
�0

2

4
+ �� − i/2�ln� ��0�

�1/2	 +
�

2
. �E1�

For −�tp≪�≪�tp:

�
a

�

Q1/2d�� 
 i��1 −
i

4�
	� +

i��

2
+

�

4
. �E2�

Similarly, for �L≫�tp:

�
b

�L

Q1/2d�� 

�L

2

4
− �� − i/2�ln� �L

�1/2	 −
�

2
. �E3�

Finally, the integral between the two turning points is
simply

�
a

b

Q1/2d�� = i��� − i/2�. �E4�

The solutions for the linear profile can then be written ap-
proximately as

As
I��� 
 ��1 + �2��0��As0 + ���0�A

i0
* �exp�i� ln� �

�0
�	

��1 − �����A
i0
* + ���0�As0

As0 + ���0�A
i0
* 	

�exp� i

2
��2 − �0

2� − 2i� ln� �

�0
�	� , �E5�

As
II��� 


1

2
exp���

2
+ �1/2� − i� �

4�1/2
+

�2

4
+ � ln ���0�

−
�

2
	� � ��1 + �2��0��As0 − ���0�A

i0
* − �A

i0
* − ���0�As0�

�exp�− i���0���, �E6�

As
III��� 
 exp��� + i� ln� �

�0
�	

�F����F*��0�As0 − F��0�e−i���0�A
i0
* �, �E7�

with

F��� = 1 − ����exp�i�����, �E8�

���� =
�2

2
+ 2� ln ���� − � +

�

2
, �E9�
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���� =
�1/2

���
. �E10�

The expressions for the signal wave are obtained, as
usual, by interchanging the signal and idler subscripts.

The spatial evolution of the signal and idler magni-
tudes for typical parameter values is plotted in Fig. 12
along with the numerical solution. The solutions are os-
cillatory before and after the gain region where the inter-
action is phase mismatched while they grow exponen-
tially in the phase-matched region. As expected, the WKB
solution is not a very good approximation in the vicinity of
the turning points.

Finally, it is interesting to point out that the ripple-
reduction schemes described in Subsection 4.C (namely,
reduction of � or increase of � at the ends of the grating)
amount to reducing the values of ���0� and ���L�. Setting
���0�=���L�=0 into Eqs. (E5)–(E7) leads to major simplifi-
cations:

As
I��� 
 As0ei� ln��/�0�, �E11�

As
II��� 


1

2
�As0 + iA

i0
* e−i��0

2
/2−���

�exp���

2
+ �1/2� − i� �

4�1/2
+

�2

4
−

�

2
	� ,

�E12�

As
III��� 
 e���As0 + iA

i0
* e−i��0

2
/2−���ei� ln��/�0�. �E13�

APPENDIX F: DERIVATION OF THE
SIMPLIFIED DESIGN FORMULA

The WKB solutions, Eqs. (C1)–(C3), are quite complicated

as they involve several integrals of the function Q̄1/2. To
simplify these expressions, the integrals can be approxi-
mately evaluated for general (smooth) grating profiles.

Let us outline the evaluation procedure using as an ex-

ample ��2

�LQ̄1/2d�. We neglect the variation of the coupling

coefficient, therefore we can approximate Q̄ from Eq. (A3)

as Q̄
 �̄2 /4−�+ i�̄� /2. The integral can be separated into
two parts. The first one corresponds to the vicinity of the
turning point, where �̄�z� is approximately linear; the sec-
ond one corresponds to the portion away from the turning
point, where �̄ is large. Thus the two integration ranges

are from �2 to �̃, and from �̃ to �L, respectively, with �̃ lo-
cated on the real axis somewhere between Re��2� and �L,
close enough to �2 so that �̄ is linear but far enough so

that the behavior of Q̄ is dominated by �̄2 /4. The integral
over the linear range is given by Eq. (E3). Retaining the
most significant real and imaginary contributions, we
have

�
�2

�̃

Q̄1/2d� 

�̄2

4
+

i

2
ln� �̃

�1/2	 . �F1�

The second integral can be approximated by

�
�̃

�L

Q̄1/2d� 

1

2
�

�̃

�L

�̄d� +
i

2
ln� �̄��L�

�̃
	 . �F2�

Adding both contributions gives

�
�2

�L

Q̄1/2d� 

1

2
�

0

�L

�̄d� +
i

2
ln� �̄��L�

�1/2 	 . �F3�

The integral ��1

�0Q̄1/2d� can be evaluated in a similar
manner. Using these approximations, the elementary
WKB solutions can be written as

��1,�0� 
 21/2�−1/4��0�ei/2��0

0
����d�, �F4�

��0,�1� 

21/2�1/4��0�

����0��
e−i/2��0

0
����d�, �F5�

��2,�L� 

21/2�1/4��0�

���L�
ei/2�

0

�L����d�, �F6�

��L,�2� 
 21/2�−1/4��0�e−i/2�
0

�L����d�. �F7�

Fig. 12. Comparison between the WKB solution and the numerical solution for �=1, As0=1, Ai0=0, L̄=20, and �pm located at the center
of the grating: (a) signal, (b) idler. The insets give details on the amplitudes near the input.

478 J. Opt. Soc. Am. B/Vol. 25, No. 4 /April 2008 Charbonneau-Lefort et al.



Similarly, the amplification factor can be approximated by

��2,�1� = ei�
�2

�1Q̄1/2d� 
 − ie�
�
1
*

�
2
*

�� − �̄2/4�1/2d�, �F8�

where �
1,2
* are the real-valued turning points of �

− �̄2��� /4. These approximations can then be substituted
into the expressions for the signal and idler, Eq. (C3), to
yield the following formula valid for general smooth grat-
ing profiles:

As
III 
 ��1 −

i�1/2��0�

���0�
ei��0

0
����d�	As0 + iei��0

0
����d�

��1 +
i�1/2��0�

���0�
e−i��0

0
����d�	A

i0
* �

�e�
�
1
*

�
2
*

�� − �̄2/4�1/2d��1 −
i�1/2��L�

���L�
ei�

0

�L����d�	 . �F9�

To simplify the formulas further, we neglect the oscilla-
tory terms. This step yields

As 
 �As0 + iA
i0
* ei��0

0
�̄d��e�

�
1
*

�
2
*

�� − �̄2/4�1/2d�, �F10�

which is the design formula, Eq. (14).
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