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ABSTRACT 

Several possibilities of using elastic light scattering in the backscatter range (scattering angle deg140>Sϑ ) for 
determining size, velocity and refractive index of spherical particles are investigated. First the phase Doppler 
technique is considered. Numerical simulations of the light scattering using the Lorenz-Mie theory (LMT) are 
used to show that the phase Doppler technique is unsuitable for such backscatter configurations, except for very 
special measurement conditions. The time-shift (or pulse displacement) technique is considered for sizing 
particles using elastic light scattering in the backscatter direction. Simulations using the Fourier Lorenz-Mie 
theory (FLMT) show that up to four fractional signals can be obtained using this technique in backscatter, 
corresponding to the scattering order/modes: surface wave (long path), reflection, second-order refraction (inner 
path), and a mixture of second-order refraction (outer path) and surface wave (short path). The situation for the 
backscatter range is illustrated in Fig. 1, in which a one-dimensional Gaussian intensity distribution is shown for 
a single incident beam.  A particle moving through the beam in the scattering plane will result in various 
fractional signals arriving sequentially at the detector, hence the name time-shift technique. 
Signal characteristics as a function of particle size, refractive index and particle ellipticity are studied. 
Suggestions for a practical measurement instrument are put forward.  
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Fig. 1. Scattering orders/modes contributing to the signal in the near backscatter region for  1>m
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1. INTRODUCTION 

One major disadvantage of the phase Doppler technique for sizing is the restricted range of scattering angles at 
which the receiving optics can be placed relative to the transmitting optics. The permissible angular range is 
dictated primarily by the relative refractive index m (particle to surrounding medium) and the scattering order 
used, e.g. reflection or first-order refraction. A linear relationship between the measured phase difference and 
the particle diameter exists only when a single scattering mode dominates. Typical scattering angles sϑ  for 
droplets (1 ) are in the range 5.12. << m deg80deg20 << sϑ  (first-order refraction ) and for bubbles 
( ) in the range 90

2=p
75.0=m deg110deg << sϑ  (reflection 1=p ). For applications this means that two optical 

accesses to the measurement point are necessary, one for the incident light beams and one for the scattered light. 
This can represent a difficult and costly requirement in many cases. Particle sizing in backscatter deg>s 145ϑ  
would be much more convenient, allowing the incident and scattered light to pass through a single optical 
access. However, such a backscatter configuration of the phase Doppler technique is not be possible while 
maintaining a high single scattering order dominance. 
Some mixture of scattering orders would have to be tolerated, which then degrades the linearity of the 
diameter/phase difference conversion factor, hence the measurement accuracy. Despite this fact, several 
attempts at realizing a backscatter phase Doppler instrument have been made. Bultynck (1998) has examined the 
feasibility of three possible arrangements exploiting different scattering modes. Although an instrument on the 
basis of these scattering orders/modes was constructed and demonstrated, the signal quality remained modest to 
poor, since the absolute scattering intensity is low at these angles and other scattering orders were also 
significant. The size influence was further complicated by the Gaussian beam effect (e.g. Grehàn et al., 1993), 
which led to different scattering order mixing for different particle trajectories. Reasonable experimental results 
were only obtained for particles larger than 50–60µm and for a relatively large relative refractive index. 
Recognizing that a conventional phase Doppler instrument will not operate in backscatter, a modified approach 
has been pursued in the following work. It is based on the volume displacement or time-shift technique (e.g. 
Albrecht et al., 1993). This technique is only possible with shaped beams and is also the basis of the dual-burst 
phase Doppler technique (e.g. Onofri et al., 1996) and the pulse-displacement technique (e.g. Pavlovski and 
Semidetnov, 1991; Hess and Wood, 1993). The essence of this technique lies in the realization that with a 
shaped beam, each scattering order/mode exhibits its own virtual measurement volume for every detector. The 
virtual volumes are defined over the scattered intensity as a function of the particle center position for a specific 
receiver location. These volumes all have the same size as the illuminated volume but are displaced in space. 
The magnitude of the displacement depends on the scattering order/mode, the receiving location, the relative 
refractive index and the particle diameter. Thus, if the different scattering orders/modes are identifiable in the 
received signal at specific detector angles, and the relative refractive index is known, the diameter can be 
estimated from the time shift between them (see Fig.1). 
The main scattering components for the backscatter range, in order of occurrence for  will be: surface 
wave (long path), reflection, second-order refraction (inner path), second-order refraction (outer path), surface 
wave (short path). Note that there exist two modes for second-order refraction ( ). These have been 
designated  (inner path) and  (outer path). The origins of these components for a particle 
traversing a Gaussian beam is shown in Fig. 1.  

1>m

3=p
1.3=p 2.3=p

The relative amplitude between each of the fractional signals will depend on the specific scattering order/mode, 
and the absolute amplitude scales with the incident power and particle size. The width and shape of each 
fractional signal is given by the width and shape of the incident beam. Basically, the incident beam is being 
sampled by the incident points of each scattering order/mode on the surface of the particle and it is being imaged 
onto the detector. The separation of the fractional signals in time will be determined by the particle size, the 
relative refractive index and the particle shape. Overlapping of fractional signals from different scattering 
orders/modes is reduced by keeping the ratio of the particle diameter to the incident beam width large. For 
practical applications this means a highly focused beam should be used, insuring good separation of the 
fractional signals even for small particles. 
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2. SIGNAL CHARACTERISTICS  

The remarks of the previous section pertaining to scattering from a single laser beam indicate that the virtual 
image displacement of each scattering order/mode lies in the plane formed by the axis of the incident beam and 
the detector direction as seen from the measurement volume region. All fractional signals will therefore only be 
seen if the particle velocity vector lies in or near this plane. Furthermore, particle sizing using the time-shift 
technique necessarily requires a measurement of the particle speed. The time shift between scattering 
orders/modes is measured and this must be related to the volume displacement, hence to the particle size, 
through speed. Several authors (e.g. Pavlovski and Semidetnov, 1991; Lin et al., 2000) achieved this using two 
laser beams in a time-of-flight fashion. Alternatively, two beams can be brought to intersection as in laser 
Doppler systems and the velocity can be measured from the signal modulation frequency. This latter technique 
will be considered below in investigating various approaches for particle sizing in backscatter. 
If a laser Doppler is used for the speed measurement then two incident beams are involved. A separate set of 
virtual images of the laser beams will exist for each incident beam and each detector. Interference, hence signal 
modulation and the possibility of a velocity measurement, will only occur if the two virtual images of each of 
the beams and like scattering order/mode overlap.  
The illuminated volume is defined by the e-2-decay of the modulated intensity created by the two incident laser 
beams without any particle and has an ellipsoidal shape for Gaussian beams. The measurement volumes for each 
scattering order, which are the virtual images of the illuminated volume, can be defined in the same way by 
using the amplitude of the receiver signals with respect to the particle position. The centers (maximum received 
modulated power) are displaced by 
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from the intersection point of the two beams. The subscripts indicate the two beams (1 for 2
Θ  and 2 for 2

Θ− ). 
The main axes of the volumes are parallel to the main axis of the illuminated volume. All coordinates of the 
incident points are linearly dependent on the particle diameter and, therefore, the measurement volume 
displacement is also linearly dependent on the particle diameter in all three directions. 
For intersecting beams, the measurement volumes of a laser Doppler system are also displaced in the z direction, 
as seen from Eq. (1). Due to the 2cotΘ -dependence of this displacement, it may well exceed the dimensions of 
the particle diameter. On the other hand, the glare point distance is  approximately linearly dependent on the 
intersection angle 2

)( Θξ p),(
2

),(
1

pipi xx ≈−  for small intersection angles, where the linearity constant  depends 
on particle diameter and scattering mode. These two effects compensate each other and therefore the z position 
of the measurement volume is only slightly dependent on intersection angle. If the measurement volumes are 
made long in the z direction, and the glare point distance  small by choosing a small intersection 
angle, the probability that a particle which moves in the x direction will pass through all volumes increases. 
Furthermore, to insure that the measurement volumes for all scattering orders/modes lie in the same plane, the 
detector or detectors should lie in the same plane as the incident beams, in which case all scattering planes for 

each beam/detector pair are coincident.  
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Fig.2. Optical arrangement for a time-shift system in backscatter 

For further investigations, an optical 
arrangement as shown in Fig. 2 has been 
used, in which two detectors symmetrically 
placed about the optical axis z are shown. 
The particles traverse the beam intersection 
volume along the x axis. This optical 
arrangement corresponds exactly to the 
planar backscatter phase Doppler 
arrangement, in which the detectors lie in the 
same plane as the incident beams. In keeping 
with the notation for standard phase Doppler 
systems, the angle ψ  is then known as the 
elevation angle and the off-axis angle is 

deg180=φ . The scattering angles are 
2

Θψϑ ±=s . A typical signal received at a 
single detector of the system shown in Fig. 2 
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is illustrated in Fig. 3, computed using FLMT (Albrecht 
et al. 1995) and the Debye decomposition of the FLMT 
(Albrecht et al. 1999) and measured in the laboratory 
using a transient recorder to record the signal. 
For very small intersection angles ( , 

22sin ΘΘ ≈ ) and a planar system, Eq. (1) reduces to 
1cos 2 ≈Θ
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The measurement volumes are located in the laser and 
scattering plane and the x coordinate of the centers of 
the measurement volumes are between the images of the 
two laser beams for each scattering order. Therefore, the 
AC and the DC parts of the signal consist of the same 
four distinct fractional signals corresponding to the 
scattering orders/modes shown in Fig. 1. Note that the 
short path surface wave and the refraction mode 

2.3=p  overlap almost completely and cannot be 
individually distinguished.  
The separation of the reflected signal fraction from the 
refractive fraction 1.3=p

2

 decreases with decreasing 
elevation angle. Furthermore, the second-order 
refraction ( .3=p ) increases in amplitude for larger 
elevation angles. Below about deg14=ψ  ( m ), 
only the 

33.1=
1.3=p

deg

 mode contributes to second-order 
refraction. The best fractional signal separation is found 
for 20=ψ .  
For a particle trajectory in the x direction and if the 
relative refractive index of the particle is known, the 

 diameter can be measured by measuring the 
time shift between selected fractional signals. This time 
shift is transformed into a volume displacement using 
the particle velocity in the x direction found from the 
Doppler modulation frequency. For smaller particles the 
fractional signals overlap increasingly and the 
estimation of the time shift becomes virtually 

impossible. 
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Fig. 3. Signal of a planar phase Doppler system 

( deg4.7=Θ , deg25=ψ , nm5.514=λ , 
, ). a) Calculated, 

b) Measured 
µm80=pd µm20=bd

An alternative approach is to use two symmetrically located detectors (see Fig. 2). Assuming the intersection 
angle Θ  to be small, pairs of the beam images will be coincident, so that two sets of measurement volumes will 
be distinguishable (one for each detector). The situation has been exemplary pictured in Fig. 4a, in which the 
dominating three measurement volumes for each detector lie along the x axis. Note that the spacing between the 
volumes depends on particle size, refractive index etc. and that this pictorial is only an example. An important 
feature is that the volumes appear in reverse sequence for each detector because of the symmetric placement of 
the detectors about the incident beams, as illustrated in Fig. 4b. This means that the time shift between the two 
signals from the two receivers can also be measured for smaller particles, because the shifted signals on the two 
detectors are now separated.    

2.1 TRAJECTORY INFLUENCE 

The discussion above has presumed that the AC (modulation) and DC parts of the signal are coincident. For 
small intersection angles Θ  this is largely true for particle trajectories in the x-y plane. For trajectory 
displacements in the z direction however, the AC part will decrease and the DC part will exhibit distinct 
volumes for each beam. The fractional signals from detector 2 appear in opposite sequence to those from 
detector 1, because of the asymmetry about the z axis. As examples, signals for two trajectories at  and 

 are shown in Fig 5 for one receiver. 
0=z

µm160=z
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Fig. 4. Planar optical configuration. a) Separated measurement volumes, b) Signals from two receivers 
( deg4=Θ , nm5.514=λ , , µm100=pd µm20=bd ) 
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 and µm0=z µm160=z  for the 
configuration from Fig. 4 

For trajectories far removed from , the amplitude 
of the AC part of the signal decreases, although not 
symmetrically for positive and negative z values. The 
DC part only decreases insomuch as the incident beams 
are divergent in the z direction and any z shift of the 
virtual measurement volume will be accompanied by a 
slight intensity decrease. 

0=z

At extreme values of displacement in the z direction, all 
modulation will disappear and only the DC part will 
remain, showing two peaks for every scattering 
order/mode. This corresponds to the particle crossing 
the two incident laser beams at a non-overlapping 
position. The particle diameter can be measured by the 
time shift of the signal maxima. For trajectories parallel 
to the x axis, the time shift is a direct measure for the 
measurement volume displacement. In case of oblique 
trajectories the time shift leads to a systematic error of 
the volume displacement. For small intersection angles, 
for receiver locations far from the direct backscatter and 
for a planar configuration the signal maximum occurs at 
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By using two detectors the time shift between the 
signals becomes independent of the particle trajectory 
intersection with the plane 0=x  and independent of the 
z component of the particle trajectory and depends 
linearly on particle diameter, as  
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The y component must be measured for further 
corrections with e.g. a two-velocity component laser 
Doppler system. 
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2.2 INFLUENCE OF THE REFRACTIVE INDEX 

The influence of the refractive index on the time shift signals is illustrated in Fig. 6, showing a simulated 
detector signal for the values  and 25.1=m 42.1=m . As the refractive index increases, the position of the 

 fractional signal exhibits a monotonic but non-linear increase of time shift, whereas the reflective 
fractional signal remains unaffected. The difference in diameter estimated using the time shift of reflection and 

 can be used for determining refractive index. A diameter difference of 

1.3=p

1.3=p %65Κ  corresponds to a 0.025 
change in m. Both the amplitude and position of the 2.3=p  fractional signal change with the refractive index, 
thus also influencing the short path surface wave signal due to the strong overlap. Note that for larger particle 
diameters, all fractional signal dependencies correspond to values predicted by geometrical optics, at least for 
small intersection angles ( deg76Κ<Θ ). These dependencies are shown explicitly in Fig.6b calculated with 
geometrical optics and a Debye decomposition of FLMT results. The surface waves are assumed to be on the 
circumference of the particle. 
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2.3 INFLUENCE OF SHAPE 

It is also interesting to investigate the influence of the non-sphericity on the time shift of fractional signals and 
this is done using simple oblate and prolate ellipses, as pictured in Fig. 7. The time shift can be expressed as an 
incident point displacement between –1 and 1, corresponding to the two outer edges of the particle. The surface 
wave will take the values –1 and 1 and will be of no direct use for detecting non-sphericity. The reflective and 
refractive signals will be more sensitive. This sensitivity is illustrated in Fig. 8, in which the normalized incident 
point position is shown as a function of scattering angle and particle aspect ratio . For reflection, an oblate 
particle exhibits a smaller incident point shift than the spherical particle of diameter . For  the 
opposite dependency and with an opposite sign is observed. The sensitivity of the  fractional signal is 
also higher. These results have been computed using geometrical optics. 

ba /

p
b2

1.
1.3=p

3=

This dependency can be used to estimate non-sphericity for this special case of a planar optical configuration 
with the major axis of the particle ellipse aligned with the system axis. The sensitivity of such a non-sphericity 
measurement is shown in Fig. 9 for a receiver angle of deg20=ψ . The difference in normalized position 
between the reflection and  fractional signal (relative to the –1 and 1 given by the surface waves) yields 
a rather sensitive estimate for the aspect ratio of ellipticity. 

1.3=p

3. PARTICLE SIZING TECHNIQUES USING THE TIME SHIFT 

The possibility of using the time-shift technique for particle sizing in backscatter will now be investigated 
quantitatively for the various scattering orders involved. Size information can be extracted by examining the 
time shift between signals of like scattering order/mode at different detectors and, using the particle velocity, 
converting this to a volume displacement. To begin therefore, quantitative expressions for the time shift will be 
given for reflection and second-order refraction. 
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General expressions for the position of the incident and glare points can be found in the literature (e.g. Boris 
1996). For symmetric receiver locations ( 21 ψψ −= ) the volume displacement or time shift between the signal 
maxima for reflection ( 1=p ) and first-order refraction ( 2=p ) can be given as a closed solution for the AC 
part (Boris 1996). For reflection the time shift for particle trajectories parallel to the x direction is 

 







+−
+

−







−−
−

−=
−

= ≈≈=

22

2

22

2
)1(

2,
)1(

1,)1(
12

sinsincoscoscos1
sintancoscos

sinsincoscoscos1
sintancoscos

22

ΘΘ

Θ

ΘΘ

Θ

ψφψ
ψφψ

ψφψ
ψφψ∆

x

p

x

maxmaxp

v
d

v
xx

t

 (5) 

where the indexes 1 and 2 indicate the different receivers, as shown in Figs 2 and 4. For the planar configuration 
( deg180=φ ) and for the small intersection angles ( 02sin ≈Θ , 1sin 2 ≈Θ ) considered here, the incident points 
of the two beams coincide and the time shift simplifies to 
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A normalized displacement or normalized incident point position independent of particle size can be defined by 
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The border of the particle in the x direction then corresponds to the coordinates 1 and –1. For reflection this 
relation between normalized volume displacement and receiver is given by 

 
2

sin)1( ψδ =  (8) 

For second-order refraction the incident point shift will depend additionally on mode (  or ) and 
on the relative refractive index . The angular relationship between angle of incident and scattering angle (for 
the planar configuration the elevation angle can be approximated by the scattering angle, 

1.3=p

S
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where the angle of refraction is )/arcsin(sin mit θθ = . 

For a given scattering angle, Eq. (9) must be solved for iθ  iteratively. Solutions are given in Fig. 10 for 
 and  in terms of normalized incident point position as a function of the scattering angle. Note 

that the  mode appears only for elevation angles |
33.1=m

p
5.1=m

2.3= deg15|>ψ  for the refractive index  and that 
the incident point remains near the periphery of the particle. For larger relative refractive indexes ( ) the 
situation becomes more complex and the number of fractional signals may even reach the number of the mode 
p. For instance in Fig 10b a third mode, 

33.1=m
>m 4.1

3.3=p , can be identified. Physically, this means that three different 
ray paths match to a given detector position, consequently there are three pairs of incident and glare points. 
Expressions for the relative displacement of higher scattering orders become somewhat more complex but can 
always be solved numerically using an iteration. For every ray path, e.g. either reflection or second-order 
refraction in the backscatter region, the resulting time shift is given by 
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where 1δ  and  are the respective relative 
displacements for detectors 1 and 2. 1δ  and 2δ  are 
defined by the optical geometry (and relative refractive 
index). The particle diameter is found by measuring the 
velocity  and the time shift of the considered 
scattering order/mode and solving Eq. (10) for d

xv
 p and 

for particles moving parallel to the x axis. For other 
trajectories with 0≠yv  , corrections of the time shift 
must been made by measuring the v  velocity 
component and using Eq. (4). 
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For particles moving near the x axis and for small 
intersection angles, the AC and DC parts of the signal 
will be coincident and the time shift can be measured 
between the signal maxima of the non-filtered bursts. 
For trajectories sufficiently displaced along the  axis, 
or for larger intersection angles, the DC part of each 
detector signal may exhibit two maxima corresponding 
to each of the incident beams, as illustrated in Fig. 5 
(

z

mm160=z ). The required time shift should be the 
time between DC maxima from the same beam glare 
point on each detector. This is somewhat impractical 
because the DC part is more susceptible to narrow-
band noise sources. A more robust measurement can be 
achieved by using the time shift between AC maxima 
of the two detectors signals (of like scattering 
order/mode) as shown in Fig. 5 below. 
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4 SIGNAL PROCESSING 

The accuracy and resolution of the time-shift technique will be in part dependent on the expectation and 
variance of the estimator used to find the AC part maxima. Note that the estimation procedure must also identify 
and separate the fractional signals before the estimation of the maxima is performed. A detailed discussion of 
this procedure can be found in the literature (Nobach, 2002) and will only be briefly reviewed here. The 
assumption is made in the present study that all fractional signals are always present and that the AC and DC 
parts are coincident, as in systems with small intersection angles. 
Signal processing comprises three steps: signal conditioning, burst separation and parameter estimation. The 
signal conditioning filters the signal to yield the DC and AC components of the signal. From the sampled AC 
part, , the envelope is extracted using the (complex) analytical signal , derived 
using the Hilbert transform ℵ . Two additional low-pass filters are applied to the obtained envelope signal to 
suppress oscillations and to improve the signal detection. The first filter works in frequency domain. It has a 
step cut-off frequency to avoid high frequency oscillations. The second filter works in the time domain. It 
additionally smoothes the signal. Because the peak width is a priori unknown, the burst separation routine is 
used twice, first with an pre-estimate width with the number  of bursts to be detected from the signal and the 
total time T of the signal. After the first burst separation, the individual peak width estimates are used to derive 
optimized filter coefficients and to perform the burst separation procedure more accurately. 

)(tuAC )}({)( iACiAC tujtu ℵ+
{}

bN

Each iteration of the procedure yields the arrival time of the highest Gauss peak found in the averaged envelope. 
This procedure is used repeatedly to obtain the parameters of the  bursts. For each detected Gauss peak also 
the individual width parameter is obtained. With the improved estimate of the Gauss peak width the separation 
procedure is performed again to obtain better burst separation results. 

bN

While the signal conditioning and burst processing is performed on each detector signal, the final processing 
step determines the time between fractional signals of like scattering order/mode. Therefore, the detector signals 
are split into  subsignals, each separated at their midpoints by the detected arrival times. The subsignals are 
filled up to  samples using zero padding. For each order/mode and detector, the burst signal  with 

 is transformed to the spectral domain using the Fourier transform. 

bN
sN

db N
)( ik tu

Nk ,,2,1 Κ=

         (∑
=

−=
sN

i
ijikijk tftuwfU

1

)jπ2exp()()( 10 −= sNj Κ  ,  ssj Nfjf /= ) (11) 

with the weights 

 )()( iDCiLPei tutuw =  (12) 

including both the obtained AC envelope (only low-pass filtered) and the obtained DC part of the input signal. 
The  spectra are multiplied yielding a common spectrum db NN

  (13) ( ) ( )∏
=

=
dbNN

k
jkj fSfS

1

which is used to derive a common Doppler frequency using a second-order parabolic interpolation to the 
logarithmic spectrum log(  (e.g. Domnick et al., 1988). In a second step the phase spectra are calculated 
for each burst. Then the individual absolute phases are derived at the detected Doppler frequency using a linear 
interpolation in the phase spectrum 

))( ifS

 ( ))(arg)( jkjk fUf =ϕ  (14) 

Finally, the Doppler frequency of all bursts is used to compute an average particle velocity, hence a volume 
displacement and particle size. 

5 NUMERICAL TEST SIMULATIONS 

Particle sizing using the time-shift technique and the optical configuration shown in Fig. 2 has been simulated 
with the help of signals generated using FLMT. The simulations were performed for the detector elevation 
angles deg201 =ψ  and deg202 −=ψ , which represent the best results for all detector positions investigated, 
and for a measurement volume diameter of . The results are shown as solid symbols in Fig. 11 for the 
different fractional signals: surface wave (short path) + second-order refraction (

µm20
2.3=p ) (Fig. 11a), second-
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order refraction ( ) (Fig. 11b) and reflection (Fig. 11c). The best results are achieved for the surface wave 
(short path) + refraction ( ) and the accuracy increases for larger particles. The increased scatter for small 
particles (for all fractional signals) arises because of the increased overlapping of fractional signals and the low 
intensity. 
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A second result is shown in Fig. 11 by the solid line. These results were obtained using geometrical optics to 
compute the position of the incident points (and glare points) of each order and shows a perfect linear relation. 
The results for the full signals follow closely the linear curves for isolated orders, with small deviations at very 
small particle sizes and for refraction ( ). 1.3=p
Finally, Fig. 11 includes results shown by the open symbols. In this case the signal was simulated with the 
FLMT using only the respective scattering order. This is possible using the Debye series decomposition after the 
FLMT computations. In this simulation no signal overlapping occurs by definition for the reflected light and the 
result is a perfect linear relation between size and time shift. Surface waves and the different modes in a single 
scattering order cannot be calculated separately using the Debye decomposition and therefore they appear all 
together in the calculations for second-order refraction. For the small particles, the surface wave and 1.3=p  
fractional signal are mixed. The deviation of the Debye decomposition from the linear relation of geometrical 

optics in Fig 11b is due to the mixing inside the 
second-order refraction between surface waves and 
different second-order modes. The calculations 
confirm that the scatter in the full-signal results 
originates from order/mode mixing. Nevertheless, 
some systematic trends resulting in a non-linear but 
monotonic diameter/time shift dependency can be 
predicted and considered in converting the time shift 
to particle diameter (Fig 11b). 
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Fig. 11. Particle size estimates from simulated signals 

using various fractional signals and a  
measurement volume diameter (

µm20
deg20±=ψ , 

deg4=Θ , =λ , ).  
a) Surface wave short path (SPSP) + second-
order refraction ( ) , b) Second-order 
refraction ( ), c) Reflection 
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As shown in Eqs. (6), the time shift is a good 
approximation for size, independent of the diameter 
of the incident beam. For larger beam diameters, the 
signals are broader and only a stronger mixing of 
orders occurs. As expected, the smallest measurable 
particle size using this technique for the dominant 
scattering order in backscatter ( ) will be 
determined by the focused size of the measurement 
volume (

2.3=p

µm20, =minpd ). For the scattering orders 
with smaller signal amplitudes (  and 1.3=p 1), 
the limit is already reached at larger diameters 
( µm43, =minpd ), because the non-dominant 
scattering orders are overlapping for small particle 
diameters and the maxima can no longer be 
identified. 

=p

The lower particle size limit can also be reduced by 
using receiver locations where only one scattering 
order dominates. This is the case for normal phase 
Doppler configurations in forward scattering, when 
using first-order refraction. For such a configuration, 
the time shift of the dominant order is not disturbed 
by signals from other scattering orders and the 
technique is limited by the accuracy of 
determination of the maximum signal amplitude. 
This is mainly determined by the signal-to-noise 
ratio of the signal. The time-shift technique works 
for particle sizes down to 1/10 of the beam diameter 
quite well if only one scattering order is used (Boris, 
1996). The present paper has considered the time-
shift technique only in its backscatter realization. 
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6 CONCLUSION 

The time-shift technique for particle sizing in backscatter has been examined in detail. With the conventional 
phase Doppler technique particle size measurement in backscatter is only possible in some special cases and 
therefore very limited. 
The imaging of a shaped beam by a particle creates virtual images of the incident beams and virtual 
measurement volumes for each scattering order. The displacements of these images vary linearly with the 
particle size and permit a measurement of particle diameter for spherical particles. The dependencies of the 
displacement on the system parameters has been given for the AC and the DC part of the signal and it has been 
shown that a planar configuration with a small intersection angle results in useful practical simplifications for 
particle sizing. For such a configuration the trajectory dependence can be corrected by using a two-velocity 
component laser Doppler system. Furthermore, such a system offers the determination of refractive index and 
ellipticity for larger particles in special cases. The scattering orders involved for a backscatter configuration are 
reflection, second-order refraction and surface waves. A signal processing strategy was presented to separate the 
different contributions in the resulting detector signal. To demonstrate the backscatter time-shift technique, 
signals were simulated and processed using the signal processing algorithms introduced. The results show that 
the time-shift technique works well for particle diameters larger than the beam waist diameter. 
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