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Optical Performance Monitoring in Mode Division

Multiplexed Optical Networks
Waddah S. Saif , Amr M. Ragheb , Tariq A. Alshawi , and Saleh A. Alshebeili

Abstract—This article considers, for the first time, optical per-
formance monitoring (OPM) in few mode fiber (FMF)-based op-
tical networks. 1-D features vector, extracted by projecting a 2-D
asynchronous in-phase quadrature histogram (IQH), and the 2D
IQH are proposed to achieve OPM in FMF-based network. Three
machine learning algorithms are employed for OPM and their
performances are compared. These include support vector ma-
chine, random forest algorithm, and convolutional neural network.
Extensive simulations are conducted to monitor optical to signal
ratio (OSNR), chromatic dispersion (CD), and mode coupling (MC)
for dual polarization-quadrature phase shift keying (DP-QPSK)
at 10, 12, 16, 20, and 28 Gbaud transmission speeds. Besides,
M-ary quadrature amplitude modulation (M = 8 and 16) is con-
sidered. Also, the OPM accuracy is investigated under different
FMF channel conditions including phase noise and polarization
mode dispersion. Simulation results show that the proposed 1D
projection features vector provides better OPM results than those
of the widely used asynchronous amplitude histogram (AAH) fea-
tures. Furthermore, it has been found that the 2D IQH features
outperform the 1D projection features but require larger number
of features samples. Additionally, the effect of fiber nonlinearity on
the OPM accuracy is investigated. Finally, OPM using the 2D IQH
features has been verified experimentally for 10 Gbaud DP-QPSK
signal. The obtained results show a good agreement between both
simulation and experimental findings.

Index Terms—Coherent optical communication, few mode fiber,
optical performance monitoring.

I. INTRODUCTION

T
HE rapid advances in information technology and data

usage intensify new challenges and limitations on the

single-mode fiber(SMF)-based optical networks [1]. This mo-

tivated research and development (R&D) agencies to propose

new technologies that utilize fiber space more efficiently. In this

regard, few-mode fiber (FMF)-based transmission systems have

attracted considerable attention toward achieving high-speed

communications utilizing mode division multiplexing (MDM).
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It takes advantage of the extra degree of freedom provided

by several orthogonal modes, and therefore considering each

mode as an independent communication channel. Nevertheless,

increasing the capacity of optical transmission systems by incor-

porating MDM will require new network functions and compo-

nents such as reconfigurable optical add and drop multiplexers

(ROADMs) [2]. This causes optical network architectures to

be more complex and adaptive [3]. Thus, transmitted optical

signals are highly exposed to dynamic optical impairments such

as additive spontaneous emission (ASE) noise, chromatic disper-

sion (CD), etc. In this context, optical performance monitoring

(OPM) is found to be a common need in future MDM optical

networks. This is to track the amount of signal distortion, hence

applying suitable impairment mitigation techniques, allocat-

ing resources more efficiently, and optimizing the routing and

switching functions [3], [4].

The recent developments in digital coherent receivers and

signal processing methods enable OPM of the received signal.

Optical signal-to-noise ratio (OSNR) and CD are considered the

most crucial parameters that affect the performance of optical

fiber communication systems [5]–[8]. OSNR is directly related

to the bit-error-rate (BER). Whereas CD arises in each SMF

span and has a significant influence on the quality of optical

signals [5], [9]. Thus, real-time monitoring is essential to com-

bat CD and maintain optimal channel conditions [5]. Though

CD-uncompensated links are becoming more common, the de-

ployment of these fiber types are still in its fancy. Moreover,

off-the-shelf FMF are suffering form CD impairments [10].

Hence, monitoring CD is required in the current and near future

optical networks.

Various approaches of OSNR estimation have been proposed,

which can be classified into two types: data-aided (DA) [11], [12]

and non-data-aided (NDA) approaches [13]–[15]. The former

approach needs synchronization in order to extract training se-

quences. Besides, it sacrifices the spectral efficiency (SE) owing

to data overhead. On the other side, NDA methods have the

benefit of in-service estimation without reducing the SE. These

include: (i) statistical moments based approaches [13], [14],

which experience degradation of performance when considered

for multilevel constellations [15], (ii) empirical cumulative dis-

tribution function based approaches [15], which only suit mul-

tilevel modulation schemes, and (iii) correlation-based OSNR

estimation methods [16], which fail to distinguish the noise level

in the presence of fiber nonlinearity [17]. The next important as-

pect is CD monitoring. To achieve this, training sequence-based

approaches have been proposed [18]–[20]. In [18] a constant
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amplitude zero-autocorrelation (CAZAC) sequence is used. This

method is robust to ASE noise. However, it requires high-speed

analog to digital converters (ADCs). A fractional Fourier trans-

form (FrFT) based CD estimation method is introduced in [19].

While this method decreases the required sampling rates of

the ADCs, the need to transform the signals into the fractional

domain and find the optimal order of the energy concentration

function makes it of high computational complexity [20]. A

CD estimation based delay-tap sampling (DTS) approach is

proposed in [20]. This technique can be applied under the

ultra-low sampling rate conditions (i.e. about 1/30 of the Nyquist

sampling rate). All of the above methods need training sequences

in the time domain, which reduces system SE. A blind CD

estimation method using spectral cyclostationarity has been

proposed in [21]. This approach is fast and does not need a

training sequence, however, it requires high-speed ADCs.

On the other hand, machine learning algorithms have been

applied to many disciplines and shown to provide superior

results compared to traditional digital signal processing (DSP)-

based approaches [22]. In the field of optical communications,

ML algorithms have been investigated for modulation format

identification (MFI) [23], [24] and/or OPM [25]–[27]. The use

of ML-based algorithms has shown several advantages com-

pared to traditional OPM approaches [27]. One advantage is

in the ability to simultaneously deal with multiple transmission

impairments, while conventional OPM techniques have shown

limited success [28]. ML-based algorithms were able to provide

better results when dealing with non-linear behavior. Also, most

of the DSP-based techniques are based on the training sequences

that sacrifice SE [29], which is not the case with ML-based ap-

proaches. Additionally, recent developments in ML technology

have provided new techniques (e.g. deep learning), which can

help achieving superior performance. Deep learning techniques

have the capability to solve complex models without the need to

build exhaustive analytical models; this makes them well-suited

to face the challenge imposed by the increased complexity and

dynamism of next-generation optical communication [30], [31].

Such advantages have motivated researchers to extensively use

ML-based algorithms to monitor and alleviate fiber channel

impairments.

Over the last two decades, many ML-based OPM techniques

have been proposed. For instance, a deep learning in con-

junction with eye diagram is proposed to monitor modulation

format, OSNR, roll-off factor (ROF), and timing skew for QAM

signals [32]. Although this technique provides high accuracy

results, it requires precise time clock recovery. The authors

in [33] proposed simultaneous MFI and OSNR monitoring using

amplitude histogram with multi-task learning based artificial

neural network. This approach is advantageous since it does

not need timing recovery and the associated hardware. How-

ever, when the received signal is heavily impaired by CD, the

distinction between different impairments becomes difficult.

Convolutional neural network (CNN) based asynchronous DTS

(ADTS) is proposed for OPM in [34]. This method increases

the monitoring range owing to its ability to capture information

about the detected signal’s slope. The downside, however, is that

the technique requires two sampling clocks, which increases

the cost. The authors in [5] proposed simultaneous OSNR and

CD monitoring algorithm using long short-term memory neural

network (LSTM-NN). This technique has the advantage that it

does not need handcrafted features extraction. However, LSTM

models require large amounts of memory. Transfer learning

assisted deep neural network (DNN) algorithm is proposed

in [35] to perform OSNR monitoring. Transfer learning relies

on previous knowledge instead of random initialization, which

leads to faster training. This technique provides results with high

accuracy over a wide OSNR range. However, it’s only used for

OSNR monitoring.

So far, the reported OPM methods focus on the use of various

ML-based techniques to monitor and estimate optical channel

impairments in SMF-based networks. In this work, we aim to

investigate ML-based OPM algorithms in the FMF-based optical

networks. In contrast to SMF, FMF has other new impairments

such as mode coupling (MC), which makes OPM a challenging

task. Therefore, the following is considered in this study.

1) We present investigation considering, for the first time,

OPM in FMF-based network employing five spatial or-

thogonal modes (i.e. LP01, LP11a, LP11b, LP21a, and

LP21b). We use support vector machine (SVM) trained

with one-dimensional (1D) features vector extracted by

projecting the two-dimensional (2D) in-phase quadrature

histogram (IQH), which combines both the in-phase (I)

and quadrature (Q) information, to monitor OSNR, CD,

and MC for a 10-Gbaud dual polarization-quadrature

phase shift keying (DP-QPSK) system.

2) We consider two types of 1D features vectors. The first

type is obtained by taking the horizontal projection of

2D IQH, while the second type is obtained based on the

diagonal projection. Then, we compare the monitoring

accuracy of both types of 1D features vectors with that

of amplitude histogram (AAH) using SVM regressor.

3) We present OPM based on 2D IQH, and compare the

monitoring accuracy when three ML-based regressors are

used, including the convolutional neural network (CNN),

random forest, and SVM algorithms.

4) We assess the effectiveness of the proposed OPM method

by testing its performance under different values of phase

noise, first-order polarization mode dispersion (PMD),

symbol rates, and different modulation schemes.

5) We study the impact of fiber nonlinearity in terms of mode

groups self-phase modulation (SPM) and cross-phase

modulation (XPM). The OPM performance is investigated

under different transmitted optical power.

6) We carry out a proof of concept experiment for OPM using

2D IQH with CNN.

The structure of this paper is organized as follows: Section II

provides a background about FMF, feature extraction, and ML

algorithms used in this work. The simulation setup is described

in Section III. In Section IV, we discuss the obtained results. The

proof of concept experiment is presented in Section V. Finally,

we conclude the paper in Section VI.

II. OPM IN FMF-BASED NETWORK

FMF allows the propagation of a finite number of guided

propagation modes. These modes are the transverse electric
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Fig. 1. Normalized Mode Power As Function of the Radius in the Fiber.

field distributions propagating along the fiber axis. The optical

fiber modes are described as linearly polarized LPlp waves,

where l and p are integer numbers describing the radial and

azimuthal indices. The mode intensity for a given LPlp mode

can be expressed as [36], [37]

ψ (r, φ) =

{

Flp(r) cos(lφ)

Flp(r) sin(lφ)
(1)

where cos(.) and sin(.) reflect the choice between two spatial

configurations of the mode and F is the mode field, which is

inserted into the wave equation, to give [38]

F
′′

lp(r) +
F

′

lp(r)

r
+

(

n2(r)k2 −
l2

r2
− β2

lp

)

Flp(r) = 0 (2)

where k = 2π/λ, λ is the wavelength, β is the propagation

constant, r represents the distance from the center core (i.e r = 0
at the center core), and n(r) is the refractive index profile given

by

n(r) =

{

n1 r < a

n2 r ≥ a
(3)

where a is the core radius, n1 is the core refractive index, and

n2 is the cladding refractive index. For example, in Fig. 1, we

show the normalized mode intensity of five propagating modes,

along the fiber cross-section. The intensity of LP01 and LP02

shows a peak value at the fiber center. However, the LP11 and

LP21 modes have a maximum value at 4.8 µm and 6.7 µm away

from the center and zero value at the fiber center.

FMF-based optical network exploiting LP modes has been

considered thoroughly in literature to scale the capacity of

optical systems. It can be smoothly integrated with wavelength

division multiplexing (WDM) network, as shown in Fig. 2,

where different WDM signals can be transmitted at the same

band using different modes [39]. This combination of WDM

and FMF supports high speed transmission that can reach up

to hundreds of Tera bit/s [40], [41]. For instance, three modes

graded-index FMF transmission over C and L bands have

been demonstrated to achieve data rates of 159 Tbit/s [40]

Fig. 2. Hybrid WDM-MDM Architecture..

and 280 Tbit/s [41]. Furthermore, SDM networks based on

multi-core fibers and FMF increase the transmission capacity

dramatically using a single optical fiber cable [42], [43]. By us-

ing 6-mode and 19-core fiber, the authors in [42] and [43] demon-

strated 2.05 and 10.16 Pbit/s transmission over the C-band and

C+L bands, respectively. Additionally, FMF-based transmission

is well-matched with passive optical network (PON), where

the different spatial modes can be used for both upstream and

downstream communications [39]. In this regard, the authors

in [44] proposed a bidirectional MDM-PON architecture and

experimentally demonstrated a bidirectional PON transmission

over 10-km FMF.

Nevertheless, in addition to the existing impairments of the

traditional WDM network, the FMF-based network has addi-

tional impairments such as mode coupling (MC), which arises

from the crosstalk between the different propagating modes.

This results in transmission performance deterioration [45], [46].

Such impairments will impose an additional burden on the next

generation fiber networks, where OPM becomes an important

tool for system management.

The procedure to perform ML-based OPM, after the signal

acquisition, includes two main stages: In the first stage, specific

features from the signal is extracted. These features contain

information about the signal impairments. In the second stage,

the extracted features are applied to an ML algorithm (i.e.

regressor) which is used to estimate the signal impairment. More

details about the features types and ML algorithms exploited in

this work are given in the following subsections.

A. Features Extraction

This is the process of choosing the most useful parameters that

help reducing the dimensionality of the dataset; thus, enabling

the classification/regression algorithms to operate faster and

more effective. AAH is one of the most common features in

OPM and MFI that is based on asynchronous sampling, where

the received signal is sampled at a rate lower than the signal

symbol rate. The amplitude of both I and Q sample’s components

is used to build the histogram. AAH is sensitive to some types

of optical impairments, as changing the impairment level causes

AAH profiles change. Thus, it can be used to differentiate

between different values of the same impairment. However,

the presence of multiple signal impairments complicates the

monitoring process, when AAH is being used [47].
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Fig. 3. An Illustration of the Projection Process (a) 2 d IQH (left) and the
Corresponding IQHH (right), and (b) 2 d IQH (left) and the Corresponding
IQHD (right).

To extract more details of the statistical properties of the

monitored signal, 2D IQH is proposed in [46]–[48]. In 2D IQH,

the asynchronous samples of I and Q are utilized to build a 2D

histogram.

IQH features are closely related to constellation diagram. As

majority of the impairment types are affecting the constellation

shape in one way or another, hence IQH features will also be

affected (i.e., IQH features will sense the changes; thereby they

can be used for monitoring).

In this work, we propose two types of 1D features vectors that

can be constructed from projecting a 2D IQH onto two different

axes. The main motivation behind the use of 1D features vectors

is twofold:

1) to reduce the dimensionality of the problem, hence im-

prove its computational requirements;

2) to allow the use of ML algorithms well-suited for process-

ing 1D features vectors.

The first features vector is obtained by projecting the 2D IQH

over either vertical or horizontal axes. In our development, we

consider the horizontal axis and we call it IQHH (see Fig. 3(a)).

On the other hand, the second features vector is obtained by

projecting the 2D IQH over the diagonal axis and we call it

IQHD (see Fig. 3(b)).

Let 2D IQH(k, i), where k, i = 1, 2, . . ., n, represent the IQH

matrix (n = 80 in our case). The IQHH and IQHD vectors can

be represented mathematically as

IQHH(k) =

n
∑

i=1

IQH(k, i), k = 1, 2, . . . , n (4)

IQHD(k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

k
∑

i=1

IQH(k − i+ 1, i), 1 ≤ k ≤ n

n
∑

i=k+1−n

IQH(k − i+ 1, i), n < k ≤ 2n− 1

(5)

The two features IQHH and IQHD are, in fact, the inverse Fourier

transform (FT) of the 1D slices of the 2D FT of IQH, computed at

(ω1 = 0 and ω2 = ω) and (ω1 = ω2 = ω), respectively. Specif-

ically, let C(ω1, ω2) be the 2D FT of IQH; that is,

C(ω1, ω2) =
n−1
∑

k=0

n−1
∑

i=0

IQH(k + 1, i+ 1) exp(−jω1k − jω2i)

(6)

By setting ω1 = ω and ω2 = 0 in (6), we have

C(ω, 0) =
n−1
∑

k=0

{

n−1
∑

i=0

IQH(k + 1, i+ 1)

}

exp(−jωk) (7)

Equation (7) reveals that the 1D slice C(ω, 0) is the FT of the

1D projection IQHH(k). Similarly, it can be shown that the 1D

slice C(ω, ω) is the FT of the 1D projection IQHD(k). It is of

interest here to note that the required number of features points

has been reduced by using 1D projections from n2 for the 2D

IQH to n points for the IQHH and to 2n− 1 points for the IQHD.

Both IQHH, IQHD features convey information about both

amplitude and phase of signal samples. Also, IQHD extracts

more information from 2D IQH compared to IQHH, hence, it

has better performance as will be shown in the next section. On

the other hand, the AAH extracts information from the amplitude

only. Hence, IQH achieves better performance than that of AAH.

However, compared with coherent detection-based IQH, direct

detection-based AAH has the competitive advantage in terms of

implementation cost.

These extracted features are affected by signal degradation;

thereby provide information about the degradation level for

different impairments. Figure 4(a) shows the effect of OSNR

on IQHH and IQHD features in comparison with the traditional

AAH features, in the presence of low MC and CD= 0 ps/nm. It

is noted that as the OSNR value decreases, the peaks values

reduce. Also, the AAH features are more noisier than those

of IQHH and IQHD. This is intuitively not surprising because

there is more averaging in the computation of IQHH and IQHD

than that in the AAH. Similar conclusions can be drawn from

Fig. 4(b), which shows the effect of other impairments (high MC

and CD=1160 ps/nm) on the shape of three features.

B. ML-based Regression Techniques

ML regression is a kind of algorithms that aims to build

a predictive model that maps continuous inputs to continuous

outputs (i.e. targets). In the following subsections, we discuss

the ML algorithms used in this paper.

1) Support Vector Machine: Support vector machine (SVM)

is one of the most widely used ML-based algorithms. It can

be used for both classification and regression problems [49],

[50]. To use SVM in FMF-based OPM, the mathematical model

is constructed from a training dataset that involves AAH, 2D

IQH, IQHH, and IQHD. In this work, a linear kernel is used. The

sequential minimal optimization (SMO) is utilized for solving

the regression optimization problem.

2) Random Forest (RF) Regression: Random forest, as its

name implies, comprises several numbers of individual decision

trees that work as an ensemble [51]. The random forest offers

relatively accurate results because it allows each tree to be
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Fig. 4. OSNR Effect on the Features, AAH (left), IQHH (middle), and IQHD (right) (a) At Low MC and 0 Ps/nm and (b) At High MC and 1160 Ps/nm.

trained on different conditions, i.e. extract different features,

hence, enhance the prediction result [52].

3) Convolutional Neural Network (CNN) Regression: CNN

is a kind of DNN algorithms that can be used for handling

data that have a grid-like topology, such as image data [53].

It decreases the number of trainable parameters by sharing the

weight over the input data. Basically, CNN consists of three types

of layers; convolutional, pooling, and fully connected layers, as

shown in Fig. 5. The input layer accepts the extracted features,

i.e. IQHs, and passes them to the first convolution layer. In

the convolutional layer, convolution is performed with kernel

filters (of size 3× 3) that are initialized randomly to produce

some feature maps. The dimensions of the first convolution

layer are 80× 80× 16, which represent an input of 80× 80
pixels and 16 convolution kernels. All the convolution layers

are associated to activation functions (i.e. rectified linear unit

(ReLU) function). Then, the pooling layer reduces the dimension

of each feature map using a down sampling filter of size 2× 2.

The dimensions of the second, third, and forth convolution

layers are 40× 40× 32, 20× 20× 64, and 10× 10× 64, re-

spectively. The output of the previous layer is converted to a

1D vector and passes through a connected layer that produces

the desired output. CNN is trained, first, to minimize the mean

square error (MSE) between network output and target value.

More details about the architecture of employed CNN are given

in the caption of Fig. 5.

Fig. 5. Schematic Diagram of CNN Algorithm. the Network Hyper Parameters
Include; Input Layer: 2 d IQH of 80× 80. Convolutional 1 Layer: Sixteen
80× 80Feature Maps Generated Using Sixteen3× 3Kernels. Pooling 1 Layer:
Sixteen 40× 40 Feature Maps Obtained After 2× 2 Downsampling. Convolu-
tional 2 Layer: Thirty-two 40× 40 Feature Maps Generated Using Thirty-two
3× 3 Kernels. Pooling 2 Layer: Thirty-two 20× 20 Feature Maps Obtained
After 2× 2 Downsampling. Convolutional 3 Layer: Sixty-four 20× 20 Feature
Maps Generated Using Sixty-four 3× 3 Kernels. Pooling 3 Layer: Sixty-four
10× 10 Feature Maps Obtained After 2× 2 Downsampling. Convolutional 4
Layer: Sixty-four 10× 10 Feature Maps Generated Using Sixty-four 3× 3

Kernels. Pooling 4 Layer: Sixty-four 5× 5 Feature Maps Obtained After
2× 2 Downsampling.the Used Activation Function is the Rectified Linear Unit
(ReLU).

III. SIMULATION SETUP

Fig. 6 shows the system configuration used in the simula-

tion setup, developed using VPItransmissionMaker ver. 10. It

comprises five optical DP transmitters operating at 1550 nm,
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Fig. 6. Simulation Setup of the Proposed FMF-OPM System. LD: Laser Diode, EDFA: Erbium-doped Fiber Amplifier, VOA: Variable Optical Attenuator,
MUX: FMF Multiplexer, DEMUX: FMF De-multiplexer, FMF: Few Mode Fiber, PBS: Polarization Beam Splitter, ADC: Analog to Digital Convertor, LO: Local
Oscillator, BD: Balanced Detector.

TABLE I
PHYSICAL PROPERTIES OF FMF CHANNEL

FMF multiplexer and de-multiplexer, FMF cable, and five digital

coherent receivers. At each transmitter block, a DP-QPSK signal

is generated at a system speed of 10 Gbaud. The 1550 nm

laser source has a linewidth of 10 kHz. An Erbium-doped fiber

amplifier (EDFA) with variable optical attenuator (VOA) is

employed to emulate different OSNR values. Five spatial modes

including LP01, LP11a, LP11b, LP21a and LP21b are considered,

where a spatial multiplexer with five SMF inputs is exploited

to generate a linear combination of the spatial modes into the

FMF channel. The FMF cable has a step-index (SI) profile

and physical properties such as dispersion, dispersion slop, and

differential group delay (DGD). In Table I, we summarize the

properties of a commercial FMF (OFS company) that is used

in our system. The deviation from the ideal group delays in the

degenerate groups of the LP modes (i.e. intra mode group) is

5× 10−15 s/m. Also, for nonlinear calculations, the effective

area of the fundamental mode (LP01) is 80× 10−12m2 and the

non-linear refractive index is 2.6× 10−20m2/w.

To emulate the influence of MC, two non-ideal connectors

with lateral misalignment are assumed, as in [45]. Additionally,

the length of FMF is adjusted in order to provide different values

of CD. At the receiver side, we used modes de-multiplexer to

separate the five spatial modes and fed them into five optical

receivers. A digital coherent receiver is utilized at each receiver

block which converts the received optical signal, of each mode,

into an electrical signal. For each polarization, the detected

signal’s components (i.e. I and Q) are digitized by two ADCs

working at 500 Msamples/s. The obtained samples (i.e. 8192

amplitude samples for each component) are captured directly

after the ADCs as in [5], [54] and stored for offline processing.

First, we applied sample normalization by division over sam-

ple’s standard deviation. Then, we built the 2D IQH with size

(80× 80) and AAH with length 200 [46], [55]. Finally, the IQHH

and IQHD are computed by applying the projection process to

obtain features vectors with lengths 80 and 159, respectively, as

discussed in Section II. These features are used as inputs to the

different ML algorithms.

IV. RESULTS AND DISCUSSION

MC is a key impairment that affects transmission over FMF

cables. It arises from the misalignment in optical connec-

tors/splices and is controlled by the displacement parameter

δD [45]. This impairment destroys the orthogonality among

fiber modes and results in crosstalk between different modes

expressed by the MC matrices shown in Fig. 7. These matrices

are obtained according to [45], where the diagonal values denote

the self-coupling coefficients while the remaining values indi-

cate the cross-coupling coefficients. In this study, two misaligned

connectors/splices are considered along the FMF cable. The

displacement parameters for both connectors vary from 0.05

to 0.25 µm with a step of 0.05 µm.

To assess OPM in FMF-based network, we built an impair-

ments dataset that comprises: OSNR values ranging from 8

to 20 dB in a step of 2 dB (note that changing the step of

OSNR to 1 or 0.5 dB has marginal effect on the monitoring

accuracy); CD values ranging from 160 to 1120 ps/nm in a step of

160 ps/nm; and a list of self-coupling values of 0.96, 0.88, 0.81,

0.74, 0.67, 0.62, 0.53, and 0.47. We generated 200 realizations

for each impairment value. For instance, for OSNR monitoring,

the total number of realizations is 7 (OSNR values) × 200 =
1400 realizations. The dataset is split into 70% for training

and 30% for testing. In the next subsections, we present results

considering the following cases.

1) We fix the regressor (to be the SVM) and evaluate the

monitoring performance utilizing the three 1D features
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Fig. 7. MC Matrices of the Five Spatial Modes, (a) At (δD1 = 0.05 and δD2 = 0.05), (b) At (δD1 = 0.1 and δD2 = 0.1), (c) At (δD1 = 0.1 and δD2 =

0.15), (d) At (δD1 = 0.15 and δD2 = 0.15), (e) At (δD1 = 0.15 and δD2 = 0.2), (f) At (δD1 = 0.2 and δD2 = 0.2), (g) At (δD1 = 0.2 and δD2 = 0.25), (h)
At (δD1 = 0.25 and δD2 = 0.25).

vectors (AAH, IQHH, and IQHD). The output of this part

of study reveals that IQHD has the best performance.

2) We fix the input features to be the 2D IQH and evaluate the

monitoring performance when three ML regressors (CNN,

RF, and SVM) are being used. Note that the columns

of 2D IQH features matrix is concatenated in the form

of 1D features vector when applied as input to RF and

SVM algorithms. In this study, it has been found that the

monitoring performance of CNN outperforms that of other

two ML algorithms.

3) We fix the regressor (to be the SVM) and evaluate the

monitoring performance utilizing the 2D IQH features and

the 1D features vector IQHD. The output of this part of

study reveals that the 2D IQH has better performance.

4) We fix the regressor and features to be the CNN and 2D

IQH, respectively, and evaluate the monitoring perfor-

mance under different values of phase noise, first-order

PMD, symbol rates, and modulation schemes.

It is worth noting that the performance of a single spatial mode

(i.e. LP11a) is considered, to avoid redundancy in results.

A. Results of OPM Using 1D Projections

In this subsection, we discuss the monitoring results of 1D

features in conjunction with SVM regressor. We considered

two types of projections including IQHH and IQHD, then we

compared their performances with the commonly used AAH

features. The effectiveness of monitoring is assessed using

graphical inspection and quantitative measure. The graphical

representation is performed using boxplot. A boxplot is a stan-

dardized way to display data distribution by using five statistical

measures, which are the minimum, first quartile (Q1), median,

third quartile (Q3), and maximum of dataset [56]. It tells about

the skewness of data distribution and presence of outliers. In this

context, the minimum and maximum of a dataset are defined

as Q1 − 1.5× IQR and Q3 + 1.5× IQR, respectively. Here,

IQR is the difference betweenQ3 andQ1. Therefore, any sample

of value less than the minimum or greater than the maximum is

considered an outlier.

Also, the coefficient of determination is used as a quantitative

measure, which is expressed as [57]

ρ = 1−

∑N
n=1

(yn − ŷn)
2

∑N
n=1

(yn − ȳ)2
(8)

where yn is the actual data, ŷ is the estimated data, N is the

total number of test samples, and ȳ is the sample mean. This

measure gives some information about the goodness-of-fit of

a model. In particular, ρ tells how well the regression results

approximate the true target values. When ρ = 1, this means the

model’s output exactly match the target (ground truth) values.

While ρ = 0 means that the model cannot predict the true target

values.

The regression results of OSNR, CD, and MC are shown in

Fig. 8. The results show that the IQR range for both IQHH,

and IQHD is relatively less than AAH which provides initial

indication that the IQHH and IQHD produce better results than

AAH. The results is confirmed using the coefficient of determi-

nation where its values for OSNR monitoring in case of AAH,

IQHH and IQHD features are 0.90, 0.94, and 0.97, respectively.

Similarly, for CD and MC, IQHD provides the best prediction

results with coefficient of determination values of 0.86 and 0.77,

respectively.

The OPM performance is also assessed in the coexistence of

multiple impairments. Nine monitoring cases have been consid-

ered for each impairment, as illustrated in Fig. 9. For instance,
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Fig. 8. OPM Using SVM With AAH (left), IQHH(Middle), and IQHD (right) for (a) OSNR, (b) CD, and (c) MC.

Fig. 9. Monitoring Strategy of the Different Impairments.

to monitor OSNR, we choose MC values of 0.97 (MCL), 0.74

(MCM ), and 0.47 (MCH ) in the coexistence of 0, 550, and

1100 ps/nm CD values. This generates 9 monitoring cases.

The monitoring results are demonstrated according to ρ (z-axis)

versus the impairments type (x- and y-axis), as shown Fig. 10.

The OSNR monitoring accuracies at CD = 0 ps/nm, decreased

from 90%, 94%, and 97% (at MCL) to 70%, 84%, and 85%

(at MCH ) for AAH, IQHH, and IQHD, respectively. It is worth

noting that the prediction accuracy of OSNR outperforms that

of CD and MC, since the OSNR values have relatively more

noticeable effect on the constellation diagrams than those of

CD and MC, which reflects on the extracted features. And, in

all cases, the performance of proposed 1D projection features

outperforms that obtained by the widely used AAH features.

Further, the IQHD is the best among all other features vectors.

B. Results of OPM Using 2D IQH

To improve the monitoring accuracy, CNN in conjunction

with the 2D IQH are employed. CNN has the ability to extract

abstractive information from high-dimensional input. Besides, it

is robust with respect to over-fitting [58]. In order to demonstrate

the effectiveness of CNN, SVM and random forest algorithms

are considered. Fig. 11 illustrates the monitoring results for

separate impairments (i.e. OSNR, CD, or MC) using 2D IQH

with different regressors including CNN, random forest, and

SVM. It is clear that the prediction accuracy for OSNR and CD,

in terms of the coefficient of determination, shows quit similar

performance for the three regressors. However, for MC, the SVM

produces the worst accuracy. In Fig. 12, we show the coefficient

of determination of OSNR, CD, and MC in the coexistence of

multiple impairments, as described in Fig. 9. The results indicate

that monitoring accuracies of CNN are greater than SVM and

random forest. However, random forest provides relatively better

accuracy results than those of SVM.
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Fig. 10. Monitoring Results Using AAH, IQHH, and IQHD Features and SVM Regressor, (a) OSNR, (b) CD, and (c) MC.

Fig. 11. OPM Using 2 d IQH With CNN (left), Random Forest (Middle), and SVM (right) (a) OSNR (b) CD, and (c) MC.
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Fig. 12. Monitoring Results Using 2 d IQH Features With CNN, SVM, and Random Forest Regressors for (a) OSNR, (b) CD, and (c) MC.

Fig. 13. Comparisons Between Monitoring Results of 2 d IQH and IQHD.

Also, in Fig. 13, we compare the performance of 2D IQH

using SVM with the results obtained in the previous section for

IQHD using the same regressor. It can be observed that the OSNR

monitoring results for both features are quite similar, except at

high CD value (i.e. 1100 ps/nm), where the performance of 2D

IQH outperforms that of IQHD. Similarly, for CD monitoring,

both features provide the same performance, except at high

OSNR value (i.e. 20 dB), the 2D IQH performance is better

than IQHD. However, for MC monitoring, 2D IQH provides the

best performance.

As 2D IQH with CNN shows better performance than other

algorithms, we focus only on CNN’s regressor in the following

analysis. We assess the FMF-based OPM for various conditions

including PN, PMD, and different modulation schemes and

baud rates. This is achieved in the coexistence of multiple

impairments, in particular, monitoring OSNR (when CD =
550 ps/nm and MCM ), CD (when OSNR = 14 dB and MCM ),

and MC (when OSNR = 14 dB and CD = 550 ps/nm). First,

we investigate the OPM performance in case of PN ranging

from 0 to 1 MHz and 1st PMD with a DGD ranging from 5

to 25 ps, and a principal states of polarization (PSP) angle of

45o. It is observed from Fig. 14(a) that the OSNR monitoring

accuracy maintains greater than 0.97 even when PN reaches

Fig. 14. OPM Results Using 2 d IQH Features and CNN Regressor At
(a) Different PN Values, and (b) Different PMD Values.

1 MHz, while the CD and MC accuracies decrease to 0.8 and

0.77, respectively. Similarly, in case of PMD, the accuracy is still

greater than 0.94 when DGD reaches 25 ps. However, CD and

MC accuracy reduces to 0.85 and 0.76, respectively, as shown

in Fig. 14(b).

Second, we investigated OPM at 10, 14, 20, and 28 Gbaud

system speeds. It is clear from Fig. 15 that the OSNR accuracy

approximately remains unchanged up to 20 Gbaud and decreases
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Fig. 15. OPM Results Using 2 d IQH Features and CNN Regressor At
Different Data Rates.

Fig. 16. OPM Results Using 2 d IQH Features and CNN Regressor When
Using DP-8QAM (left) and DP-16QAM (right) (a) OSNR Monitoring, (b) CD
Monitoring, and (c) MC Monitoring.

to 0.85 when the symbol rate reaches 28 Gbaud. However, the

CD monitoring accuracy gradually increases from 0.91 at 10

Gbaud to 0.98 at 20 Gbaud then decreases to 0.88 at 28 Gbaud.

The reason for this is that in the case of 10 Gbaud, there is a

very slight effect on the 2D IQH for the different CD values,

Fig. 17. OPM Results Using 2 d IQH Features and CNN Regressor At
Different Transmitted Power Values in the Presence of Fiber Nonlinearity.

Fig. 18. Experimental Setup of the Proposed FMF-OPM System. CD: Chro-
matic Dispersion, MC: Mode Coupling, LO: Local Oscillator, LD: Laser Diode,
EDFA: Erbium-doped Fiber Amplifier, VOA: Variable Optical Attenuator, OC:
Optical Coupler, OSA, Optical Signal Analyzer, OMA, Optical Modulation
Analyzer, CNN, Convolutional Neural Network.

especially at small values such as 160 and 320 ps/nm. On the

other hand, as the symbol rate increases to 14 and 20 Gbaud,

the disparity between the different CD values becomes more

pronounced, which increases the monitoring accuracy. However,

as the symbol rate increases to 32 Gbaud, the 2D IQH becomes

noisy especially in high CD values, which leads to a decrease

in monitoring accuracy. Besides, the MC accuracy reduces from

0.86 at 10 Gbaud to 0.7 at 28 Gbaud.

Third, the OPM for DP-M-QAM (M= 8 and 16) is addressed.

It can be seen from Fig. 16 that there are no major differences

in the accuracies of the two schemes. The prediction accuracies

for DP-8-QAM(DP-16-QAM) are 0.98(0.97), 0.97(0.93), and

0.90(0.88) for OSNR, CD, and MC monitoring, respectively.
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Fig. 19. Experimental Results of OPM Using 2 d IQH With CNN (a) OSNR Monitoring, (b) CD Monitoring, and (c) MC Monitoring.

This performance makes the 2D IQH a viable candidate for OPM

in FMF-based optical networks.

Finally, to investigate the effect of fiber nonlinearity on the

OPM accuracy, we studied the fiber nonlinear effect in terms

of the nonlinear factor kuv , which takes into account the SPM

and XPM coefficients [59]. kuv describes the nonlinear factor of

the two spatial modes u, v. For instance, if Gu, defined as mode

group, contains only a single spatial mode with two orthogonal

polarizations, the kuu factor will be given by [60] kuu = 8/9.

Also, we considered kuv = 0.895 [59]. The OPM is investigated

under different transmitted optical power as shown in Fig. 17.

The transmitted power ranges from 0 to 15 dBm. It can be

observed that the OSNR, CD, and MC accuracies remain almost

unchanged up to 12 dBm and decrease to 0.83, 0.75, and 0.62,

respectively, at 15 dBm optical transmitted power.

V. EXPERIMENT VERIFICATION

A proof-of-concept experiment is performed to verify the

feasibility of the proposed OPM scheme. The experimental setup

is illustrated in Fig. 18. At the transmitter side, 10 different sets

of pseudo-random binary sequence (PRBS) of length 211-1 are

generated. These data are mapped into five 10 Gbaud DP-QPSK

signals that represent five spatial modes (i.e. LP01, LP11a, LP11b,

LP21a and LP21b). For each polarization, the effect of crosstalk

between the different modes (i.e. MC) and CD are introduced

digitally in the transmitter DSP. The MC effect can be imple-

mented using the following equation [46].

aout = C ain (9)

where ain and aout are the input and output mode vectors,

respectively, and C is the coupling matrix given by

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c01−01 c11a−01 c11b−01 c21a−01 c21b−01

c01−11a c11a−11a c11b−11a c21a−11a c21b−11a

c01−11b c11a−11b c11b−11b c21a−11b c21b−11b

c01−21a c11a−21a c11b−21a c21a−21a c21b−21a

c01−21b c11a−21b c11b−21b c21a−21b c21b−21b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where the matrix element ci−j is the coupling coefficient be-

tween the ith and jth modes, as in Fig. 7.

Similarly, the CD effect is introduced by multiplying its

frequency response e−jλ2˜w2DL/4πc by the frequency domain

Fig. 20. Simulation vs Experimental Results of OPM Using 2 d IQH With
CNN.

of each mode, where λ is the signal wavelength, w is the angular

frequency, L is the fiber length, c is the speed of light, and D
is the dispersion parameter which is given in Table I. The MC

is precisely adjusted according to Fig. 7 and the CD value is

varied from 160 ps/nm to 1100 ps/nm. The OPM performance

based on LP11a mode is investigated, as in the simulation section.

Four electrical multilevel driving signals (I and Q for individual

polarization) are generated using Keysight M8195 A 64 GSa/s

arbitrary waveform generator and applied into a DP-IQ Mach-

Zehnder modulator (DP-IQM). A narrow-linewidth distributed-

feedback fiber laser (NKT-Photonics) centered at 1550 nm is

used as a carrier signal and modulated by the DP-IQM. In order

to address the effect of OSNR, an ASE noise source is added

to the optical signal using an EDFA and an optical attenuator,

which is used to control the OSNR between 8 - 20 dB. The

generated optical signal is combined with ASE noise source via

a 50:50 optical coupler (OC). Then, the OC’s output is split into

two branches. One branch is used to adjust the OSNR value

via an optical spectrum analyzer (OSA) of 0.06 nm resolution

bandwidth while the other is connected to an optical coherent re-

ceiver (N4391 A Keysight optical modulation analyzer (OMA)).

Lastly, the offline processing for OPM is performed using the

2D IQH features and CNN regressor. It is worth noting that

the obtained samples are taken, after the sampling stage, before

demodulation stage. We studied the OPM for two cases. In the

first case, we monitored OSNR (when CD= 0 ps/nm and MCL),
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CD (when OSNR = 20 dB and MCL), and MC (when OSNR

= 20 dB and CD = 0 ps/nm). Whereas, in the second case,

we monitored OSNR (when CD = 550 ps/nm and MCM ), CD

(when OSNR = 14 dB and MCM ), and MC (when OSNR =
14 dB and CD= 550 ps/nm). Fig. 19 shows the OPM monitoring

accuracies results for the first case. As shown in this figure, the

coefficient of determination for OSNR, CD, and MC are 0.98,

0.92, and 0.91, respectively. Besides, in Fig. 20, we compare the

simulation and experimental results for both monitoring cases

where a good agreement between them can be observed.

VI. CONCLUSION

In this paper, we investigated OPM in FMF-based optical

networks by proposing 1D features (the IQHH and IQHD) and

the 2D IQH features. We evaluated the performance of OPM, via

simulation and experiment, using 10 Gbuad-DP-QPSK signal.

The results showed that we can accurately estimate OSNR values

in the range of 8 to 20 dB, CD values ranging from 160 to

1100 ps/nm, and different mode coupling coefficient values.

However, the presence of impairment(s) with level(s), making

IQH features almost indistinguishable for different cases, will

negatively impact the monitoring performance. Also, we showed

that both IQHD and IQHH are providing better performance

than the conventional AAH, besides, IQHD outperforms IQHH.

Also, there is a trade-off between IQHD and 2D IQH, where

the 2D IQH provides better accuracy, but it requires larger

number of input features samples to be applied to ML regressors.

Furthermore, the results show that the proposed CNN-based

OPM can tolerate laser PN and PMD, as well as, it has slight

variations due to change in data rate and modulation format.

This shows the viability of the proposed 2D IQH features to be

considered for OPM in FMF-based coherent optical networks.
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