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We present a detailed study of the vibrational properties of single wall carbon nanotubes �SWNTs�. The
phonon dispersions of SWNTs are strongly shaped by the effects of electron-phonon coupling. We analyze the
separate contributions of curvature and confinement. Confinement plays a major role in modifying SWNT
phonons and is often more relevant than curvature. Due to their one-dimensional character, metallic tubes are
expected to undergo Peierls distortions �PD� at T=0 K. At finite temperature, PD are no longer present, but
phonons with atomic displacements similar to those of the PD are affected by strong Kohn anomalies �KA�. We
investigate by density functional theory �DFT� KA and PD in metallic SWNTs with diameters up to 3 nm, in
the electronic temperature range from 4 K to 3000 K. We then derive a set of simple formulas accounting for
all the DFT results. Finally, we prove that the static approach, commonly used for the evaluation of phonon
frequencies in solids, fails because of the SWNTs reduced dimensionality. The correct description of KA in
metallic SWNTs can be obtained only by using a dynamical approach, beyond the adiabatic Born-Oppenheimer
approximation, by taking into account nonadiabatic contributions. Dynamic effects induce significant changes
in the occurrence and shape of Kohn anomalies. We show that the SWNT Raman G peak can only be
interpreted considering the combined dynamic, curvature and confinement effects. We assign the G+ and G−

peaks of metallic SWNTs to TO �circumferential� and LO �axial� modes, respectively, the opposite of semi-
conducting SWNTs.
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I. INTRODUCTION

Carbon nanotubes are at the center of nanotechnology
research.1,2 The determination of their structure, phonon dis-
persions, and Raman spectra is a most intense area of inves-
tigation since their discovery.3–6 Single wall nanotubes
�SWNTs� can be described either as giant molecules or one-
dimensional crystals. Due to their reduced dimensionality,
confinement effects play a fundamental role in shaping their
physical properties, such as the metallic or semiconducting
character or the electron transport mechanisms. Optical
phonons of SWNTs are extremely important. Indeed, they
contribute the most intense features in the Raman spectra.
These are commonly used to sort metallic from semiconduct-
ing SWNTs. Electron scattering by optical phonons also sets
the ultimate limit of high field ballistic transport,7–10 due to
hot phonon generation.10,11 Electron-phonon coupling �EPC�
is the key physical parameter necessary to quantify the
phonons interaction with electrons. In metallic SWNTs the
EPC strongly affects the phonon frequencies, giving rise to
Kohn anomalies �KA�12–16 and Peierls distortions
�PD�.15,17–24 A correct understanding and a quantitatively
precise description of electron-phonon coupling, Kohn
anomalies, and Peierls distortions in SWNTs is then of prime
scientific and technological interest.

Experimentally, the most commonly studied SWNTs have
diameters from 0.8 nm, up to 3 nm, with hundreds to thou-
sands of atoms per unit cell. Covering such diameter range
pushes the limits of computational approaches. SWNTs op-
tical phonons were calculated using phonon zone
folding,18,25–27 tight binding28–31 �TB�, density functional
theory �DFT�,17–20,27,32,33 and symmetry-adapted
models.31,34–37 The simplest approach to get SWNT phonons,

consists in folding those of graphene4,5,18,38 This requires the
prior calculation of graphene phonons either by TB,25,26,38

DFT12,18,27,39 or by other approaches.37 Phonon zone folding
�PZF� is not limited by the size of the SWNT unit cell. How-
ever, even if SWNT electrons are well described by folded
graphene,40 this is not always true for phonons. We have
shown that graphene has two KA at � and K.12 Due to their
reduced dimensionality, metallic SWNTs have much stronger
KA than graphene.12–14 Thus, folded graphene cannot give a
reliable phonon dispersion of metallic SWNTs close to the
Kohn anomalies, no matter how accurate the graphene
phonons.12,39 On the other hand, semiconducting SWNTs
cannot have KA. So, even in this case, folded graphene may
not correctly describe the phonons.

These problems can be overcome by means of TB or DFT
calculations. Indeed, the EPC effects can be taken into ac-
count in TB models.8,41,42 However, the EPC strongly depend
on the TB parametrization, and contrasting values are found
in literature.8,10,41–43 Also, most TB works failed to identify
KA.28–30 DFT directly includes EPC effects, and, being an
ab initio technique, does not rely on external adjustable pa-
rameters. However, this better accuracy is obtained at the
price of a significant increase of the computational time de-
mand, which makes the evaluation of SWNT properties a
challenge. As a result, most DFT works focus on extremely
small tubes19,20 and/or achiral tubes.17,18,27. Finally, in all the
approaches used to compute phonon frequencies, the time
dependent nature of phonons is neglected. This approxima-
tion, which results in a static description of the atomic vibra-
tion, is usually legitimate in tridimensional crystals,44,45 but,
as we will show, does not necessarily hold for one-
dimensional systems.

In this paper we show that SWNTs are a major exception,
and that a correct description of their optical phonons can
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only be achieved by carefully considering the dynamical na-
ture of phonons. We first analyze the static case and single
out the effects of curvature and confinement. Confinement
plays a major role in shaping SWNT phonons and is often
more relevant than curvature. We present an electronic zone
folding method allowing the static DFT calculation of con-
finement effects on phonon dispersions and EPC of SWNTs
of any diameter and chirality, and for any electronic tempera-
ture �Te�. We investigate KA and PD in metallic SWNTs with
diameters up to 3 nm and for Te=4 to 3000 K. We present a
simple analytic model exactly accounting for all the static
DFT results. Finally, we prove that dynamic effects induce
significant changes in KA occurrence and shape. We show
that the SWNT Raman G peak can only be interpreted con-
sidering the combined dynamic, curvature and confinement
effects. We assign the G+ and G− peaks of metallic SWNTs
to TO �circumferential� and LO �axial� modes, the opposite
of semiconducting SWNTs. A family dependence of the G

peak position in semiconducting tubes is observed.
This paper is organized as follows. In Sec. II we introduce

the background concepts and definitions. Section III presents
our EPC calculations. Section IV and V present, respectively,
the study of the effect of pure confinement within the static
and the dynamic approach. Section VI highlights the influ-
ence of curvature on the SWNT phonons. Finally, Sec. VII
assigns the G+ and G− Raman peaks of SWNTs.

II. BACKGROUND

Before presenting our numerical and analytic results, it is
necessary to introduce and discuss a set of background con-
cepts and definitions, which will be used thorough the paper,
in order to highlight the differences between our approach
and others in literature.

A. SWNTs unit cell and graphene zone folding

SWNTs are usually identified by means of their chiral
indices n and m.4,5 The determination of the chiral indices is
done by unrolling the unit cell of the tube and comparing it
to an infinite graphene sheet. The unrolled unit cell is a rect-
angular sheet of graphene that can be described by means of
the vectors Ch and T. Ch is known as the chiral vector and
has the same length as the circumference of the tube. T is
known as the translation vector and defines the translational
symmetry of the tube. The crystal lattice of graphene can be
defined by two vectors, a1 and a2, forming a � /3 angle. Ch

and T can be projected on a1 and a2,4,5

Ch = na1 + ma2, T =
�2m + n�a1

dR

−
�2n + m�a2

dR

, �1�

where n, m are defined as the chiral indices and dR

=gcd�2n+m ,2m+n� �gcd represents greatest common divi-
sor�.

Wave vectors in nanotubes must be commensurate to the
tube circumference. They can be represented on the unrolled
unit cell of the tube, and are in the form

k = k� + k� = �K1 + �K2, �2�

where K2 is parallel to T, its modulus K2=2� /T correspond
to the length of the tube’s Brillouin zone �BZ�, and � can
assume any real value; K1 is perpendicular to T, and �K1
must be commensurate to the SWNT circumference. Thus
K1=2� /Ch, ��N, and �� �Nc /2−1,Nc−1�, Nc being the
number of unit cells of graphene contained in the unrolled
unit cell of the tube. The number of nodes of a wave function
along the tube circumference is given by i=2�.4,5,46,47

Figure 1 plots the wave vectors commensurate to a �4,4�
tube on the reciprocal space of graphene, showing that they
are located on lines oriented along K2, spaced by K1 and
including the � point.4,5,46,47 For the generic �n ,m� tube, we
refer to this ensemble of cutting lines as ZF�n,m�. The proce-
dure of using wave vectors of graphene to describe wave
vectors of a SWNT is known as zone folding �ZF�. Using the
correspondence set by ZF between graphene and tube wave
vectors, it is possible to use the electrons and phonons of
graphene to obtain the band structure or the phonon disper-
sions of SWNTs.4,5,46,47

For clarity, in the rest of this paper we will distinguish the
electron and phonon wave vectors by labeling them, respec-
tively, with the symbols k and q.

B. LO-TO phonons in graphene, graphite, and nanotubes

The analysis of the SWNT Raman G band shows that the
phonons deriving from the �-E2g mode of graphene, of A

symmetry in SWNTs, provide the dominant contribution to
the G+ and G− Raman peaks.48,49 Thus, in this paper we
focus on these modes and their phonon branches.

In literature, these phonons are often labeled using differ-
ent criteria:4,5,18,50–52 �i� their symmetry,4,5,50 �ii� the direction
of the atomic displacements with respect to the SWNT axis,
radius or circumference,18 �iii� the longitudinal or transversal
character of the graphene phonon branch from which they
originate,51 �iiii� the longitudinal or transversal character
relative to the SWNT.52

FIG. 1. �Color online� Three equivalent representations of the
zone-folding lines for a �4,4� tube, ZF�4,4�, in the reciprocal space
of graphene. Left, plot of ZF�4,4� in the hcp BZ of graphene; the
primitive vectors b1 and b2 are plotted in blue, the lines of ZF�4,4�

are plotted in red. Center, plot of ZF�4,4� in the hexagonal represen-
tation of the graphene BZ. On the right-hand side, plot of ZF�4,4�

emphasizing the vectors K1 and K2. The length of K2 corresponds
to the length of the �4,4� tube BZ.
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In this paper the following definition is used: a mode is
longitudinal if � �q and transverse if ��q; where � is the
phonon polarization �i.e., the direction of the atomic dis-
placements� and q its wave vector, which also defines the
direction of the phonon propagation.

In SWNTs, phonons can propagate only along the axis. As
a result, modes with atomic displacements parallel to the axis
are longitudinal, and those with atomic displacements per-
pendicular to the axis �i.e., along the circumference� are
transversal.

In achiral SWNTs, symmetry forces the displacements of
modes originating from graphene �-E2g to be either parallel
or perpendicular to the axis.4,5 Thus, in armchair and zigzag
SWNTs these are exactly LO and TO.

In chiral SWNTs, phonon polarizations are expected to be
influenced by chiral angle and C-C bonds orientation.51

Thus, the modes originating from the graphene �-E2g should
have only a prevalently LO or a prevalently TO character.
Indeed, Ref. 51 proposed the LO-TO classification to be
meaningless in chiral SWNTs. However, in Sec. VI we will
show that for any SWNTs with diameter �0.8 nm, these
modes are almost exactly LO and TO. We thus consider the
LO-TO classification meaningful and convenient, also be-
cause it avoids different labeling in chiral and achiral
SWNTs.

C. Kohn anomalies and Peierls distortions

In a metal, for certain phonons with a wave vector con-
necting two points of the Fermi surface it is possible to have
an abrupt change of the electronic screening of the atomic
vibrations. This results in a sudden softening of the phonon
frequencies, which is called Kohn anomaly.53,54 In metallic
SWNTs the Fermi surface consists of two points only. Thus,
KA can occur only for phonons with q=0 or q connecting
the two Fermi points �Fig. 2�. In graphene, a necessary con-
dition for KA is a significant nonzero EPC �between elec-
trons near the Fermi energy� for phonons at q=� or q=K.12

Due to their reduced dimensionality, metallic SWNTs are
expected to have stronger KA than graphite and
graphene,12–15,19,20 for the corresponding phonons.

One-dimensional �1D� metallic systems are predicted to
be unstable at T=0 K.55 In fact, in 1D metals it is always
possible to find a lattice distortion that �i� opens a gap in the
electronic structure, and �ii� such that the energy gained by
gap opening compensates the strain induced by the deforma-
tion. This is called Peierls distortion.55 The possible presence
of PD in SWNTs was argued as soon as their metallic behav-
ior was predicted.46,47 Their geometry was investigated by
several authors with contrasting results. It was proposed that
they follow the atomic displacement patterns of LA
phonons,21,22 of radial breathing modes �RBM�,23 of
solitwistons,24 or of optical phonons with q=� or
q=2kF,13,15,17–20 where kF is the wave vector for which the
electron gap is null. Note that the condition q=2kF is equiva-
lent to q=K in Fig. 2.

For T�0 K, due to thermal excitation, states above the
Fermi energy are populated. Thus, increasing the temperature
reduces the energy gained by gap opening. PD are then

stable only below a critical temperature TPD. This tempera-
ture is also known as the metal-semiconductor transition
temperature, and its determination is crucial to understand
the interplay between the possible onset of superconductivity
and PD.15,19,20,56,57

For T�TPD, the energy gain achieved by gap opening is
not sufficient to compensate the elastic strain, so the lattice
will not undergo a permanent distortion. However, phonon
modes having a pattern of atomic displacements correspond-
ing to the PD can show an important softening. This effect is
proportional to the energy gained by gap opening, and in-
versely proportional to the temperature. This mechanism, de-
scribed by some authors as a Peierls-like mechanism,17,18 is,
in fact, a particular case of Kohn anomaly.53

D. Temperature effects

Let us call Te and Ti the electronic and the ionic tempera-
ture. Ti corresponds to the energy associated to the atoms
vibrations around their equilibrium positions. Te fixes the
electronic states population close to the Fermi energy �F,

fk,n =
1

e��k,n−�F�/kBTe + 1
, �3�

where fk,n is the Fermi-Dirac occupation of the nth electronic
band at k, and kB is the Boltzmann’s constant.

In metals, a finite electronic temperature always changes
the electronic states occupation, while in materials with an
electronic gap Eg, changes of the electronic occupancies are
relevant only for kBTe�Eg.

The Peierls-distortion temperature TPD depends only on
the electronic structure of the system, and not on the lattice

FIG. 2. Geometrical condition for the KA onset in metallic
SWNTs: for q=0 a point of the Fermi surface is connected to itself.
This corresponds to a KA at �. q=K connects the two distinct
Fermi points K and K�, giving a second KA. �F is the Fermi energy.
We label the band with positive slope L, and that with negative
slope R. In electron transport, this notation indicates bands where
electrons enter the tube, respectively, from the left and right
electrode.
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thermal energy. Thus, Peierls distortions are features of the
phonon dispersions which directly depend on Te. On the
other hand, phonons can have a temperature dependence due
to anharmonicity,54 which is determined by Ti.

It is thus essential to distinguish the different effects of Te

and Ti on the SWNT phonons. At thermal equilibrium, Ti

=Te=TS, where TS is the sample temperature. Thus, the cor-
rect phonon frequencies can be recovered only by taking
simultaneously into account the contributions of Kohn
anomalies and anharmonicity. The calculation of the anhar-
monic effects will be discussed elsewhere.58 To a first ap-
proximation, the anharmonic contribution is similar for
phonons of similar energy. On the contrary, a key result of
this paper will be to show that Te selectively acts only on the
TO and LO phonon branches in metallic SWNTs, see Secs.
IV and V.

DFT, in its original formulation, is a ground state theory,
thus Te=0 K. DFT can be extended to include a finite real

Te.
59 This is done using the Mermin potential59 and populat-

ing the electronic states with the Fermi-Dirac distribution,
Eq. �3�. Because of the presence of KA and PD, the phonon
frequencies of metallic SWNTs depend on Te and DFT cal-
culation should always be done using the Mermin potential.

E. The dynamical matrix

We call �q �Ref. 60� the dynamical matrix projected on
the phonons normal coordinates. Within time dependent per-
turbation theory, for a SWNT this is defined as �see, e.g.,
Eqs. 4.17a, 4.23 in Ref. 61�:

�q =
2T

2�
�
m,n
�

BZ

�D�k+q�n,km�2�fk,m − fk+q,n�

�k,m − �k+q,n + �	q + i

dk

−� �nq
*�r�K�r,r���nq�r��drdr� +� n�r��2Vb�r�dr ,

�4�

where 2� /T is the length of the tube BZ, �m,n is a sum on all
the possible electronic transitions, 	BZdk is an integral over
the one-dimensional tube BZ; �k,n is the energy of the elec-
tronic Bloch eigenstate with wave vector k and band index n;

 is a small real constant; n�r� is the charge density;
K�r ,r��=�2EHxc�n� /�n�r��n�r��, where EHxc�n� is the Har-
tree and exchange-correlation functional, and �2Vb is the
second derivative of the bare �purely ionic� potential;
D�k+q�n,km is the electron-phonon coupling matrix element,

D�k+q�n,km = 
k + q,n��Vq��nq��k,m� , �5�

where �Vq and �nq are the derivatives of Kohn-Sham poten-
tial and charge density with respect to displacement along
the phonon normal coordinate; �k ,n� is the electronic Bloch
eigenstate of wave vector k and band n. The phonon frequen-
cies 	q are derived from �q as61

	q = Re��q

M
� , �6�

where M is the atomic mass of carbon.

It is important to note that Eq. �4� introduces a depen-
dence of the dynamical matrix on the term �	q+ i
. This is a
direct consequence of the perturbative approach used to de-
rive Eq. �4�, where the phonon is described as a time-
dependent perturbation of the system.61 This accounts for the
dynamic nature of vibrations. In the rest of the paper, we will
refer to the inclusion of the term �	q+ i
 in the expression of
the dynamical matrix as “the inclusion of,” or “the descrip-
tion of” dynamic effects �DE�. This definition is introduced in
opposition to the static approximation, which is described in
Sec. II E 2.

1. Dynamic effects

Dynamic effects induce a correction in the denominators
of terms proportional to the EPC in Eq. �4�. In materials
where the electronic gap is larger than the phonon energy, the
dynamic effects are negligible. In metals, dynamic effects are
negligible if the phonon energy is smaller than the electronic
smearing for which the phonon calculations converge. In
general, this is true for tridimensional metals.44,45 Thus, in
this case the contribution of the dynamic effects to the dy-
namical matrix is negligible. That is why dynamic effects are
not included in the most common ab initio codes for phonon
calculations.68,69 However, we will show that this is not nec-
essarily true for systems with reduced dimensionality. For
example, as explained in the preceding section, one-
dimensional metallic systems undergo Peierls distortions, the
phonon frequencies depend on the electronic temperature,
and the phonon energy can be of the same order, or even
larger than the electronic temperature. In this case, it is con-
ceptually wrong to neglect the dynamic effects a priori.

Since metallic SWNTs can undergo Peierls distortions,
the role of the dynamic effects on phonon frequency must be
carefully considered and investigated. This will be done in
Sec. V.

2. The static approximation

The Born-Oppenheimer,63 or adiabatic, or static approxi-
mation is equivalent to dropping the phonon energy �	q in
Eq. �4�.64 Implementation of the static approximation results
in what we call static DFPT. To the best of our knowledge,
all existing DFPT codes implement static equations. Static
DFPT gives the same results as other static approaches, such
as frozen phonons,65 where phonons are obtained evaluating
the energy associated to a static lattice distortion. The ex-
pression of �q within the static approximation is obtained
from Eq. �4� by setting to zero the phonon energy 	q and the
term i
,

�q =
2T

2�
�
m,n
�

BZ

fk,m − fk+q,n

�k,m − �k+q,n
�D�k+q�n,km�2dk

−� �nq
*�r�K�r,r���nq�r��drdr� +� n�r��2Vb�r�dr .

�7�

Unlike in the dynamic case, within the static approxima-
tion �q is real. Thus, the phonon frequencies 	q are simply
given by
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	q =�q

M
. �8�

3. Nonanalytic terms

For states close to the Fermi energy, the denominator in
Eq. �7� goes to zero, resulting in the possible presence of
singularities in the phonon dispersion, as we have shown in
graphene and graphite.12 Similar singularities occur in the
real part of Eq. �4� when the energy of the phonon matches
an electronic transition �see, e.g., Eq. D.17 in Ref. 66�. To
investigate such singularities in SWNTs it is convenient to
split the dynamical matrix into an analytic and a nonanalytic
component,

�q = �q
an + �̃q. �9�

The nonanalytic terms in the dynamical matrix of metallic
tubes can be obtained by restricting the integral in the first
term of Eqs. �4� and �7� to a set of k points very close to the
Fermi vector, and by limiting the sum over the electronic
bands, taking into account only transitions between the bands
crossing the Fermi point. Labeling with L the electronic band
with a positive slope in Fig. 2, and R that with negative
slope, from Eqs. �4� and �7� we obtain

�̃q =
2A�/KT

2�
�

m,n=L,R
�

−k̄

k̄

�D�K+k�+q�n,�K+k��m�2


fK+k�,m − fK+k�+q,n

�K+k�,m − �K+k�+q,n + � 	q + i

dk�, �10�

if dynamic effects are included. k̄ has a small but finite value.
In this case, divergencies occur when �K+k�,m
−�K+k�+q,n± �	q=0.

Within the static approximation we obtain

�̃q =
2A�/KT

2�
�

m,n=L,R
�

−k̄

k̄ fK+k�,m − fK+k�+q,n

�K+k�,m − �K+k�+q,n

�D�K+k+q�n,�K+k��m�2dk�. �11�

Here divergencies occur when �K+k�,m=�K+k�+q,n.
For both Eq. �10� and Eq. �11�, divergences occur for q

�0 or q�K �Fig. 2�. In the first case, A�=2, in the second
case AK=1. Note that the distinction between the analytical
and nonanalytical part of �q is operative, not physical. In

fact, �̃q contains all the divergent terms of �q but not only

them. The cut between �̃q and �q
an depends on k̄.

4. Curvature and confinement

The differences between graphene and a SWNT can be
described in terms of curvature and confinement. Curvature

effects are due to the distortion of the C-C bonds in the
SWNT geometry and in a change of the bond character with
respect to planar graphene. Confinement effects stem from
the reduced dimensionality and are due to the quantization of
the electronic wave functions along the SWNT circumfer-
ence.

In this paper we concentrate on the description of the
effects of confinement and curvature on the dynamical ma-
trix and on the phonon frequencies of SWNTs. Considering
the effects of curvature and confinement as perturbations on

the dynamical matrix of graphene �̂G, at first order,

�̂T = �̂G + �̂curv + �̂conf, �12�

where �̂T is the dynamical matrix of a SWNT and �̂curv and

�̂conf account for curvature and confinement. The effects of
pure confinement will be calculated in Secs. IV and V. The
effects of curvature will be evaluated in Sec. VI.

III. ELECTRON-PHONON COUPLING

In Ref. 10 we have shown that the EPC of SWNT of
arbitrary chirality is weakly affected by the tube curvature,
and that it can be computed by folding the graphene EPC.
Neglecting curvature, the EPC of a �n ,m� SWNT is related
to that of graphene by the ratio of the unit cells,

�D2��Ch  T� = �D̃2�
a0

23

2
, �13�

where D is the EPC of a �n ,m� SWNT ; D̃ is the graphene
EPC; ChT the area of the unrolled tube unit cell; a0 is the
lattice parameter of graphene, and a0

23/2 is the graphene
unit cell area. This formula is a simple consequence of elec-
tron and phonon normalization in the two different unit cells.
Its derivation is presented in Appendix A.

Since T and Ch are perpendicular, �Ch � =�d, being d the
tube diameter, from Eq. �13�, the EPC of a SWNT is

�D2� =
a0

23

2T�d
�D̃2� . �14�

Using Eq. �14� in Eqs. �10� and �11�, it is possible to
obtain the expression for the nonanalytic part of the dynami-
cal matrix within zone folding. Equation �10� becomes

�̃q =
A�/Ka0

23

2�2d
�

m,n=L,R
�D̃�K+k�+q�n,�K+k��m�2

�
−k̄

k̄ fK+k�,m − fK+k�+q,n

�K+k�,m − �K+k�+q,n + � 	q + i

dk�, �15�

while Eq. �11� becomes

�̃q =
A�/Ka0

23

2�2d
�

m,n=L,R
�D̃�K+k�+q�n,�K+k��m�2

�
−k̄

k̄ fK+k�,m − fK+k�+q,n

�K+k�,m − �K+k�+q,n
dk�. �16�

Note that, since in zone folding the electronic states of the
tube are mapped onto those of graphene, all the wave vectors
in Eqs. �15� and �16� are now vectorial quantities, and not
scalar as in Eqs. �10� and �11�. The integration is performed
along the line of ZF�n,m� passing through K. Equations �15�

and �16� also show that the dependence of �̃q on the trans-
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lational vector T disappears. This implies that, for metallic

tubes, any dependence on tube chirality is lost as well, and
all the information on tube geometry is given by the 1

d
de-

pendence only.
As already stated, the relevant EPCs correspond to the

graphene phonons at � and K, calculated between electronic
states L and R near the Fermi energy �Fig. 2�. In Ref. 12 it
was shown that the only optical phonons of graphene with a
non-negligible EPC are the E2g phonon at � and the A1� at K.
Thus, throughout the paper we will consider only the SWNT
phonons corresponding to the graphene �-E2g and to the
K-A1�. For simplicity, we will label them � �TO or LO� and
K. For these phonons, in Ref. 12 it is shown that the EPC
can be considered independent from k and assumes the val-
ues of Table I.

The EPC of graphene �and, thus, of SWNTs� are defined
in literature in different ways: �i� the derivative of the hop-
ping integral with respect to the C-C distance ���,8,41–43 �ii�
the EPC matrix element D of Eq. �5�, �iii� D times the pho-
non characteristic length, �g�.12 The values of �, D, and g are
related by the following expressions:10,12

�D�2 = 9/2�2 and �g� = �D� �

2M	q

. �17�

The relation between � and D is obtained by means of a
first neighbors tight-binding model.67

A variety of contrasting EPC values are reported in litera-
ture. Table II compares literature results for the graphene
EPC with those we experimentally measured and calculated

in Refs. 12 and 70. This shows significant discrepancies be-
tween previous works and experimental EPCs, which, on the
contrary, are in excellent agreement with our DFT calcula-
tions.

IV. CONFINEMENT EFFECTS WITHIN STATIC DFPT

In this section we present a zone folding technique for the
calculation of pure confinement effects on the phonon fre-
quencies of SWNTs. All the results and calculations per-
formed in this section are obtained within the static approxi-
mation.

A. Electron and phonon zone folding

A simple and effective method exists to calculate the
SWNTs electronic structure taking into account confinement
only. Indeed, in Sec. II A, it was shown that it is possible to
fold the wave vectors of graphene into those of a �n ,m�
SWNT. This technique can be used to obtain the electronic
band structure of SWNTs from that of graphene.4,5,46,47 We
refer to this technique as electron zone folding �EZF�. Using
EZF it is possible to obtain the complete electronic structure
of any SWNT doing the calculation just on the two atoms
unit cell of graphene. EZF relies on the exact correspondence
between the unrolled SWNT unit cell and graphene, there-
fore all the effects of curvature are completely neglected.
Despite the simplicity of this technique, for SWNTs with d

�0.8 nm, the electronic structure calculated using EZF does
not significantly differ from that calculated by DFT on the
SWNT unit cell.40

The same procedure used to fold electrons can be used to
fold phonons.4,5,18,38 We refer to this as phonon zone folding
�PZF�. As already mentioned, KA affect graphene and metal-
lic SWNTs differently, and do not affect semiconducting
SWNTs at all. Thus, PZF is not suitable for the description of
the phonon dispersion of SWNTs close to the anomalies.

B. Phonon calculation within EZF

Even if PZF cannot be used for the description of the
Kohn anomalies, this result can still be achieved by means of
a folding approach. Equation �7� shows that the dynamical
matrix of a SWNT depends on its electronic structure
through �i� the electronic charge density and �ii� an integral
of the electronic states energies over the BZ. Numerically,
both these quantities are obtained by performing discrete
sums on a set of k points over the tube BZ. These sums can
be replaced by sums on points of ZF�n,m� in the two-
dimensional graphene BZ. The evaluation of �q within EZF
completely neglects the effects of curvature. Thus, using Eq.
�12�, we find that SWNT dynamical matrices computed
within EZF are in the form

�̂T
flat = �̂G + �̂conf. �18�

In this section, we use DFPT to calculate the SWNT dy-
namical matrices within EZF. We refer to these calculations
as EZF-DFT.

TABLE I. EPC �D̃�2 in SWNTs for phonons corresponding to the
graphene �-E2g �LO or TO� and K-A1� phonons. Electronic states
are L and R bands near the Fermi energy �see Fig. 2�. 
D

�

2 �F

=45.60 eV Å−2 and 
DK
2 �F=92.05 eV Å−2, from Refs. 10 and 12.

LO TO K

�D̃LR�2= �D̃RL�2 2
D
�

2 �F 0 2
DK
2 �F

�D̃LL�2��D̃RR�2 0 2
D
�

2 �F 2
DK
2 �F

TABLE II. Comparison between calculated and experimental
EPCs for the � LO phonon, in its equivalent �, �D�2, and �g�2 ex-
pressions. All data in the literature were calculated with tight bind-
ing. The relation between � and D is obtained by means of a first
neighbors tight-binding model.

� �eV Å−1�
�D̃LR�2

�eV2 Å−2�
�g̃LR�2

�eV2�

Mahan �Ref. 43� 4.8–6.2 103–172 0.092–0.15

Park �Ref. 8� 6 164 0.146

Jiang �Ref. 41� 1.94 17 0.015

Perebeinos �Ref. 42� 5.29 126 0.112

Koswatta �Ref. 71� 6.00 162 0.144

DFT �Ref. 70� 4.57 94 0.083

Experimental �Ref. 12� 4.50 91 0.081
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A further increase in the speed of calculations can be ob-
tained from an appropriate choice of the BZ sampling. The
graphene Fermi surface consists of the two inequivalent
points K and K�. If the ZF�n,m� lines cross these points, the
tube is metallic, otherwise it is semiconducting. The � and
�* bands of graphene near the Fermi points have a conic
shape, so the electronic bands of metallic SWNTs close to K

and K� are linear, and �k�
= ±�k�. This implies that for me-

tallic tubes the integral in Eq. �7� contains terms that diverge
like 1/k. These singularities are responsible for the KA on-
set, and must be properly described. The most efficient way
to numerically integrate 1 /k divergences in one dimension is
to use a logarithmic sampling.72 Thus, to optimize the effi-
ciency of our calculations, we sample the EZF lines with
evenly spaced grids of k points in regions away from the
Fermi surface, and with denser logarithmic grids when cross-
ing K or K�. Details on the k-point sampling used for EZF-
DFT calculations are reported in Table III.

1. Comparison to other computational techniques

It is important to discuss how our EZF-DFT results com-
pare to other computational approaches in literature. These
can be divided in the following categories: PZF,38 tight
binding,15,28–30,73 symmetry adapted methods,31,35,36,74 and
DFT.17–20,27,32,51

The advantages of EZF-DFT over PZF have already been
discussed in the preceding sections. The advantage of EZF-
DFT over conventional DFT is the possibility of using ex-
tremely dense k-point grids and to converge calculations for
a smaller Te. This is evident from a survey of previous DFT
calculations. We start examining the DFT approach used in
Refs. 17, 18, 27, and 51. These calculations were performed
on the real tube unit cell. Thus the use of dense k-point grids
to converge the phonon frequency at realistic Te was compu-
tationally extremely expensive. Calculations of Refs. 27 and
51 correspond to BZ sampling of at most three nonequivalent
k points in the unit cell. The comparison between the number
of k points used in Refs. 27 and 51 and those used in this and
other works, seriously challenges the convergence of the cal-
culations in Refs. 27 and 51.

References 17 and 18 used much denser k-point sampling
�up to 57� and smeared electrons with an Hermite-Gauss
function at a fictitious75 electronic temperature T f =1160 K.
In principle, these calculations should reproduce the Te=0
results, showing PD in metallic tubes. However, these au-
thors observed no PD, but just a softening of the phonon
frequencies. This happens because their chosen value of T f is
too large to reach the limit of Te→0, and describes the sys-
tem at a finite, but undefined, value of Te. Calculations at
lower Te were prevented by the huge CPU time require-
ments. DFT calculations at lower values of Te have been
reported only for extremely small SWNTs in Refs. 19 and
20. Here, they calculated the phonon dispersion of SWNTs
with d�4 Å at Te as low as 137 K, showing the presence of
KA and PD. The comparison between the k-points sampling
and the electronic temperature in literature and those used in
this paper is reported in Table III.

As we will show in the next sections, the calculations of
the phonon dispersion of large SWNTs at Te as low as 4 K

can be easily done by means of EZF-DFT. This is achieved
at the price of neglecting the effects of curvature, which
prevents EZF-DFT to be used for the study of the radial
breathing modes, and results in inaccuracies in the determi-
nation of the phonon frequencies of those tubes for which
curvature effects are not negligible. This point will be dis-
cussed in more depth in Sec. VI.

EZF-DFT has also to be compared with tight binding and
symmetry adapted calculations. Non-ab initio techniques,
such as tight binding, offer another way to overcome the
extremely large CPU time required by DFT. Most TB models
are unable to describe KA and PD.28–30 A detailed study of
EPC and Te effects on SWNT phonon within TB was re-
ported by Barnett et al.15,73 This study investigated KA and

TABLE III. k-points sampling used in our EZF-DFT calcula-
tions and data from other authors. The number of k points nk refers
to the number of nonequivalent points the tube BZ. These nk points
fold into nkNc points in the graphene BZ, Nc being the number of
unit cells of graphene present in the tube unit cell. The column Te is
the electronic temperature used in the calculations �in Kelvin�. Val-
ues marked with * correspond to calculations where electrons are
smeared using a Hermite-Gauss instead of the Fermi-Dirac func-
tion. The M /S column specifies the metallic or semiconducting na-
ture of the tubes. The ln column specifies if a logarithmic grid is
used.

Tube Reference Te nk M /S ln

�n ,n� This work 4 302 M y

�n ,n� This work 77 91 M y

�n ,n� This work 315 71 M y

�n ,n� This work 3150 51 M y

�n ,0� This work 4 108 M y

�n ,0� This work 77 38 M y

�n ,0� This work 315 28 M y

�n ,0� This work 3150 18 M y

�n ,0� This work 30 S n

�n ,m� This work �
2�

0.12T
S n

�5,2� This work 315 26 M y

�12,3� This work 315 48 M y

�16,1� This work 315 23 M y

�20,14� This work 315 19 M y

�15,6� This work 315 18 M y

�14,8� This work 315 47 M y

�n ,n� Ref. 18 *1160 57 M n

�n ,0� Ref. 18 *1160 33 M n

�n ,0� Ref. 18 *1160 13 S n

�n ,n� Ref. 27 3 M n

�10,0� Ref. 27 2 S n

�8,4� Ref. 27 and 51 1 S n

�9,3� Ref. 51 1 S n

�3,3� Ref. 19 *1096 129 M n

�3,3� Ref. 19 *137 M n

�n ,n� Ref. 20 300 M y

�5,0� Ref. 20 300 M y
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PD in SWNTs, but the results are in contrast with those
obtained by DFT.20 Another possibility for the efficient cal-
culations of phonons in SWNTs is the development of sym-
metry based force constants methods36 and lattice dynamic
models based on the screw symmetry of SWNTs.31,35,74 So
far, only TB implementations of symmetry adapted tech-
niques were applied to the calculation of the vibrational
properties of SWNTs, which thus may lack the precision of
DFT. The implementation of screw symmetries into a DFT
scheme would be highly desirable, but would require writing
a new dedicated code. On the contrary, another advantage of
EZF-DFT is that it can be performed with the already exist-
ing packages. Finally, it is very important to stress that all the
techniques presented in this section rely on the static ap-
proximation, and thus neglect dynamic effects.

C. Numerical results

In this section, we use EZF-DFT to perform a systematic
study of the phonon dispersion of SWNTs, paying particular
attention to the description of KA and PD. Calculations are
performed within the static approximation.

1. Phonon dispersions

Here we use EZF-DFT to calculate phonons of SWNTs of
different diameters and chiralities, focusing on diameter and
Te dependence of the KA induced phonon softening.

We start with the comparison of phonon zone folding and
EZF-DFT for metallic tubes. Figure 3 compares the phonons
of a metallic �11,11� tube calculated using PZF with those
obtained by EZF-DFT. To improve readability, we only plot

phonon branches corresponding to the lines of ZF�11,11�

crossing � and K. All PZF and EZF-DFT calculations are
performed using DFPT.44 The parameters for PZF calcula-
tions are the same as those used for the calculation of graph-
ite in Ref. 12.

PZF calculations use the phonons of graphene, thus �i� at
� no LO-TO splitting is observed, and �ii� the kinks and the
phonon softening caused by KA at � and K are the same as
those calculated in Ref. 12. Since the phonon frequencies of
graphene converge at an electronic temperature Te

�3000 K, no temperature dependence of the phonon fre-
quencies calculated by PZF can be observed for 0 K�Te

�3000 K. EZF-DFT calculations show a number of funda-
mental differences with respect to PZF. Figures 3�b�–3�d�
show that the phonon softening induced by KA at � and K

strongly depends on Te, with the phonon frequencies de-
creasing for decreasing Te. Most importantly, we observe
that at � only the LO mode is affected by KA. This causes
the splitting of the LO-TO modes. As already stressed, this
splitting cannot be observed using PZF. Due to the tempera-
ture dependence of the LO mode, the LO-TO splitting in-
creases for decreasing Te. For Te=3150 K, the KA effects are
completely removed, and the LO-TO splitting is zero. Fi-
nally, in Fig. 4, we compare the whole phonon dispersion of
the �11,11� tube computed using �a� PZF, �b� EZF-DFT at
Te=4 K, and �c� Te=315 K. Figure 4 shows that PZF and
EZF-DFT differ only for the phonon branches affected by
KA, and are indistinguishable for all other phonon branches.
Thus, in the phonon dispersion of metallic SWNTs only the
modes affected by KA depend on Te, and PZF can be safely
used for the calculation of all other phonon modes.

It is also interesting to compare PZF and EZF-DFT for
semiconducting tubes. Figure 5 compares PZF and EZF-DFT
for a semiconducting �19,0� tube. This has the same diam-
eter �1.5 nm� as the metallic �11,11� in Fig. 3. As for Fig. 3,
in Fig. 5 we only plot selected phonon branches, in particular
those corresponding to the line of ZF�19,0� crossing � and
those corresponding to the two lines that lay most closely to
K. KA cannot be present in semiconductors, thus no KA
should be observed in the �19,0� tube. Since ZF�19,0� does

FIG. 3. �Color online� Phonons of the �11,11� metallic SWNT
calculated using �a� phonon zone folding �PZF�, �b� electronic zone
folding �EZF-DFT� at Te=4 K, �c� 315 K, and �d� 3150 K.
Branches affected by �red� KA at �, �blue� KA at K.

FIG. 4. �Color online� Comparison of the complete phonon dis-
persion of a �11,11� tube calculated using �a� PZF, �b� EZF-DFT at
Te=315 K, �c� EZF-DFT at Te=4 K. The three calculations differ
only for the branches affected by KA.
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not include K, and the empty and occupied electronic states
are separated by a gap Eg�0.5 eV, no temperature effects
can be observed for Te�Eg /kB�6000 K.

Figure 5 shows that the discrepancies between PZF and
EZF-DFT are extremely reduced with respect to those of the
metallic �11,11� tube, the only noticeable difference being
the absence of LO-TO splitting in the PZF calculations.

D. LO-TO splitting

Within EZF-DFT, the doubly degenerate �-E2g phonon of
graphene splits for both metallic and semiconducting tubes.
This splitting is a direct consequence of confinement in
SWNTs.

Defining 	LO�TO�
S�M� as the phonon frequency of the LO �TO�

mode at q=0 for a semiconducting �metallic� SWNT, we
also observe that 	TO

M �	LO
M while 	LO

S �	TO
S . This is ex-

plained as follows. From Table I, the EPCs between L and R

bands at � have a finite value for LO modes, and are null for
TO modes. Since the EPC associated with TO phonons is
null, from Eq. �11� we obtain that 	TO

graph=	TO
S =	TO

M , where
	TO

graph is the phonon frequency of the TO mode at � for
graphene. On the other hand, LO modes have a finite EPC.
Here it is important to remind that what determines the
physical properties related to EPC is not the EPC per se, but
the product of the EPC times the electronic density of states
�DOS� �see also Appendix A�. Close to the Fermi energy, for
semiconducting SWNTs, the DOS is null, while for metallic
SWNTs it is a constant, and for graphene is zero at Fermi
energy ��F� and increases linearly for ���F and ���F. It
follows that DOS�F

S �DOS�F

graph�DOS�F

M , where the super-
scripts S, M, and graph refer, respectively, to semiconducting
SWNTs, metallic SWNTs, and graphene, and the subscript �F

indicates that the DOS is evaluated for energies � close to the
Fermi energy �F. From Eq. �11�, and using the same notation
as the TO modes, we then obtain 	LO

M �	LO
graph�	LO

S . Since
in graphene we have 	LO

graph=	TO
graph, it follows that 	LO

S

�	TO
S and 	LO

M �	TO
S .

With EZF-DFT, we also find that the atomic displace-
ments of the modes deriving from the graphene �-E2g are
parallel or perpendicular to q� within an angle less than
3.25o. The effect of confinement is then, for any chirality, to
split the �-E2g mode of graphene into almost exactly LO and
TO modes.

1. Diameter, electronic temperature, chirality and family

dependence of phonon softening

We now consider the dependence of the phonon disper-
sions on SWNT chirality, diameter and electronic tempera-
ture.

Figure 6 plots the phonon dispersions at Te=315 K for the
�11,11� armchair tube, the �18,0� zigzag tube, and the
�15,6� chiral tube. All these tubes are metallic, and have a
similar diameter of 1.5 nm. Note that in SWNTs, defining
dR=gcd�2n+m ,2m+n�, kF=0 if �n−m� /3dR is not an inte-
ger �e.g., the �18,0� tube�, and kF=1/3, in 2� /T units, if
�n−m� /3dR is an integer �e.g., �11,11� and �15,6� tubes�.5

This explains the different KA positions in Fig. 6. We ob-
serve that, even if the shapes of the phonon dispersions are

FIG. 5. �Color online� Phonons of the �19,0� tube calculated
using �a� PZF on a q-points grid sampling ZF�19,0�, �b� EZF-DFT.
Branches that in graphene and metallic tubes would be affected by
the KA anomaly at � are in red, while those closest to the KA at K

in graphene are in blue.

FIG. 6. �Color online� Phonons of the �11,11�, �18,0�, and
�15,6� tubes calculated using EZF-DFT. All tubes have d

�1.5 nm. Calculations are done at Te=315 K. Phonon branches
affected by KA at � are in red, those with KA at K are in blue.
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different, the frequency of the phonons corresponding to the
graphene �-E2g-LO and K-A1�are the same in all cases, and
are significantly softened with respect to graphene. Thus, the
phonon softening due to KA does not depend on chirality.

On the other hand, Figs. 7 and 4 clearly show that KA-
induced phonon-softening strongly depends on diameter and
Te. Figure 7 compares the phonons for three different arm-
chair tubes at the same Te. It indicates that the smaller the
diameter, the stronger the softening. Figure 4 compares
phonons for the same �11,11� tube at three different Te. It
shows that phonon softening increases for decreasing Te.
Note that, as for Figs. 3 and 5, Figs. 6 and 7 also plot only
branches corresponding to ZF�n,m� crossing � and K.

Finally, due to the phonon softening induced by the KA,
we observe that in metallic tubes of any chirality the LO
branch always crosses the TO, in contrast with Ref. 76,
where an anticrossing of the branches is predicted for chiral
tubes.

Figure 8 plots the LO-TO phonon frequencies for a vari-
ety of chiral and achiral tubes, both metallic and semicon-
ducting, in the diameter range 0.8–2.7 nm at Te=315 K. As

expected, we observe no difference in the phonon frequen-
cies for TO modes of metallic and semiconducting tubes.
Furthermore, confinement does not induce any diameter de-
pendence of the frequencies of the TO modes.

Due to the KA presence, LO frequencies are very differ-
ent in metallic and semiconducting tubes. In metallic tubes
there is a strong diameter dependence, with higher softening
for decreasing diameter. This softening is entirely due to con-
finement. Chirality does not affect the LO phonons. This is
shown in Fig. 9, which plots LO and TO modes for all semi-
conducting tubes with d�1.5 nm as a function of chirality.

However, even if there is no dependence on the chiral
angle for the LO modes, a family dependence is observed for
the TO mode in semiconducting tubes. Indeed, Figs. 8�a� and
8�b� and Fig. 9 show that TO phonons are more scattered
than LO. By labeling S1 SWNTs with mod�n−m ,3�=1, and
S2 SWNTs with mod�n−m ,3�=2, it is possible to observe
that the TO frequency in S1 tubes is always �2 cm−1 smaller
than in S2 tubes. The TO frequency for metallic tubes is in
between that of S1 and S2 tubes.

Figure 10 plots the LO phonon of metallic tubes as a
function of Te. Since no chirality dependence is observed for
Te=315 K, only armchair and zigzag tubes are considered.
The LO softening increases for decreasing Te, and the trend
is stronger for smaller diameters.

We stress again, as in Sec. II D, that the temperature ef-
fects calculated here with EZF-DFT are related only to the
electronic temperature. Therefore, for a direct comparison

FIG. 7. �Color online� Phonons of the �6,6�, �11,11�, and
�18,18� SWNTs calculated using EZF-DFT. Tube diameters are
0.8 nm, 1.5 nm, and 2.4 nm, respectively. Te is 315 K. Phonon
branches affected by KA at � are in red, while those with KA at K

are in blue.

FIG. 8. �Color online� �a� Frequency of the LO and TO modes
calculated by EZF-DFT at Te=315 K. The LO phonons are in red;
the TO phonons in black. Different symbols identify metallic and
semiconducting �S1 and S2� tubes. Dashed lines represent the fit of
the EZF-DFT data, and correspond to the plot of Eq. �28�. �b� LO
and TO phonons of semiconducting tubes only. For S2 tubes TO
phonon is �2 cm−1 higher than in S1 tubes. No family dependence
is observed for the LO phonon.
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with experiments, the data in Fig. 10 need to be corrected
with the anharmonic effects.

E. Analytic results

So far we relied on numerical DFPT calculations. We now
show that the key results of the preceding section can be
derived and explained by using an analytic model. From Eqs.
�8� and �9�, we have

	q
2 =

�q
an

M
+

�̃q

M
. �19�

KAs are due to the presence of nonanalytic terms in the

dynamical matrix and their shape is determined by �̃q,
whose expression, within a static approach, is given by Eq.

�16�. �̃q can be determined analytically for any q at Te

=0 K, or at q=� ,K for any Te. This provides simple formu-

las for the determination of the metallic-semiconducting
transition associated with the PD and for the KA description
in SWNTs.

1. Kohn anomalies at T=0 K and Peierls distortions

To determine the KA shape at zero temperature we set
Te=0 in Eq. �16�. This gives fk=1 and fk=0 for states, re-
spectively, below and above the Fermi energy. Equation �16�
can then be integrated analytically to give

�̃LO/K =
A�/K

3a0
22
D

�/K
2 �F

�2d�
ln�q� + CLO/K� ,

�̃TO = −
A�

3a0
22
D

�

2 �F

�2d�
, �20�

where 
D
�/K
2 �F are defined in Table I and we assume the L

and R bands to be linear with slope �=5.25 eV Å. More
details on the integration are given in Appendix B. From Eq.

�20�, we observe that �̃TO does not depend on q. This ex-
plains the absence of KA for the TO mode. On the other

hand, �̃LO/K has a logarithmic dependence on q, which ex-
plains the presence of KA in the LO branch. Using Eq. �19�,
we obtain

	LO/K
2 =

��/K

d
ln�q� + CLO/K,

��/K =
23A�/Ka0

2
D
�/K
2 �F

�2�M
, �21�

where q is measured from � for the KA at � and from K for
the KA at K; ��=7.89105 cm−2 Å−1; �K=7.96
105 cm−2 Å−1; CLO/K account for all the nondivergent
terms of the dynamical matrix.

According to Eq. �21�, KA in SWNTs have a logarithmic
shape. For the LO and K modes at Te=0 K, 	q

2 is negative,
which gives imaginary phonon frequencies. This means that
the lattice undergoes a permanent distortion, i.e., a Peierls
distortion.

Figure 11 plots Eq. �21� for the KA at Te=0 K and com-
pares it with EZF-DFT calculations in the limit Te→0 K.
Using Eq. �21�, and fitting CLO/K to the EZF-DFT data, we
obtain

	LO
2 = 5.3  104 ln q + 2.70  106 cm−2,

	K
2 = 5.3  104 ln q + 1.94  106 cm−2. �22�

From Fig. 11, Eq. �21� perfectly reproduces the phonon dis-
persions obtained by EZF-DFT.

2. Electronic temperature dependence of Kohn anomalies and

Peierls distortion temperature

We now fix q=� or q=K and study the dependence of
the phonon frequencies on Te, which changes the occupation
functions fk,n. For q=� ,K, assuming linear L and R bands
with slope �= ±5.52 eV Å, remembering that K+K=K�,
and setting �F=0, we have

FIG. 9. �Color online� Calculated LO and TO modes obtained
by EZF-DFT for the semiconducting tubes �19,0� , �18,2� , �17,3� ,
�17,4� , �16,5� , �15,7� , �13,9�, and �12,10�, listed by increasing
chiral angle. All tubes have diameter d�1.5 nm. Filled symbols
refer to S1 tubes �mod�n−m ,3�=1�; open symbols to S2 tubes
�mod�n−m ,3�=2�. In S2 tubes the TO mode frequency is �2 cm−1

higher than in S1.

FIG. 10. Diameter dependence of LO mode in armchair and
metallic zigzag SWNTs calculated by EZF-DFT for Te=4, 79, 315,
3150 K.
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��K+k��,L = ��K+k�+��,L = ��K+k�+K�,L = k�� , �23�

��K+k��,R = ��K+k�+��,R = ��K+k�+K�,R = − k�� . �24�

The occupation factors fk,n depend on k and n only through
�n�k�−�F. Defining x=�k� /TkB, and ��x�=1/ �1+ex�, Eq.
�16� becomes

�̃�/K =
A�/K23a0

2
D
�/K
2 �F

�2d�
�

0

�k̄/TkB ��x� − ��− x�

x
dx ,

�25�

where the bands’ symmetry allows to replace 	
−�k̄/TkB

�k̄/TkB with

2	0
�k̄/TkB. This gives

	LO,K
2 �T� =

��,K

d
ln

T

T0
+ CC�,K, �26�

where �q is the same as in Eq. �21�, T0 is the electronic

temperature for which the contributions of �̃q are null,
CC�,K is the value of 	

�/K
2 at Te=T0, and contains all the

contributions from �q
an. Details on how Eq. �26� is derived

from Eq. �16� are given in Appendix C. Equation �26� can be
used to fit simultaneously all the phonon frequencies calcu-
lated by EZF-DFT as a function of Te. The fit parameters are
listed in Table IV.

The electronic temperature, TPD, for which a SWNT un-
dergoes a Peierls distortion, can be obtained by setting 	q�0
in Eq. �26�, which leads to

TPD = T0e−d·CC�,K/��,K. �27�

As an example, Eq. �27� applied to the �6,6� tube �d
=0.8 nm� gives TPD=6.0810−8 K for the phonon at �, and
TPD=0.510−5 K for the phonon at K. TPD exponentially
decreases with the tube diameter. This implies that, unlike
the ultrasmall tubes studied in Refs. 19 and 20, for the
SWNTs generally used in experiments, TPD is always smaller
than 10−8 K.

Equation �26� defines the diameter dependence of the LO
phonon frequency of metallic tubes �	LO

M � at any Te, and can
be used to fit the EZF-DFT data of Fig. 8. We observe that all
the EZF-DFT data in Fig. 8 can be represented by very
simple functions of the tube diameter. Indeed, neglecting the
very small difference observed for the S1 and the S2 tubes,
the frequency of the TO mode of both metallic and semicon-
ducting tubes �	TO� is diameter independent, while the cal-
culated frequencies of the LO mode for semiconducting
tubes �	LO

S � are inversely proportional to the tube diameter.
This can be summarized by the following equations:

	LO
M = �M +

�M

d
, 	LO

S = �S +
�S

d
, 	TO = � , �28�

where �M =−77.33 cm−1 nm, �M =1597 cm−1, �S

=13.78 cm−1 nm, and �S=�=1579 cm−1, which perfectly re-
produces the phonon frequency we calculate for the �−E2g

mode of graphene. The functional form of 	LO
M has been

obtained from Eq. �26� using the relation 1+x�1+x /2.
The expression for 	LO

M is thus completely analytical, but is
valid only for Te=315 K. On the other hand, the expressions
for 	TO and 	LO

S are empirical, but are valid for any Te.
Equation �28� are plotted in Fig. 8.

V. CONFINEMENT EFFECTS WITHIN DYNAMIC DFPT

In Sec. II E, we argued the possible presence of dynamic
effects for one-dimensional metallic systems. To the best of
our knowledge, the dynamic nature of phonons has always
been neglected in the SWNT literature, until we recently
pointed this out.62 In this section, we show that dynamic
effects are present in metallic SWNTs, and that they induce
significant changes to the KA occurrence and shape. There-
fore, they must be included to explain the experimental data.
In fact, SWNTs are one of the first real materials for which is
a significant difference between static and dynamic DFPT is
detected.

If the static approximation is relaxed, the dynamical ma-
trix is described by Eq. �4�, and its nonanalytic part by Eq.
�10�. Assuming T=0, Eq. �10� can be solved by using a pro-
cedure similar to that used to obtain Eq. �20�. For the LO

phonon, assuming k̄≫ �q±
�	q

� �, we obtain

FIG. 11. KA at � and K for a �11,11� tube. Triangles corre-
spond to EZF-DFT at Te=4 K. The solid line is the plot of Eq. �21�.

TABLE IV. Values of T0 and CC�,K obtained fitting the EZF-
DFT data for tubes calculated at Te=4 K, Te=77 K Te=315 K Te

=3150 K and for d in the range 0.8–2.4 nm with Eq. �26�.

q T0 �K� CC �eV2� CC �cm−2�

� 9612 0.039 2.54106

K 2646 0.027 1.76106
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�̃LO =
A�

3a0
2
D

�

2 �F

�2�d
ln

��q + � 	LO���q − � 	LO�

�2�k̄�2
,

�29�

while for the TO,

�̃TO = −
A��q23a0

22
D
�

2 �F

�2d��2q2 − ��	TO�2�
, �30�

where 	LO-TO is the phonon frequency of a phonon of wave
vector q�� belonging to the same branch of the LO-TO
phonon at q=0. These equations mark a major departure

from the previous results. �q
˜ in the dynamic approach is

very different from the static case. Note that the static case
�Eq. �20�� is immediately recovered setting �	LO-TO=0 in
Eqs. �29� and �30�.

The dynamic effects are qualitatively very different for
LO and TO phonons. Equation �29� diverges for q= �	q /�,
and not for q=0 as in the static case. This gives the first
major result that the KA for the LO mode is not at �, con-
trary to what is predicted by any static approach, but at q

= ± �	LO /�.
The dynamic effects are even bigger for the TO phonons.

Equation �30� shows that �̃TO is zero for q=0, but diverges
to +� for q→ ��	TO /��− and to −� for q→ ��	TO /��+. This

is quite different from the static case, where �̃TO is a nega-
tive constant. This results in a significant TO upshift with
respect to the static case. This can be described by a simple
equation, the derivation of which is given in Appendix D,

	TO
dyn − 	TO

stat �
25

d
, �31�

where the frequency difference is in cm−1 and d in nm.
To summarize, the static approach: �i� fails to describe the

position of the KA for the LO mode, �ii� underestimates the
TO phonon frequency, �iii� misses the TO Kohn anomaly at
q= �	TO /�.

The phonon dispersion of metallic SWNTs close to the
KAs is obtained by adding the contributions from the ana-
lytic and the nonanalytic part of the dynamical matrix. The
contribution of the nonanalytic part is given by the numerical
integration of Eq. �10�. Due to the presence of the phonon

energy in the expression of �̃q, Eq. �10� must be solved
self-consistently. The contribution from �q

an is easily ob-

tained from EZF-DFT. The definitions of �̃q and �q
an depend

on the value chosen for k̄. In our calculations, we chose k̄

such that k̄�=1.0 eV.
Figure 12 compares the phonon frequencies of the LO and

TO branches of an �11,11� tube calculated using EZF-DFT
with those obtained from the numerical integration of Eqs.
�16� and �10�. Figure 12 shows major differences between
the dynamic and the static approach in the region of the
phonon dispersions affected by KA. As expected, in the dy-
namic case, the KA in the LO branch is shifted from q=0 to
a finite wave vector. This causes a significant change close to
�. However, Fig. 12 also indicates that these changes are
confined to a very small BZ region. Indeed, for q�0.02 in

2� /a0 units, the static and dynamic results are indistinguish-
able.

It is important to observe that Eq. �27�, which was derived
within the static approximation, is also valid in the dynamic
case. Indeed, for Te→0, metallic SWNTs undergo a PD,
meaning that the frequency of the phonon affected by the KA
goes to zero. For �	LO-TO=0 the dynamic equations reduces
to the static case, so TPD is the same.

Figures 13 and 14 plot, respectively, the KA shape in the
LO and TO branches as a function of diameter and Te. The
general trends observed within the static approximation are
preserved also after the introduction of the dynamic effects.
In particular, the LO phonon softening still increases for de-
creasing diameter and Te. In addition, the phonon softening
and/or hardening of the TO branch increases for decreasing
diameters, but has no dependence on Te.

A. Dynamic effects in graphene and graphite

In this section we have shown that dynamic effects induce
huge modifications in the phonon dispersion of metallic
nanotubes close to the Kohn anomaly. The demonstration of
the importance of dynamic effects in one-dimensional sys-
tems opens the discussion on whether similar effects can be
relevant in materials of higher dimensionality, graphite and
graphene in particular. Indeed, it is possible to prove that
dynamic effects can be crucial also for the correct descrip-
tion of the vibrational properties of bidimensional metallic
systems. We have recently demonstrated, both theoretically
and experimentally, that for electrically doped graphene the

FIG. 12. �Color online� KA for the LO and TO branches of an
�11,11� tube close to �. Phonon frequencies are calculated by
means of static EZF-DFT �open dots�, or from the numerical inte-
gration of the dynamical matrix in its static �dashed line� and dy-
namic �solid line� expression. Te=315 K.
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Born-Oppenheimer approximation spectacularly fails.77–79 In
particular the evolution of the G peak position as a function
of gate bias can be explained only by taking into account
nonadiabatic effects, as will be reported in details
elsewhere.78,79

VI. CURVATURE EFFECTS

Curvature effects encompass all the differences between
graphene and SWNTs due to the geometrical distortion of the
C-C bonds in the tubes �Eq. �12��. In common with quantum
confinement, curvature also splits the double degenerate �

−E2g phonon of graphene into two distinct phonons in
SWNTs. This split occurs because the different strengths of
the chemical bonds along the tube axis and the tube circum-
ference result in different phonon frequencies for modes po-
larized along these two directions.4,5 The folding of graphene
to give the SWNT cylindrical shape results in �i� change in
atoms separation �ii� loss of C-C bond planarity, �iii� mixing
of � and � states, giving a sp2/sp3 character to the chemical
bonds.

When the purely sp2 bonds of graphene are deformed,
they assume a hybrid sp2 /sp3 character. Since sp2 bonds are
stiffer than sp3 bonds, mixing the orbitals results in bond
softening. This mixing is proportional to curvature, so it is
minimum for C-C bonds parallel to the axis, and maximum
for bonds oriented along the circumference.4,5 Since longitu-
dinal modes deform C-C bonds parallel to the axis, while
transverse modes deform C-C bonds along the circumfer-
ence, one expects curvature to soften the modes polarized
along the tube circumference more than those polarized
along the axis. This softening should increase with the
sp2 /sp3 mixing, and, thus with the SWNT curvature.

In this section, we investigate the effects of pure curvature
on the LO-TO splitting. In Eq. �12� the dynamical matrix of

a SWNT ��̂T� is written as the sum of the dynamical matrix

of graphene ��̂G� and two additional terms describing the

effects of curvature ��̂curv� and confinement ��̂conf�. EZF-
DFT describes the contributions deriving from graphene and

from the confinement effects ��̂T
flat=�̂G+�̂conf�, thus

�̂curv = �̂T − �̂G − �̂conf = �̂T − �̂T
flat. �32�

According to Eq. �32�, the effects of pure curvature on a
given SWNT can be obtained as the difference between cal-
culations performed on the actual SWNT and the results ob-
tained by means of EZF-DFT.

The frequency dependence on the diameter for the modes
derived from the graphene �-E2g was calculated by several
authors.17,18,27 As already pointed out in Sec. IV, previous
calculations of the LO phonons in metallic SWNTs are either
not converged with respect to the k-point sampling27 or use a
fictitious electronic temperature17,18,75 instead of the real one,
and thus do not properly describe the KA effects. However,
for semiconducting SWNTs, KA are not present. Thus, the
DFT results of Refs. 17 and 18 for LO and TO modes in
semiconducting SWNTs are reliable, and can be used to es-
timate the curvature effects for LO and TO modes.

To verify the equivalence of the calculations of Refs. 17
and 18 with the present, the phonon dispersions of graphene
of Ref. 18 are compared with those of Ref. 12 �which is
obtained with the same method and code as the present cal-
culations�. Away from the KA, the only noticeable difference
is a 16 cm−1 rigid upshift of the highest optical branches.
Thus, the two calculations are equivalent �after a downshift

FIG. 13. �Color online� KA of the LO and TO branches for
tubes of different diameters calculated at Te=315 K including dy-
namical effects.

FIG. 14. �Color online� KA of LO and TO branches of tubes
with d=1.5 nm calculated for Te ranging from 30 to 1000 K, in-
cluding dynamic effects.
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of 16 cm−1� and is possible to extract the effects of pure
curvature by comparing the results of Refs. 17 and 18 with
the present EZF-DFT calculations.

Assuming the curvature effects as a perturbation, we de-
fine

�	 = 	T − 	flat, �33�

where 	T is the phonon frequency calculated on an actual
tube and 	flat is the EZF-DFT result. In Fig. 15 we plot �	
as the difference between the phonon frequencies 	T of Ref.
18 and the 	flat from EZF-DFT as represented by Eq. �28�.
We consider only those modes which do not present any
dependence on Te. In particular, for the LO mode, we con-
sider only semiconducting tubes, while for the TO mode, we
consider both metallic and semiconducting tubes. For these
modes, it is not necessary to distinguish between static and
dynamic EZF-DFT. From a fit to the points of Fig. 15,

�	TO�d� = −
�TO

d2 ,

�	LO�d� = −
�LO

d2 , �34�

where �TO=25.16 cm−1 nm2, �LO=12.0 cm−1 nm2, and d is
the tube diameter in nm. We assume that Eq. �34� applies
also to the LO mode of metallic tubes.

Figure 16 plots the diameter dependence of the LO-TO
phonons as predicted considering only the effects of confine-
ment �static and dynamic� or after the introduction of the
curvature effects �added using Eq. �34��. In metallic tubes,
the relaxation of the static approximation introduces a diam-
eter dependence for the TO phonon, and reduces the soften-
ing of the LO mode. This is a further confirmation that in
SWNTs dynamic effects cannot be neglected. The most no-
table modification introduced by curvature is the strong di-
ameter dependence of the TO mode in semiconducting tubes,
which, according to pure confinement, was predicted to be
diameter independent. Interesting, curvature almost perfectly
compensates the effects of confinement for the TO mode in
metallic tubes and for the LO mode in semiconducting tubes,
resulting in almost diameter-independent phonons. Finally,

the effects of curvature in the LO modes of metallic tubes do
not substantially modify the trend due to pure confinement,
and result only in a correction of the phonon frequencies.
Figure 16 is extremely important, and shows that curvature
has the effect of inducing a noticeable phonon softening in
small diameter SWNTs, for both LO and TO modes.

A. LO-TO splitting

In Secs. IV and V, we observed that quantum confinement
has the effect of splitting the graphene �-E2g phonon into a
LO and a TO mode. Literature reports indicate that in chiral
tubes curvature effects may induce deviations from this
behavior.18,51 In Ref. 51, it was observed that the eigenvec-
tors of the LO and TO phonons in the �9,3� tube are aligned
to the C-C bonds, and deviate by 16o from the axial and
circumferential directions. However, in the same paper, it
was also reported that for the �8,4� tube the deviation is
reduced to 2o. Calculations done in Ref. 18 show that for the
�12,6� tube the deviation from purely LO and TO eigenvec-
tors is 4o. Using a symmetry adapted TB scheme, calcula-
tions performed in Ref. 31 on 300 different SWNTs indicated
no substantial deviation of the atomic displacements from
the axial and circumferential directions. Figure 17 shows the
very different predictions given by our EZF-DFT and the
calculations of Ref. 51.

The orientation of the atomic displacements in phonons
derived from the �−E2g of graphene can be understood by

FIG. 15. �Color online� Curvature effects on LO and TO
phonons. Dots represent the difference between the phonon fre-
quencies of Ref. 18 and EZF-DFT of Sec. IV �Eq. �28���. The lines
are fit to the data done using Eq. �34�.

FIG. 16. �Color online� Comparison between LO and TO
phonons. �a� for metallic tubes the phonon frequencies are calcu-
lated using EZF-DFT within the static approximation �dotted line�,
EZF-DFT including the dynamic effects �dashed line�, and dynamic
EZF-DFT correct with the curvature effects �solid lines�. �b� for
semiconducting tubes it is not necessary to distinguish between
static and dynamic calculations; dotted lines represent the EZF-DFT
calculations, solid lines represent EZF-DFT data corrected for the
effects of curvature.
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considering the combined effects of confinement and curva-
ture. The frequencies of the �-E2g modes of graphene are
degenerate, and the corresponding eigenvectors can be ori-
ented along any couple of in-plane directions. Curvature and
confinement both have the effect of removing the degen-
eracy. The effect that curvature and confinement have in ori-
enting the atomic displacements is proportional to the effect
they have in determining the LO-TO splitting. These contri-
butions can be read from Fig. 16, by comparing the curves
before and after the introduction of the curvature corrections.
In metallic tubes the effects of confinement are dominant
over curvature, thus the modes derived from graphene
�-E2g are expected to be almost perfectly LO and TO. In
Sec. IV, and in Table III we pointed out that the calculations
in Ref. 51 were done using a very limited number of k

points, and thus failed to describe the effects of confinement.
This is also supported by the results presented in Ref. 18.
Indeed, calculations of Ref. 18 are converged with respect to
the number of k points, and show that for the �12,6� tube the
modes are almost perfectly LO and TO.

For semiconducting tubes, the effects of curvature are
dominant over the effects of confinement. In this case, the
almost perfect LO and TO character imposed by confinement
can be substantially perturbed by curvature. However, it is
important to remember that the splitting caused by curvature
is due to the different force constants along the tubes axis
and circumference. As a consequence, phonons that present a
strong curvature induced splitting must be oriented along
directions for which the difference between the force con-
stants are significantly strong. This means that the atomic

displacements have to be substantially aligned along the tube
axis and the tube circumference. This suggests that the de-
viations from purely axial and circumferential displacement
have to be modest, and that it should be always possible to
classify the modes as almost LO and almost TO.

VII. INTERPRETATION OF THE RAMAN G BAND

IN NANOTUBES

We now show that combining curvature, confinement and
dynamic effects we can interpret the SWNT G peak.

The Raman spectrum of SWNT shows strong features in
the 1540–1600 cm−1 spectral region.4–6,49,80–82 This is the
same region of the G peak in graphene,16 graphite,83 and
amorphous and nanostructured carbons.84,85

As shown in Fig. 18, the G band of SWNTs consists of
two main peaks: G+ and G−.86 In semiconducting tubes both
peaks are sharp, while in metallic tubes the G− is broader and
downshifted.5,6,86–96 For both metallic and semiconducting
tubes, the position of the G− peak depends on the tube diam-
eter, having lower frequency for smaller diameters, while the
position of the G+ peak is substantially diameter
independent.86 As discussed in Sec. VI, curvature affects
more strongly the circumferential modes, thus the G+ and G−

are commonly assigned to LO �axial� and TO �circumferen-
tial� modes, respectively.5,86–88,90,91

Conflicting reports exist on the presence and relative in-
tensity of the G− band in isolated versus bundled metallic
tubes. Some groups report that the intensity of this peak in
isolated tubes is the same as in bundles,86,95,96 while others
observe that it is smaller91,93,94 or even absent.97 The down-
shift and the broadening of the G− peak in metallic tubes is
commonly attributed to the onset of a Fano resonance be-
tween plasmons and the TO phonon.90–92,97,98 Such phonon-
plasmon coupling would either need92 or not need90,98 a finite
phonon wave vector for its activation. The theory of Refs. 90
and 98 predicts the phonon-plasmon peak to be intrinsic in
single SWNT, in contrast with Ref. 97. On the other hand,
the theory in Ref. 92 requires several tubes ��20� in a
bundle in order to observe a significant G− intensity, in con-
trast with the experimental observation that bundles with
very few metallic tubes show a significant G−.93–97 Reference
92 also predicts a G− upshift with number of tubes in the
bundle, in contrast with Ref. 97, which shows a downshift,
and with Refs. 86, 90, and 95, which show that the G− posi-
tion depends on the tube diameter and not bundle size. Fi-
nally, the G− position predicted by Refs. 92 and 98 is at least
200 cm−1 lower than that measured.5,6,86–91,93–96

Thus, all the proposed theories for phonon-plasmon
coupling90,92,98 are qualitative, require the guess of several
quantities, and fail to predict in a precise, quantitative,
parameter-free way the observed line shapes and their diam-
eter dependence.

Phonon symmetry proves that there are only six Raman-
active modes at �:48,80,82,100 two A, two E1, and two E2. The
A modes are totally symmetric, have the highest EPC, and
correspond to the LO and TO modes we examined in the
preceding sections. In Fig. 19 we compare the experimen-
tally measured G+ and G− peaks to the calculated frequencies

FIG. 17. �Color online� Pattern of atomic displacements associ-
ated to a phonon derived from the graphene �-E2g mode �a� as
predicted by EZF-DFT and �b� as calculated in Ref. 51.
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of the LO and TO phonons. The plot of the phonon frequen-
cies corresponds to the results of static and dynamic EZF-
DFT plus the curvature correction �	.

For semiconducting tubes, our calculations support the
G+, G− assignment to the LO and TO phonons.

For metallic tubes, our LO and TO positions reproduce
the diameter dependence of the G− and the G+ peaks, respec-
tively. Our assignment of the G peaks in metallic tubes is
thus the opposite of that in semiconducting. This is empha-
sized in Fig. 18, where we represent the correspondence be-
tween the Raman peaks and the LO-TO phonons.

Our calculations prove that the G− softening can be pre-
cisely predicted by simply considering the coupling of the
LO phonon with single-particle electronic excitations.

Furthermore, in Ref. 70, we have shown that our DFT
calculated EPC also account for the measured FWHM. Vice
versa the experimental FWHM can be used to measure the
EPC.70 It is important to remind here that only single reso-
nance Raman can detect a G− with large FWHM in metallic
nanotubes.70 The same metallic nanotubes measured in
double resonance would have a sharp G−.70,93

It is also interesting to consider if Raman scattering can
allow to probe regions very close to the anomalies in Figs.
12–14. This is not possible in the single resonance approach,
since it only probes q=0. This might be possible in double
resonant Raman scattering. In this case the q=0 rule is re-
laxed, and the scattering process involves phonons with q

�0.49,101 However, only phonons with q� �	� /� satisfy
the conservation of energy and momentum in a double reso-
nant process. Figure 12 shows that for such q the anomaly is
missed and the predicted peak position is very similar to the
q=0 case. However, crossing from single to double resonant
would result in a significant downshift of the TO mode, as
for Eq. �31�. This is consistent with the experimental data
presented in Ref. 93.

FIG. 18. �Color online� Raman G+ and G− peaks for semicon-
ducting and metallic SWNTs �spectra adapted from Ref. 82�. In
semiconducting tubes the two peaks have a Lorentzian shape and a
FWHM of �12 cm−1. In metallic tubes the G− peak is downshifted
and much broader. Our assignment of the spectral features is also
indicated.

FIG. 19. �Color online� Comparison between LO and TO modes
of �a� metallic and �b� semiconducting tubes and the experimental
position of the G+ and G− peaks of the Raman spectra of SWNTs.
The position of the LO and TO modes is calculated using EZF-DFT
and adding the curvature correction. In panel �a� continuous lines
represent the results of dynamic EZF-DFT calculations, while dot-
ted lines refer to static EZF. Open and filled symbols represent,
respectively, the measured position of the G+ and G− peaks. Data
from Oron et al. �Ref. 95� �squares�, Jorio et al. �Ref. 86� �circles�,
Maultzsch et al. �Ref. 93�, �triangles�, Doorn et al. �Ref. 96� �dia-
monds�, Meyier et al. �Ref. 99� �hexagons�, and Brown et al. �Ref.
90� �pentagons�.
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Further validation of our calculations with experiments is
provided by the analysis of the temperature dependence of
the G+ and G− positions.

As stressed in the preceding sections, here we do not de-
scribe the frequency shift induced by the presence of anhar-
monic effects. However, the effects of anharmonicity are ex-
pected to be the same for the LO and TO phonons. Thus
anharmonicity does not affect the relative position of these
two phonons, which can then be altered only by effects re-
lated to Te. The temperature dependence of the G+-G− split-
ting can be investigated using our analytical model.

The difference between the frequency of the LO and TO
modes for metallic and semiconducting tubes of similar di-
ameter d=1 nm is plotted as a function of Te in Fig. 20. For
the semiconducting tube no effects related to Te are expected,
thus the splitting is temperature independent. For metallic
tubes, the static and the dynamic model give very different
predictions. According to the static model, the frequency
split should have a strong logarithmic dependence on tem-
perature, Eq. �26�. On the contrary the dynamic model, ob-
tained by the numerical integration of Eq. �10�, predicts that
the splitting �i� has a maximum at Te�500 K, �ii� it saturates
for Te→0, �iii� for Te→� it decrease monotonically, and �iv�
in the range T=0→1000 K it varies less than 10 cm−1. This
variation is function of the tube diameter, and is plotted in
Fig. 21. We observe that this value is extremely small
��2 cm−1� for large diameters, but rapidly increases for
d�1.5 nm.

Experimental data from Ref. 77, obtained from tubes hav-
ing d�1.0 nm, are in excellent agreement with the predic-
tion of the dynamical model. This confirms the validity of
our model and the inadequacy of a static approach for the
investigation of the vibrational properties of SWNTs.

VIII. CONCLUSIONS

We presented a detailed theoretical investigation of the
optical phonons of SWNTs. We first analyzed the static
DFPT approach and singled out the effects of curvature and
confinement. Confinement plays a major role in shaping
SWNT phonons and is often more relevant than curvature.
We presented an electronic zone folding method allowing the
evaluation of confinement effects on phonon-dispersions and
electron-phonon coupling of SWNTs of any diameter and
chirality, and for any electronic temperature. We investigated
Kohn anomalies and Peierls distortions in metallic SWNTs
with diameters up to 3 nm and in a Te range from 4 to
3000 K. We then presented a simple analytic model exactly
accounting for all the static DFPT results. Finally, we proved
that non adiabatic dynamic effects, beyond the Born-
Oppenheimer approximation, induce significant changes in
the occurrence and shape of Kohn anomalies. We have
shown that it is necessary to consider dynamic effects in
order to correctly describe the phonon dispersions of
SWNTs, in contrast to what happens in most other materials.
Finally we discussed the interpretation of the Raman G peak
in SWNTs. Only by combining dynamic, curvature and con-
finement effects we can reach an agreement between experi-
ments and theory. In metallic SWNTs, we assign the G+ and
G− peaks to the TO �circumferential� and LO �axial� mode,
the opposite of semiconducting SWNTs.
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APPENDIX A

Here we derive the relation between the SWNT and
graphene EPC presented in Sec. III, Eq. �13�.

FIG. 20. Te dependence of LO-TO splitting for a metallic and a
semiconducting tube, calculated using EZF-DFT and including cur-
vature corrections. The solid line corresponds to results of dynamic
calculations on a metallic tube; the dashed line corresponds to static
calculations. The splitting for a semiconducting tube is represented
by the dotted line.

FIG. 21. Difference between the saturation value at Te=0 K and
the maximum value at Te�500 K of the frequency difference of the
G+ and the G− Raman peaks as a function of the tubes diameter.
The values are calculated using dynamic EZF-DFT and including
curvature corrections.
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By definition of the EPC �Eq. �5��,

D�k+q�n,km =��k+q,n� �Ĥ

�R
�q,���k,m� , �A1�

where Ĥ is the system Hamiltonian, R represents the atomic
coordinates, ��k,n� is the electronic state of wave vector k

and band n, and �q,� is the polarization of a phonon of wave
vector q and branch �. We define ��k,n

1 � and �q,�
1 the wave

function and polarization normalized to 1 on the unit cell. We
also define ��k,n

N � and �q,�
N the wave functions and the polar-

izations normalized to 1 on a supercell composed by N unit
cells,

��k,n
N � =

1
N

��k,n
1 � ,

�q,�
N =

1
N

�q,�
1 . �A2�

The EPC calculated on the supercell is then

D�k+q�n,k,m
N = 
�k+q,n

N �
�Ĥ

�R
�q,�

N ��k,m
N � . �A3�

This integral is equivalent to the sum of N unit cell integrals:

D�k+q�n,k,m
N = N��k+q,n

1

N
� �Ĥ

�R

�q,�
1

N
��k,m

1

N
� =

1
N

D�k+q�n,k,m
1 .

�A4�

Considering a SWNT with a unit-cell containing N graphene
unit cells, Eq. �13� is immediately obtained.

Equation �A3� states that the EPC depends on the super-
cell choice, as a consequence the EPC per se is not a physi-
cal observable. In general, a physical observable is given by
the product of the square of the EPC times an electronic
density of states �,

���� =
1

Nk
�
kn

��� − �n�k�� , �A5�

where the sum is performed on Nk wave vectors k and on the
bands n. �n�k� is the energy of ��k,n�. One can easily check
that � is proportional to N, the size of the supercell. Thus, the
product �D�2� does not depend on the supercell chosen and
can correspond to a physical observable.

APPENDIX B

We evaluate Eq. �16� to obtain the shape of the KA at T

=0, presented in Sec. IV E. For T=0 K, the occupation fac-
tors f in Eq. �16� are 0 or 1. For q�� the nonanalytic com-
ponent of the dynamical matrix is then

�̃q�� =
A�

3a0
2

�2d
�

−k̄

k̄ �D̃�K+k�+q��*,�K+k����2

��K+k��� − ��K+k�+q��*
dk�, �B1�

where � and �* indicate bands occupied or empty, respec-

tively �Fig. 2�. Neglecting the dependence of �D̃� on k� and

assuming a linear dispersion for the electronic bands
��K+k���=−�k� and ��K+k���* = +�k�, Eq. �B1� becomes

�̃q�� =
A�

3a0
2

�2d
��D̃LR�2�

−k̄

−q 1

��2k� + q�
dk��

+ �D̃LL�2�
−q

0 1

− �q
dk��

+ �D̃RL�2�
0

+k̄ 1

− ��2k� + q�
dk�� . �B2�

Here, the subscripts of D indicate whether we are consider-
ing electronic bands L or R �Fig. 2�. The integrals can be

easily evaluated. Considering ln �2k̄+q � � ln �2k̄ � =Ck̄ and

�D̃LR�2= �D̃RL�2, we have

�̃q�� =
A�

3a0
2

�2d�
��D̃LR�2�ln�q� − Ck̄� − �D̃LL�2� . �B3�

We now distinguish between the two LO and TO branches at

q��. From Table I, we get �D̃LR � =2
D
�

2 �F for the LO

branch and 0 for the TO, while �D̃LL � =2
D
�

2 �F for the TO and
0 for the LO, thus

�̃LO =
A�

3a0
22
D

�

2 �F

�2d�
ln�q� + C

k̄
�,

�̃TO = −
A�

3a0
22
D

�

2 �F

�2d�
, �B4�

where �̃LO ��̃TO� is the nonanalytic component of the dy-
namical matrix related to the LO �TO� branch. C

k̄
�

=Ck̄A�
3a0

22
D
�

2 �F /�2d� contains all k̄ dependent terms. For

q→0 �̃LO→−�, while �̃TO is a constant independent on q.
This explains the occurrence of the KA only for the LO
branch and its absence for the TO branch in static DFPT.

The phonon frequencies 	 are obtained by 	2=Re���̃
+�an� /M�, where M is the carbon mass and the analytic
component of the dynamical matrix �an is expected to have
a very weak dependence on q. Concluding, at T=0, for q

��, the frequencies of the LO and TO branches are

	LO
2 =

A�
3a0

22
D
�

2 �F

�2d�M
ln�q� + CLO =

��

d
ln�q� + CLO,

�B5�

	TO
2 = −

A�
3a0

22
D
�

2 �F

�2d�M
+ CTO = −

��

d
+ CTO, �B6�

where the constants CLO-TO include all the contributions from
the analytic part of the dynamical matrix �an and all the

nondivergent terms of �̃. For the numerical evaluation of ��

we use A�=2, a0=2.46 Å, �=5.52 eV Å, 
D
�

2 �F

=45.60 eV2 Å−2, M =12.01 a.m.u. The corresponding equa-
tions for the KA at K are obtained in a completely analogous
way.
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APPENDIX C

We determine the dependence on Te of the KA phonon
frequencies at q=� and q=K. We define

f�x� =
��x� − ��− x�

x
. �C1�

Using Eq. �21�, Eq. �25� becomes

�̃�/K =
��/K

d
�

0

x̄

f�x�dx , �C2�

where x̄=�k̄ / �TkB�. We observe that limx→0f�x�=0 and that

for x→� f�x��− 1
x
. Since k̄ is chosen in the linear range of

the � and �* bands, �k� is a fraction of eV. Moreover, kB

=8.61710−5 eV/K, so the condition �k�≫kBT, corre-
sponding to the x̄→�, is reached for T up to thousands K,
well above any realistic experimental condition. In Eq. �C2�
we replace f�x�with

f̃�x� = f�x� for x � x1,

f̃�x� = −
1

x
for x � x1. �C3�

Equation �C2� becomes

�̃�/K =
��/K

d
��

0

x1

f�x�dx − �
x1

x̄ 1

x
dx� . �C4�

Defining F�x�=	f�x�dx, we obtain

�̃�/K =
��/K

d
�F�x1� − F�0� − ln x̄ + ln x1�

=
��/K

d
ln

x0

x̄

=
��/K

d
ln

T

T0̄

, �C5�

where ln�x0�=F�x1�−F�0�+ln�x1� and T0= �k̄

kBx0
. Considering

that the analytic part of the dynamical matrix �Eq. �19�� as
independent from T, Eq. �26� is then obtained.

APPENDIX D

We evaluate the frequency upshift of the TO mode due to
dynamic effects. From Eq. �30�, we observe that, for q=0,
D̃TO=0. Thus, from Eq. �19�, one obtains that for q=0,

�	TO
dyn�2 =

�TO
an

M
. �D1�

Since the contribution of the phonon energy in the denomi-
nator of �q is negligible for k away from the Fermi surface,
�q

an is the same in the static and in the dynamic case. Using
Eqs. �19�–�21�, we obtain

�TO
an

M
= �	TO

stat�2 −
��

d
. �D2�

Eqs. �D1� and �D2� gives

�	TO
dyn� =�	TO

stat�2 −
��

d
. �D3�

Equation �31� is finally obtained by using 1+x�1+x /2
and substituting the numerical value of ��.
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