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1 Introduction

Quantum wells are thin layered semiconductor structures in which we can observe and control
many quantum mechanical effects. They derive most of their special properties from the
quantum confinement of charge carriers (electrons and "holes") in thin layers (e.g 40 atomic
layers thick) of one semiconductor "well" material sandwiched between other semiconductor
"barrier" layers. They can be made to a high degree of precision by modern epitaxial crystal
growth techniques. Many of the physical effects in quantum well structures can be seen at room
temperature and can be exploited in real devices. From a scientific point of view, they are also an
interesting "laboratory" in which we can explore various quantum mechanical effects, many of
which cannot easily be investigated in the usual laboratory setting. For example, we can work
with "excitons" as a close quantum mechanical analog for atoms, confining them in distances
smaller than their natural size, and applying effectively gigantic electric fields to them, both
classes of experiments that are difficult to perform on atoms themselves. We can also carefully
tailor "coupled" quantum wells to show quantum mechanical beating phenomena that we can
measure and control to a degree that is difficult with molecules.

In this article, we will introduce quantum wells, and will concentrate on some of the physical
effects that are seen in optical experiments. Quantum wells also have many interesting properties
for electrical transport, though we will not discuss those here. We will briefly allude to some of
the optoelectronic devices, though again we will not treat them in any detail.

2 Introduction to Quantum Wells

First we will introduce quantum wells by discussing their basic physics, their structure,
fabrication technologies, and their elementary linear optical properties.

2.1 SEMICONDUCTOR BAND STRUCTURE AND HETEROSTRUCTURES

All of the physics and devices that will be discussed here are based on properties of direct gap
semiconductors near the center of the Brillouin zone. For all of the semiconductors of interest
here, we are concerned with a single, S-like conduction band, and two P-like valence bands. The
valence bands are known as the heavy and light hole bands. Importantly for quantum wells, the
electrons in the conduction band, and the (positively charged) "holes" in the valence band behave



as particles with effective masses different from the free electron mass. The simplest "k.p" band
theory says that the electron effective mass, me, and the light hole effective mass, mlh, are
approximately equal and proportional to the band gap energy. For GaAs, which has a band gap
energy of ~ 1.5 eV, the actual values are  me ~ 0.069  mo and mlh ~ 0.09  mo, where mo is the free
electron mass.  The heavy hole effective mass, mhh, is typically more comparable to the free
electron mass (mhh ~ 0.35  mo for the most common situation in quantum wells), and does not
vary systematically with the band gap energy.

Quantum wells are one example of heterostructures - structures made by joining different
materials, usually in layers, and with the materials joined directly at the atomic level. When two
semiconductors are joined, it is not clear in advance how the different bands in the two materials
will line up in energy with one another, and their is no accurate predictive theory in practice.
Hence, an important experimental quantity is the "band offset ratio"; this is the ratio of the
difference in conduction band energies to the difference in valence band energies. For
GaAs/AlGaAs heterostructures, for example, approximately 67% of the difference in the band
gap energies is in the conduction band offset, and 33% is in the valence band offset, giving a
ratio 67:33. In this particular material system, both electrons and holes see higher energies in the
AlGaAs than in the GaAs, giving a so-called "Type I" system. Heterostructures in which
electrons and holes have their lowest energies in different materials are called "Type II", but
such structures will not be considered further here.

Heterostructures in general have many uses. They can be used for advanced electronic devices
(e.g., modulation-doped field-effect transistors, heterojunction bipolar transistors, resonant
tunneling devices), optical components (e.g., waveguides, mirrors, microresonators), and
optoelectronic devices and structures (e.g., laser diodes, photodetectors, quantum well and
superlattice optical and optoelectronic devices). Although heterostructures may be useful in
electronics, they are crucial in many optoelectronic devices (e.g., lasers). Perhaps their most
important technological aspect may be that they can be used for all of these electronic, optical,
and optoelectronic purposes, and hence may allow the integration of all of these.

2.2 QUANTUM WELL STRUCTURES AND GROWTH

A quantum well is a particular kind of heterostructure in which one thin "well" layer is
surrounded by two "barrier" layers. Both electrons and holes see lower energy in the "well"
layer, hence the name (by analogy with a "potential well"). This layer, in which both electrons
and holes are confined, is so thin (typically about 100 Å, or about 40 atomic layers) that we
cannot neglect the fact that the electron and hole are both waves. In fact, the allowed states in
this structure correspond to standing waves in the direction perpendicular to the layers. Because
only particular waves are standing waves, the system is quantized, hence the name "quantum
well".

There are at least two techniques by which quantum well structures can be grown, molecular
beam epitaxy (MBE) (Cho 1991), and metal-organic chemical vapor deposition (MOCVD)
(Furuya and Miramoto 1990). Both can achieve a layer thickness control close to about one
atomic layer. MBE is essentially a very high vacuum technique in which beams of the
constituent atoms or molecules (e.g., Ga, Al, or As) emerge from ovens, land on the surface of a
heated substrate, and there grow layers of material. Which material is grown can be controlled by
opening and closing shutters in front of the ovens. For example, with a shutter closed in front of
the Al oven, but open shutters in from of the Ga and As ovens, GaAs layers will be grown.
Opening the Al shutter will then grow the alloy AlGaAs, with the relative proportion of Ga and
Al controlled by the temperatures of the ovens. With additional ovens and shutters for the dopant
materials, structures of any sequence of GaAs, AlAs, and AlGaAs can be grown with essentially



arbitrary dopings. MOCVD is a gas phase technique at low pressure (e.g., 25 torr). In this case
the constituents are passed as gasses (e.g., trimethylgallium and arsine) over a heated substrate,
with the resulting composition being controlled by the relative amounts of the appropriate
gasses. Hybrid techniques, using the gas sources of MOCVD in a high vacuum molecular beam
system, also exist, and are known variously as gas-source MBE or chemical beam epitaxy (CBE)
(Tsang 1990). Which technique is best depends on the material system and the desired structure
or device. Typical structures grown by these techniques might have total thickness of microns,
and could have as many as hundreds of layers in them.

There are many different materials that can be grown by these techniques, and many of these
have been used to make quantum well structures. One significant restriction is that it is important
to make sure that the lattice constants (essentially, the spacing between the atoms) of the
materials to be grown in the heterostructure are very similar. If this is not the case, it will be
difficult to retain a well-defined crystal structure throughout the layers - the growth will not be
"epitaxial". The growth is simplest when the lattice constants are identical. Fortunately, AlAs
and GaAs have almost identical lattice constants, which means that arbitrary structures can be
grown with high quality in this materials system. Another commonly used system is InGaAs
with InP; in this case, the proportions of In and Ga are adjusted to give a lattice constant for the
ternary (three-component) InGaAs alloy that is equal to InP. Use of four component (quaternary)
alloys (e.g., InGaAsP) allows sufficient degrees of freedom to adjust both the lattice constant and
the bandgap energy. Up to a certain critical thickness, which depends on the degree of lattice
constant mismatch, it is possible to grow structures with materials that naturally have different
lattice constants. In this case, the materials grow in a highly strained state but can adopt the local
lattice constant and retain good epitaxial crystal structure. Such strained materials are of
increasing technological importance, although we will not discuss them further here.

A partial list of materials used for quantum well structures includes: III-V's - GaAs/GaAlAs
on GaAs (Type I), GaSb/GaAlSb on GaSb (Type I), InGaAs/InAlAs on InP (Type I), InAs/GaSb
(Type II), InGaAs/GaAs (Type I, strained); II-VI's - HgCdTe/CdTe, ZnSe/ZnMnSe
(semimagnetic), CdZnTe/ZnTe (Type 1, strained); IV-VI's - PbTe/PbSnTe; IV - Si/SiGe
(strained).

2.3 PARTICLE-IN-A-BOX QUANTUM WELL PHYSICS

We can understand the basic properties of a quantum well through the simple "particle-in-a-
box" model. Here we consider Schrödinger's equation in one dimension for the particle of
interest (e.g., electron or hole)
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where V(z) is the structural potential (i.e., the "quantum well" potential) seen by the particle
along the direction of interest (z), m is the particle's (effective) mass, and En and In are the
eigenenergy and eigenfunction associated with the n'th solution to the equation..

The simplest case is shown in Fig. 1. In this "infinite well" case, we presume for simplicity
that the barriers on either side of the quantum well are infinitely high. Then the wavefunction
must be zero at the walls of the quantum well.
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Fig. 1 "Infinite" quantum well and associated wavefunctions.

The solution is then particularly simple:
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The energy levels (or "confinement energies") are quadratically spaced, and the wavefunctions
are sine waves. In this formula, the energy is referred to the energy of the bottom of the well.
Note that the first allowed energy (corresponding to n=1) is above the bottom of the well.

We see that the energy level spacing becomes large for narrow wells (small Lz) and small
effective mass m. The actual energy of the first allowed electron energy level in a typical 100 Å
GaAs quantum well is about 40 meV, which is close to the value that would be calculated by this
simple formula. This scale of energy is easily seen, even at room temperature.
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Fig. 2 Comparison of "infinite" quantum well, "finite" quantum well, and superlattice
behavior. For the superlattice, a wavefunction for one of the possible superlattice
miniband states is shown (actually the state at the top of the miniband).

The solution of the problem of an actual quantum well with finite height of barriers is a
straightforward mathematical exercise. It does, however, require that we choose boundary



conditions to match the solutions in the well and the barriers. One boundary condition is obvious,
which is that the wavefunction must be continuous. Since the Schrödinger equation is a second
order equation, we need a second boundary condition, and it is not actually obvious what it
should be. We might think that we would choose continuity of the wavefunction derivative
across the boundary; we cannot do so because the masses are different on the two sides of the
boundary in general, and it can be shown that such a simple condition does not conserve particle
flux across the boundary when the masses are different. One that does conserve particle flux is to
choose (1/m) dI/dz continuous; this is the most commonly used one, and gives answers that
agree relatively well with experiment, but there is no fundamental justification for it. This lack of
fundamental justification should not worry us too much, because we are dealing anyway with an
approximation (the "envelope function" approximation). If we were to use a proper first
principles calculation, we would have no problem with boundary conditions on the actual
wavefunction.(Burt 1992) The solution of the finite well problem does not exist in closed form
(Weisbuch 1987), requiring numerical solution of a simple equation to get the eigenenergies. The
wavefunctions of the bound states are again sine waves inside the quantum well, and are
exponentially decaying in the barriers. The energies are always somewhat lower than those we
would calculate using the infinite well. It can be shown from the solution (Weisbuch 1987) that
there is always at least one bound state of a finite quantum well. Fig. 2 illustrates the differences
between the idealized "infinite" quantum well, the actual "finite" well.

Also in Fig. 2, we have illustrated a superlattice. It will be useful here to define the difference
between quantum wells and superlattices. The simplest, crystallographic, definition of a
superlattice is a "lattice of lattices". With that definition, any regular sequence of well and barrier
layers would be a superlattice. A more useful definition here is the "electronic" definition; in this
definition, we call such a regular structure a superlattice only if there is significant wavefunction
penetration between the adjacent wells. Otherwise, the physics of the multiple layer structure is
essentially the same as a set of independent wells, and it is more useful to call the structure a
multiple quantum well (MQW). If there is significant wavefunction penetration between the
wells, we will see phenomena such as "minibands", and the structure is then usefully described
as a superlattice. The "minibands" arise when quantum wells are put very close together in a
regular way, just as "bands" arise in crystalline materials as atoms are put together. Just as with
quantum wells, simple models for superlattices can be constructed using envelope functions and
effective masses, and such models are also good first approximations. As a rule of thumb, for
well and barrier layers thicker than about 50 Å in the  GaAs/AlGaAs system, with a typical Al
concentration of about 30 % in the barriers, the structure will probably be best described as a
multiple quantum well.

3 Linear Optical Properties of Quantum Wells

To understand the linear interband optical absorption in quantum wells, we will first neglect
the so-called "excitonic" effects. This is a useful first model conceptually, and explains some of
the key features. For a full understanding, however, it is important to understand the excitonic
effects. In contrast to bulk semiconductors, excitonic effects are very clear in quantum wells at
room temperature, and have a significant influence on device performance.

3.1 OPTICAL ABSORPTION NEGLECTING EXCITONS

The simplest model for absorption between the valence and conduction bands in a bulk
semiconductor is to say that we can raise an electron from the valence band to a state of



essentially the same momentum in the conduction band (a "vertical" transition) by absorbing a
photon. The state in the conduction band has to have essentially the same momentum because the
photon has essentially no momentum on the scale usually of interest in semiconductors. In this
simple model, we also presume that all such transitions have identical strength, although they
will have different energies corresponding to the different energies for such vertical transitions.
The optical absorption spectrum therefore has a form that follows directly from the density of
states in energy, and in bulk (3D) semiconductors the result is an absorption edge that rises as the
square root of energy, as shown in Fig. 3.

In quantum wells, for the direction perpendicular to the layers, instead of momentum
conservation we have a selection rule. The rule states that (to lowest order) only transitions
between states of the same quantum number in the valence and conduction bands are allowed.
This rule follows from the fact that the optical absorption strength is proportional to the overlap
integral of the conduction and valence (envelope) wave functions. For sinusoidal standing waves,
as shown for the infinite quantum well in Fig. 2, there is only a finite overlap between identical
standing waves. (This rule is somewhat weaker for finite wells, although it is still a very good
starting point.) We can if we wish still view this as conservation of momentum, since we can
regard the standing waves as states of specific momenta. (The converse is also true, in that even
in bulk semiconductors we can equally well view the momentum conservation rule as following
from allowed overlap integrals, in that case between plane wave wavefunctions.)

In a quantum well, the electrons and holes are still free to move in the directions parallel to
the layers; hence, we do not really have discrete energy states for electrons and holes in quantum
wells; we have instead "subbands" that start at the energies calculated for the confined states.
The electron in a given confined state can in addition have any amount of kinetic energy for its
in-plane motion in the quantum well, and so can have any energy greater than or equal to the
simple confined-state energy for that subband. The density of states for motion in the plane of
the quantum well layers turns out to be constant with energy, so the density of states for a given
subband really is a "step" that starts at the appropriate confinement energy. Optical transitions
must still conserve momentum in this direction, and just as for bulk semiconductors, the optical
absorption must still therefore follow the density of states. Hence, in this simple model, the
optical absorption in a quantum well is a series of steps, with one step for each quantum number,
n. It is easily shown, from the known densities of states, that the corners of the steps "touch" the
square root bulk absorption curve (when that curve is scaled to the thickness of this infinite
quantum well). Thus, as we imagine increasing the quantum well thickness, we will make a
smooth transition to the bulk behavior, with the steps becoming increasingly close until they
merge into the continuous absorption edge of the bulk material.
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Fig. 3. Optical absorption in bulk (i.e., 3D) semiconductors and in quantum wells, in the
simplest model where excitonic effects are neglected.

3.2 CONSEQUENCES OF HEAVY AND LIGHT HOLES

As we mentioned above, there are two kinds of holes that are relevant here, corresponding to
the heavy and light hole bands. Since these holes have different masses, there are two sets of
hole subbands, with different energy spacings. The light hole subbands, because they have
lighter mass, are spaced further apart. The consequence for optical absorption is that there are
actually two sets of "steps". The heavy-hole-to-conduction set starts at a slightly lower energy
and is more closely spaced than the light-hole-to-conduction set. The heavy hole set is usually
dominant when we look at optical absorption for light propagating perpendicular to the quantum
well layers.

If, however, we look in a waveguide, with light propagating along the quantum well layers,
there are two distinct optical polarization directions: one with the optical electric vector parallel
to the quantum well layers (so-called "transverse electric" or TE polarization); and the other with
the optical electric vector perpendicular to the quantum well layers (so-called "transverse
magnetic" or TM polarization). The TE case is essentially identical to the situation for light
propagating perpendicular to the layers, where the optical electric vector is always in the plane of
the quantum wells; the optical electric vector is always perpendicular to the direction of
propagation for a plane wave. The TM case is substantially different from the TE case, however.

Because of microscopic selection rules associated with the unit cell wavefunctions, for the
TM polarization, the heavy-hole-to-conduction transitions are forbidden, and all of the
absorption strength goes over to the light-hole-to-conduction transitions. Hence, at least with this
simple model, there is now only one set of steps in the absorption. The reason for loss of the
heavy hole transitions is not a special property of quantum wells;  this kind of selection rule is a
consequence of defining a definite symmetry axis in the material, in this case the growth
direction of the quantum well layers. Exactly the same selection rule phenomenon will result if



we apply a uniaxial stress to a bulk semiconductor. One practical consequence of this selection
rule effect is that quantum well waveguide lasers essentially always run in TE polarization; there
are more heavy holes than light holes in thermal equilibrium, and hence the gain associated with
heavy holes is larger, and hence the gain is larger for the TE polarization. In general, this simple
classification of holes into "heavy" and "light" is only valid near the center of the Brillouin zone.
The detailed structure of the valence bands is particularly complicated since the various
subbands would actually appear to cross one another. In fact, such crossing are avoided, and the
resulting subband structure is quite involved. For many devices, such effects are not very
important (at least for a basic understanding of the devices), and we will not discuss such valence
band effects further here.

3.3 OPTICAL ABSORPTION INCLUDING EXCITONS

Fig. 4 shows an actual absorption spectrum of a quantum well sample.
We see from Fig. 4 that the quantum well absorption is indeed a series of steps, and simple

calculations based on the particle-in-a-box models will correctly give the approximate positions
of the steps. But it is also clear that there are sets of peaks in the spectra not predicted or
explained by the simple "non-excitonic" model described above. These peaks are quite a strong
effect, and will be particularly important near the band-gap energy, here at about 1.46 eV photon
energy. Most devices also operate in this region.

To understand these peaks, we need to introduce the concept of excitons. The key point
missing in the previous discussion is that we have neglected the fact the electrons and holes are
charged particles (negative and positive respectively) that attract each other. Hence, when we
have an electron and a hole in a semiconductor, their wavefunctions are not plane waves; plane
waves correspond to the case of uniform independent motion of the electron and the hole.
Instead, we should expect that the electron and hole wavefunction should correspond to the case
where the electron and hole are close to one another because of their Coulomb attraction. The
formal error we made in the analysis above is therefore that we did not use the correct
eigenfunctions for the electrons and holes, and hence we formally got an incorrect answer when
we used those eigenfunctions to calculate the optical absorption.
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Fig. 4. Absorption spectrum of a typical GaAs/AlGaAs quantum well structure at room
temperature.

Unfortunately, to include excitonic effects properly we need to use a different picture, since
the whole band structure picture is a single particle picture; it essentially describes the energies
seen by either a single electron or a single hole, but cannot handle both at once. Fortunately,
there is a simple picture that allows us to understand the resulting excitonic effects.

The correct approach is not to consider raising an electron from the valence band to the
conduction band, but rather to consider the creation of an electron-hole pair. In this picture, we
find the eigenfunctions of the electron-hole pair in the crystal, and base our calculation of optical
absorption on those pair states. First, then, we must understand what are the states of an electron-
hole pair in a crystal. Fortunately, at least for the case where the attraction is not too strong, this
problem is already solved; it is essentially the same problem as the states of the hydrogen atom,
corrected for the different effective masses and dielectric constants in the semiconductor. Using
this model, we find, for example, the binding energy of lowest, 1S, exciton is
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where h is Planck's constant, HR is the relative permittivity, Ho is the permittivity of free space,
and P is the reduced mass
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For bulk GaAs (where excitons can be clearly seen at low temperature), EB ~ 4 meV.
Hence, we find the first remarkable property of excitons compared to the non-excitonic

model. It is possible to create an exciton with an energy EB less than that required to create a
"free" electron-hole pair. A free electron-hole pair is analogous to an ionized hydrogen atom, and
the energy required to create such a free pair in the semiconductor is actually the simple band-
gap energy of the single particle picture. Hence we expect some optical absorption at photon



energies just below the band-gap energy. This point is illustrated in Fig. 5, on the left, showing a
possible transition at an energy Eexciton =  Ebandgap - EB.

It is not only the absorption that creates the 1S exciton that is important, although under most
conditions it is the only one that we see clearly as a distinct peak. In fact the entire absorption
spectrum of these kinds of semiconductors is properly described in terms of the complete set of
hydrogenic states. For example, the absorption above the band-gap energy results from the
creation of excitons in the unbound hydrogenic states. In the classical sense, such states
correspond to hyperbolic orbits. There is also additional absorption just below the bandgap
energy from the other, bound excitonic states.

Note now that we are explaining the optical absorption in terms of the creation of a particle,
the exciton (or, exactly equivalently, an electron-hole pair). It is important to understand that the
absorption we see is not that associated with raising an existing hydrogenic particle to an excited
state, as would be the case with conventional atomic absorption; we are instead creating the
particle. An analogy that may help understand this distinction is the absorption in the vacuum
that creates electron-positron pairs. This is illustrated in Fig. 5, on the right.

By absorbing photons in the vacuum, we can in principle create positronium atoms, which are
simply hydrogenic systems composed of an electron and a positron (instead of a proton). In this
case, we are simultaneously creating a positron in the Fermi sea (the analog of the valence band),
as well as an electron. This happens to be a two-photon transition, and is therefore a rather weak
effect in practice, but it illustrates the difference between the creation of an atom and the
absorption between levels of the atom. A very important difference between these is that in the
creation case, we have "excitonic" absorption even when we have no excitons in the material. In
the positronium case, it is very clear that there need be no positronium atoms there since we are
starting with a perfect vacuum!

In the simple model where we neglected excitonic effects, the strength of a particular
transition was determined by the square of the overlap integral between the "initial" (valence
subband) state and the "final" (conduction subband) state. In principle, we have a similar result
for the present excitonic model, although in this case the initial state is the "empty" crystal, and
the final state is the crystal with an exciton added. We will not formally derive the consequences
of this change in model, but the net result is that, in the exciton creation case, the strength of the
absorption to create an electron-hole pair in a given state is proportional to the probability that
the resulting electron and hole will be in the place (strictly, the same unit cell). Now we can
understand why the excitonic absorption gives such a strong peak for creation of 1S excitons. In
the 1S exciton, the electron and hole are bound closely to one another (within a diameter of about
300 Å in bulk GaAs), and the 1S wavefunction actually peaks at zero relative displacement.
Hence the probability of finding the electron and the hole in the same place is actually very
large, and so the resulting absorption is strong.
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Fig. 5. Analogy between excitonic absorption and the optical creation of positronium
atoms.

Thus far, we have discussed excitons in general, without explaining why they are particularly
important in quantum wells. Excitonic effects are clear in many direct gap semiconductors at low
temperature. At room temperature, however, although excitonic effects are still very important in
determining the shape and strength of the interband absorption, the actual peaks corresponding to
the bound states are difficult to resolve. The main reason for this lack of resolution is that the
bound states are rapidly ionized by collisions with optical phonons at room temperature. In fact,
they are typically ionized in times short compared with a classical orbit time. By a Heisenberg
uncertainty principle argument, the associated optical linewidth is broadened, to such a point that
the line is no longer clearly resolvable.

The quantum well offers two important differences compared to the bulk material, both of
which stem from the confinement in the quantum well. Fig. 6 shows, in a semiclassical picture,
an exciton in bulk GaAs and an exciton in a quantum well.

Hydrogenic theory for the GaAs exciton gives a diameter of about 300 Å, as mentioned above.
When we create an exciton in a quantum well that is only 100 Å thick, the exciton must become
smaller, at least in the direction perpendicular to the quantum wells. Remarkably, however, it
also becomes smaller in the other two directions (in the plane of the quantum well). This
surprising conclusion can  be checked, for example, by variational calculations. We can
rationalize it by saying that nature prefers to keep the exciton more nearly spherical to minimize
energy overall. If, for example, we allowed the exciton to become a flat "pancake" shape, it
would acquire high kinetic energies from the large second derivatives at the edges of the
pancake. It is also the case that the exact solution of the two-dimensional hydrogen atom,
corresponding to a very thin quantum well with very high walls, has a diameter one quarter that
of the three-dimensional hydrogen atom. The two consequences are: (1) the electron and hole are
even closer together than in the three-dimensional case, so the absorption strength to create such
an exciton is even larger; (2) the exciton has a larger binding energy because the electron and
hole are closer together, and hence it orbits "faster". As a result of the faster orbiting, the exciton
is able to complete a classical orbit before being destroyed by the optical phonon, and hence it
remains a well-defined resonance. Equivalently, although the linewidth of the quantum well
exciton is comparable to that of the bulk exciton, the binding energy is larger, and the peak is



still well resolved from the onset of the "interband" absorption at the band-gap energy. These
two reasons explain both why the quantum well excitons are relatively stronger and also better
resolved than the bulk excitons. The practical consequence is that in quantum wells we may be
able to make some use of the remarkable excitonic peaks since we can see them at room
temperature.

300 Å
100 Å

Exciton in bulk GaAs Exciton in quantum well

Fig. 6. Comparison of bulk and quantum well exciton sizes and shapes.

Note that in practice we frequently refer to the peaks in the spectrum as the exciton peaks or
the exciton absorption peaks. It is important to remember always that these peaks represent the
absorption that creates the (1S) exciton, and also that all of the rest of the interband absorption is
also excitonic, although not to create the 1S state. Loosely, we often talk of "the exciton" as
meaning only the 1S exciton.

Incidentally, the two strong peaks that we typically see near the band-gap energy are the 1S
exciton absorption peaks associated with the first heavy-hole-to-conduction transition (the
stronger peak at lower photon energy) and with the first light-hole-to-conduction transition (the
weaker peak at slightly higher photon energy).

4. Nonlinear Optics in Quantum Wells

There are many possible nonlinear optical effects in quantum wells. Here we will discuss only
one class of effects, namely those related to optical absorption saturation near to the band-gap
energy. This particular set of effects has been strongly considered for various different kinds of
devices, and is a serious candidate for applications in laser modelocking.

In the simplest case, we shine a laser beam on the material so that the resulting optical
absorption generates a significant population of electrons and holes, either creating "excitons"
(i.e., electron-hole pairs initially in bound hydrogenic states) or "free carriers" (i.e., electron-hole
pairs initially in unbound hydrogenic states). Absorbing directly into the exciton (absorption)
peaks will generate excitons, whereas absorbing at higher photon energies will generate free
carriers. For steady state effects at room temperature with continuous laser beams, it makes little
difference which we generate, since the excitons will ionize rapidly (e.g., in ~ 300 fs) and in
thermal equilibrium we will essentially have only free carriers anyway. Fig. 7 shows the effect
on the absorption spectrum of generating a significant density (e.g., ~ 1017 cm-3 free carrier
density) in the quantum wells.
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Fig. 7. Absorption spectrum without (dashed line) and with (solid line) optically created
free carriers.

As can be seen from Fig. 7, with the presence of such a free carrier density, the exciton peaks
have become saturated. The detailed physics of such phenomena is very complicated, and can
only be analyzed using many-body theory. We can, however, understand qualitatively various of
the mechanisms (Chemla et al. 1984) (Schmitt-Rink et al. 1985). It is important in understanding
these mechanisms to remember that the excitonic absorption peaks are associated with the
creation of excitons. The simple absorption saturation mechanism that we would see in, for
example, an atomic vapor, in which the absorption saturates when half of the atoms have been
excited to their upper state, does not exist here; there is no density of atoms to start with since
there are no excitons present and hence we cannot deduce any density of excited atoms at which
saturation occurs by such an argument.

There is, however, one mechanism that is particularly easy to understand. Our physical
intuition tells us that we cannot create two similar excitons in the same place; this is exactly like
trying to create two atoms in the same place. Hence, as we begin to fill up space with excitons,
we will start to run out of space to create more. Consequently, the probability of being able to
create more excitons must reduce, and so the optical absorption associated with creating them
must decrease. Therefore the exciton absorption line will saturate. This mechanism is illustrated
on the left of Fig. 8. For such a mechanism, we will get saturation with about one created exciton
per exciton area, which works out to an exciton density of about 1017 cm-3.

The real reason for this saturation mechanism is Pauli exclusion; we cannot have two
electrons in the same state in the same place. It is also true that free carriers, if they are "cold"
enough to be in the states near the band center from which the exciton is comprised, can also
prevent creation of more excitons, again by the Pauli exclusion principle. This is illustrated on
the right of Fig. 8.
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Fig. 8. Illustration of saturation by filling space with excitons (left) and filling space with
free carriers. At a density of one exciton per exciton volume, or one "cold" free carrier per
exciton volume, it becomes essentially impossible to create any more excitons. This can
be visualized geometrically in terms of the probability of trying to "throw" one more
exciton onto the plane without it landing on any of the other excitons or free carriers.

Although we have discussed the saturation mechanisms so far in a qualitative and simplistic
way, it turns out that these mechanisms are rigorously correct, with the only detail being the
effective area of the exciton to use in the argument (Schmitt-Rink et al. 1985). There are also
other mechanisms that are somewhat less obvious, and some of these are of comparable size
(Schmitt-Rink et al. 1985). A second class of mechanisms that will change the absorption is
screening effects. If we create a density of free carriers, they will tend to change the dielectric
constant, and hence change the size of the exciton, typically increasing it. If the size of the
exciton increases, then the probability of finding the electron and hole in the same place
decreases; hence the optical absorption strength decreases, giving an effect that also behaves like
saturation. This direct, classical Coulomb screening is thought to be weak in quantum wells
because the walls of the wells prevent the movement of charge necessary for effective screening.
There is, however, an even more subtle effect that is actually of comparable size to the other
"saturation" mechanisms, which is exchange screening. Essentially, when we include the effect
of Pauli exclusion in our calculations, we find that the results we would calculate using our
simple classical Coulomb effects are not correct at high density, because the Pauli exclusion
forces the electrons to be further apart than we had thought (and similarly for the holes). This is
described as if it were a screening effect, although it is actually a Pauli exclusion effect that
causes us to correct our previous Coulomb calculation. This exchange screening also tends to
increase the size of the exciton, reducing absorption.

Although in the steady state at room temperature, we see primarily the effect of free carriers
on excitons, at lower temperatures or at short time scales we can see the effect of excitons on
excitons. These latter effects are actually typically somewhat stronger (e.g., a factor of 1.5 - 2).
Hence, if we initially create excitons and monitor the saturation of the exciton peaks, we can see
a fast transient absorption saturation associated with the exciton-exciton effects, followed by a
somewhat weaker saturation as the excitons ionize. This actually allows us to measure the
exciton ionization time, which is about 300 fs at room temperature.

These saturation effects associated with the exciton peak in quantum wells are relatively
sensitive. They have been explored for a variety of nonlinear optical switching devices. Even
with the additional benefits of the strong quantum well excitons, these effects are not large
enough to make low enough energy devices for current practical systems interest for information
processing. The effects are important, however, for two reasons. One reason is that they set
limits on the operating power of other devices, such as the modulators and electroabsorptive
switches discussed briefly below. Secondly, the effects are large enough for serious use as mode



locking saturable absorber elements for lasers, and this is becoming practical now (Smith et al.
1985) (Keller et al. 1991) (Chen et al. 1991) .

5. Quantum Well Electroabsorption Physics

When electric fields are applied to quantum wells, their optical absorption spectrum near to
the band-gap energy can be changed substantially (Miller et al. 1985a), an effect we can call
electroabsorption. Such effects have been extensively investigated for optical modulators and
switches. There are two very distinct directions in which we can apply electric fields to quantum
wells, either with the electric fields parallel to the layers or with the electric field perpendicular
to the layers. The case of fields perpendicular to the layers is the one most peculiar to quantum
wells, and it is called the Quantum-Confined Stark Effect (QCSE). Here, we will first discuss the
case of fields parallel to the layers.

5.1 ELECTRIC FIELDS PARALLEL TO THE LAYERS

For the case of electric fields parallel to the layers, we get effects that are qualitatively similar
to those seen in bulk semiconductors. The benefit of the quantum well here is that we can exploit
the excitonic electroabsorptive effects at room temperature. The main effect we see is that the
exciton absorption peak broadens with field.
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Fig. 9. Effect of field on quantum well excitons for fields parallel to the layers.

Fig. 9 illustrates qualitatively the Coulomb potential of the electron in the presence of the
hole, and sketches how the exciton is deformed as the field is applied. In principle, when we
apply an electric field to a hydrogenic system, we can shift the energy levels and the resulting
transition energies, an effect known in atoms as the Stark effect. For a symmetrical state, such as
the ground state of a hydrogenic system, the Stark effect can be viewed as the change in
electrostatic energy caused by polarizing the atom with the field, E. The change in energy is
therefore - (1/2) P.E, where P is the induced polarization. This corresponds to a reduction in the
energy of the hydrogenic system. Hence, we might expect that as we apply an electric field to a
semiconductor, we should see the 1S exciton absorption peak move to lower energies, because
the energy of the resulting exciton we create is lower by this Stark shift.

It is true that there is such a Stark shift, but it is not the dominant effect that we see. The
reason is that the Stark shift of a hydrogenic system is limited to about 10% of the binding
energy. Since the binding energy of the exciton is only about 10 meV, the shift is therefore
limited to about 1 meV, and hence it is not a very large effect. When we try to shift the energy by
more than this, the hydrogenic system becomes field ionized (i.e., the electron and hole are
"ripped" apart by the field) so rapidly that the particle cannot complete even a substantial
fraction of a classical orbit before being destroyed, and the whole concept of a bound state loses



any useful meaning. In fact, what we see primarily as we apply the field is the broadening of the
exciton absorption resonance caused by the shortening of the exciton's lifetime - again, a
"Heisenberg uncertainty principle" broadening. (It is just possible to see the shift at low fields in
a carefully controlled experiment.)

0 V / cm
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Fig. 10. Absorption spectra for a quantum well sample at room temperature with various
electric fields applied in the plane of the quantum well layers. The spectra are shifted
vertically for clarity. The exciton peaks broaden with field.

It is worth noting that the fields we are capable of applying to the exciton are gigantic in a
relative sense. Applying 1V / Pm ( = 104 / cm) corresponds to a field of one binding energy (~
10 meV) over one exciton diameter (~ 100 Å). Such a field corresponds to a massive
perturbation, certainly much larger than can readily be achieved with a hydrogen atom itself. It is
also not surprising that such a field should cause the exciton to be field-ionized in less than a
classical orbit time.

Fig. 10 shows a typical set of spectra for parallel field electroabsorption in quantum wells.
The broadening and disappearance of the peaks is clearly seen. One consequence is the
appearance of a weak absorption tail at lower photon energies. The appearance of this tail is
often referred to as the Franz-Keldysh effect. This is somewhat misleading, however, since the
Franz-Keldysh effect is really a non-excitonic effect, whereas excitonic effects dominate near to
the band-gap energy; the Franz-Keldysh effect, for example, cannot model the exciton
broadening at all.

5.2 ELECTRIC FIELDS PERPENDICULAR TO THE LAYERS

The behavior of the electroabsorption for electric fields perpendicular to the quantum well
layers is quite distinct from that in bulk semiconductors. Fig. 11 shows a typical set of spectra.



10 4 V / cm (0 V)

4.7 x 10 4 V / cm (6 V)

7.3 x 10 4 V / cm (10 V)

Fig. 11. Absorption spectra for electric fields applied perpendicular to the quantum well
layers. The spectra are shifted vertically for clarity. The voltages correspond to those
applied to a diode structure containing quantum wells.

Here we can see that, instead of being broadened by the electric field, the exciton absorption
peaks are strongly shifted by the field. The shifts can be 10's of meV, and the applied fields here
can be much larger than those shown above for the parallel field case, while still preserving the
exciton peaks.

The reason for the difference in the electroabsorption in the perpendicular field case is a
straightforward consequence of the quantum well. As we apply an electric field perpendicular to
the layers, we pull the electron in an exciton in one direction (towards the positive electrode) and
the hole in the other direction, just as we would expect. The difference is that the walls of the
wells prevent the exciton from field ionizing. Instead, the electron becomes squashed against one
wall of the quantum well and the hole against the other, as illustrated in Fig. 12 for the lowest
electron and hole states (n=1). Because the electron and hole are still relatively close to one
another, they are still strongly attracted by their Coulomb attraction, and they still orbit round
one another in the plane of the quantum wells, albeit in a somewhat displaced orbit. Hence the
exciton can still exist as a particle for times longer than a classical orbit time, and the exciton
absorption peak is not greatly broadened. Because the particle still exists even with very strong
fields, we can obtain very large Stark shifts. In fact, the Stark shifts can be many times the
binding energy (this is not unphysical since we are decreasing the energy, not increasing it). To
see this effect, it is of course important that the quantum well is significantly smaller than the
bulk exciton diameter; otherwise, the exciton can effectively be field-ionized simply by
separating them by a sufficient distance within the well. For obvious reasons, this shift of the
exciton absorption peaks  is called the Quantum-Confined Stark Effect (QCSE). In principle, we
could see similar effects with a hydrogen atom itself, but to do so we would need to confine the
hydrogen atom within a distance less than 1 Å, and apply fields of ~ 1011 V/cm, both of which
are currently impractical.



Fig. 12. Electron and hole wavefunctions for the first few states in an "infinite" quantum
well. Without field, the wavefunctions are sinusoidal; with field they are Airy functions.

 We can also see from Fig. 11 that, as the exciton absorption peaks are shifted to lower
energies, they do become weaker. The reason for this is that the electron and hole are being
separated from one another by being pulled in opposite directions, and hence there is less
probability of finding them in the same place. Consequently, the absorption strength decreases. It
is worth mentioning here that, as absorption strength is lost in this way by the so-called
"allowed" transitions (e.g., the first hole state to the first electron state), it is picked up by
formerly "forbidden" transitions (e.g., the second hole state to the first electron state) (Miller et
al. 1986). With the applied field, the electron and hole wavefunctions in all of the levels are
distorted; instead of being sinusoidal, they are Airy functions, as illustrated in Fig. 12. In this
case there tend to be finite overlap integrals between all possible states. The strengths of these
various "forbidden" transitions are bounded by sum rules - essentially, the electric field cannot
change the total amount of absorption in the system.

We will not give details of the quantum mechanical calculation of the shifts of the peaks. It is,
however, relatively straightforward. Although the above explanations for the reasons for the
continued existence of the excitons are important for the effect, and the excitonic effects are also
important for the strength of the absorption, the dominant part of the shift comes from the
underlying shift of the single particle states. We can see this shift in Fig. 12, where we see the
n=1 electron level moving down and the n=1 hole level moving up; the net result is that the
energy separation between the n=1 hole and electron levels is reduced with field. The shift in the
exciton binding energy itself is relatively unimportant by comparison (typically a few meV). The
calculation of the shift of individual electron or hole levels with field can be done by various
means. For a tilted well, the wave equation becomes Airy's differential equation, and hence the
exact solutions (e.g., as in Fig. 12) are Airy functions.



It is also, incidentally, quite correct to view the quantum-confined Stark effect shifts as
resulting from the polarization of the exciton by the electric field, hence giving a (1/2) P.E shift
in the exciton energy. To lowest order, the polarization is proportional to the field (i.e., the
induced separation of the electron and hole is initially linear with field), and so the QCSE is a
quadratic effect to lowest order.

Although we have discussed effects here only for the case of simple "rectangular" quantum
wells, many other forms of quantum wells are also possible, such as coupled quantum wells,
graded quantum wells, stepped quantum wells. These other structures also show related effects
induced by applied electric fields, although we will not discuss these here. Also, superlattices
show a class of effects induced by fields, known as Wannier-Stark localization. This effect and
effects in coupled quantum wells are closely related.

5.3 QUANTUM WELL ELECTRO-OPTIC DEVICES

The QCSE is particularly attractive for optical modulators. A simple device structure is shown
in Fig. 13. A quantum well region, typically containing 50 to 100 quantum wells, is grown as the
undoped "intrinsic" ("i") region in a p-i-n diode. This quantum well region will therefore have a
thickness of about 1 - 2 microns. In operation, the diode is reverse biased. 1 V across 1 micron
corresponds to a field of 104 V/cm, so substantial QCSE shifts and changes in the absorption
spectrum can be made with applied voltages of the order of  5 - 10 V. The reverse biased diode is
convenient because there is no conduction current that needs to flow in the diode in order to
apply these relatively substantial fields.

The "p" and "n" regions of the diode are made out of a material that is substantially
transparent at the wavelength of interest. In the case of GaAs quantum wells, they would most
likely be made out of AlGaAs, the same material as used for the quantum well barriers. For the
particular case of GaAs/AlGaAs quantum wells, the usual substrate material is GaAs.
Unfortunately, GaAs is opaque at the wavelengths used with such modulators, hence the
substrate has to be removed for a transmissive modulator, such as the one in Fig. 13.

There are two very important features of the quantum well modulator. The first is that the
electroabsorptive mechanisms (the QCSE) in the quantum well are strong enough to make a
modulator that can work for light propagating perpendicular to the surface of the semiconductor.
Despite the fact that this modulator will typically only be a few microns in thickness altogether,
it can make changes in transmission of a factor of 2 - 3 in a single pass of a light beam. This
modulation is large enough to make usable systems. This feature has the very important
consequence that one can therefore make two-dimensional arrays of devices. This opens up
many possibilities for novel highly-parallel optoelectronic systems.
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Fig. 13. Quantum well modulator diode structure.

A second key feature is that the operating energy of this modulator is small. The amount of
energy required to change the optical properties in this modulator is essentially the stored
electrostatic energy at the operating field. In other words, one has to charge up the capacitance of
the device. The capacitance of a 1 micron square area of a semiconductor device 1 micron thick
is approximately 10-16 F. Hence the total energy required to charge the device is (1/2) CV2  ~ 1 -
2 fJ/Pm2. This energy density is comparable to the energy density in switching electronic
devices, and is much smaller (e.g., by a factor of ~ 100) than the energy per unit optical area
required to turn on a laser diode or saturate an optical absorption. Hence this device is very
attractive as a potentially highly efficient optical output device for electronic circuits.

In addition, the speed limit on the use of the QCSE is probably in the range of ~ 100 fs or less.
Practical modulator devices will not be limited by the electroabsorption mechanism itself, seeing
instead only the usual resistive/capacitive limits in applying voltage to the diodes. Because the
diodes can be small, the capacitance can also be small, and hence these devices are attractive for
high speed modulators.

The QCSE can also be used effectively for waveguide modulators (where the light propagates
along the surface). In this case, a useful modulator can be made with only a few quantum wells
because the propagation distance can be long (e.g., 100 microns). As a result, waveguide
quantum well modulators can operate with low voltages (e.g., < 1 V). The change in absorption
from the QCSE also results in changes in refractive index (through the Kramers-Krönig
relations), and waveguide refractive modulators can also be made.

The Self Electrooptic Effect Device (SEED) principle is to combine a quantum well
modulator (or a set of modulators) with a photodetector (or a set of photodetectors) to make an
optically controlled device with an optical output (or outputs) (Miller et al. 1985b) (Miller
1990c). A major reason for thinking about such a class of devices is an opportunity for efficient
integration. Quantum well modulators driven directly by external electrical connections are
limited in speed and operating energy by the external electrical parasitics, such as capacitance
and the need to drive with impedance matched lines at high speeds. The modulators themselves
can be driven with very low total energies if the drive is electrically local and not brought in by
some external connection. Furthermore, since they are semiconductor devices, the prospects for
integration with various optoelectronic and electronic devices are good.

Although it is often the case that the conversion from optics to electronics and back to optics
is inefficient and costly, this need not be the case if the devices are well integrated. In practice,



the quantum well devices can be integrated effectively, and allow two-dimensional arrays of
smart optoelectronic units or "smart pixels". Such devices offer new possibilities in information
processing and switching architectures.
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Fig. 14. Concept of the field-effect transistor SEED (FET-SEED). S - source; G - gate; D -
drain.

Various optical switching and linear analog devices are possible using combinations of
quantum well diodes, without any transistors. These rely on positive or negative feedback; the
generated photocurrent leads to a change in voltage across the quantum well diodes, which in
turn changes the optical absorption and hence the photocurrent. The feedback can be positive or
negative depending on whether the absorption decreases or increases with voltage respectively.
Positive feedback can lead to bistable switching. The best-known such device is the symmetric-
SEED, which consists of two quantum well diodes reverse-biased in series; this "S-SEED"
shows various digital (Lentine et al. 1989) and analog (Miller 1993) (de Souza 1993) modes.

Quantum well diodes, operating as both photodetectors and modulators, can also be integrated
with transistors. There are at least two reasons to do such integration. First, using transistors for
electronic gain allows the optical energy requirements to be reduced. A second reason is that
electronics is very good at performing complex logic functions, at least locally. Combining
electronics with the abilities of optics for interconnection may allow the best of both worlds.
Indeed there are many advantages of optics for interconnection that become apparent once a
good integration technology is available (Miller 1989).

Fig. 14 shows the concept of one integration, the field-effect transistor SEED (FET-SEED)
(Miller et al. 1989) (D'Asaro et al. 1993). Here a quantum well diode is grown on top of a mirror
as usual, in this case with the n-layer at the top. Then field effect transistors can be fabricated in
the top layer. Hence this concept allows photodetectors for optical inputs, transistors for gain and
logic, and quantum well modulators for optical outputs.

The present state of the art in this technology is that, in the laboratory, small circuits have
been operated with 22 fJ input optical energy, and at speeds up to 650 Mb/s. In actual multistage
systems, larger "smart pixels" are operating with 100 fJ optical input energy at 155 Mb/s. A
smart pixel array with 96 optical beams and 400 transistors was used in this system (Lentine et



al. 1993). Such operating energies and speeds are of serious interest. For example, with 100 fJ
input energy and a factor of 10 loss overall in an optical system, a 1 W laser has sufficient power
to drive 1 Tb/s of information through a system. This is a very large data rate, and one that is
difficult to achieve with purely electronic systems for a number of reasons (mostly related
fundamentally to the skin effect and Maxwell's equations).

Another approach to such integration is to combine quantum well devices with silicon
electronics. There has been success in monolithic integration of quantum well diodes onto silicon
(Goossen et al. 1989), and it seems likely that various other hybrid schemes might also be
possible (Goossen et al. 1993).

6. Terahertz Oscillations in Coupled Quantum Wells

One area of current interest in optical physics of quantum wells is in measuring coherent
quantum processes. A particular example of this is recent work on terahertz oscillations excited
by short optical pulses. In this work, we can create a quantum mechanical system in a particular
linear superposition of states, including setting the quantum mechanical phases in the
superposition. We can then watch the system evolve in time, and, importantly, we can measure
the evolution of the system with a time resolution short compared to the time scale of the
evolution.

One appropriate system for this work is a "coupled" quantum well pair. It is well known, and
easy to show, that a pair of quantum wells separated by a thin barrier will have two coupled
states. The lower energy state of the pair has a symmetric combination of the two individual well
states, and the higher energy state of the pair has an antisymmetric combination. The splitting,
'(� between these two states becomes larger as we reduce the thickness of the barrier, and can
readily be made of the order of 5 - 10 meV in actual coupled wells. If we were to prepare this
system so that there was one "electron" in one of these wells initially, it would oscillate back and
forward between the two wells with a frequency Q = 'E / h. For 'E's of 5 - 10 meV, the
corresponding frequencies are about 1.2 - 2.4 THz. The system oscillates because it is not in an
eigenstate, but is rather in the linear superposition of two eigenstates.

Because the electron is moving back and forth between the two wells, there is actually a
current in this system at these frequencies (or equivalently an oscillating polarization). As a
result, this system will actually emit electromagnetic radiation in the terahertz region. If we can
detect the electric field of the terahertz radiation (rather than merely its intensity), we will be
able to measure the time evolution of this oscillating polarization, including both amplitude and
phase. Hence we can monitor the evolution of the phase of the quantum mechanical system, a
rather unusual ability.
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Fig. 15 Schematic diagram of a biased coupled quantum well (upper part of the figure)
with both coupled states excited simultaneously by an appropriate short (and hence broad-
band) optical pulse, resulting in oscillation as shown by the resulting detected terahertz
oscillation (lower part of the figure). This particular structure has a narrow well (NW) and
a wide well (WW).

The actual sample structure for this experiment and a resulting terahertz signal are shown in
Fig. 15. We excite the system with a short optical pulse whose frequency bandwidth covers both
of the coupled states so that we excite a linear superposition of them. Note that the short optical
pulse is essentially fully coherent - the frequency spectrum is not simply like a small slice out of
the spectrum from a light bulb, but has a definite phase relation between the different frequency
components; as a result, the two states are excited with a definite phase relation (actually the
phase relation that puts the electrons initially in the right hand well. In this particular structure
we have used an experimental trick. The two wells are not identical, though we have applied an
electric field to "line up" the lowest states in the two wells so we still have coupled wells. The
reason for the asymmetry is so that the optical excitation only creates electrons in the right hand
well. (In a symmetric structure, equal populations would be created in both wells, and there
would be no net oscillation.) The terahertz signal starts after the creation of the electrons in the
right hand well, and shows the expected oscillation. The oscillation decays in time, in this case
because of dephasing of the excitation from collisions with phonons, other particles, or
imperfections.
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Fig. 16 Experimental setup for two pulse excitation of a quantum well sample with
controlled phase between pulses, and subsequent measurement of the resulting terahertz
electric field pulse by gated photoconductive sampling of a receiving antenna.

The experimental apparatus to perform these experiments is shown in Fig. 16. This apparatus
is also capable of generating two optical pulses from the original laser pulse with a controllable
delay set by the piezo translation stage. The excitation pulse (or pulses) are incident on a
multiple (coupled) quantum well sample in a cryostat. As a result of this excitation, the sample
emits some terahertz electromagnetic radiation. This radiation is collimated by a parabolic
mirror, sent to another parabolic mirror and focussed onto an antenna. The antenna is a classical
dipole antenna. The instantaneous voltage from the antenna is sampled by a photoconductive
sampling gate. This gate "opens" for a short time after it is hit with a short optical gating pulse.
The resulting charge that flows through the gate to a conventional electrical signal detection
system is therefore proportional to the instantaneous terahertz electric field. The entire terahertz
signal is traced out by repeating the experiment for progressively longer delays between the
exciting laser pulse and the gating pulse. Such delays are controlled by simple linear translation
of a mirror.

This apparatus also illustrates that such terahertz experiments lie in an overlap region between
various different regimes. The terahertz signal is generated quantum mechanically, focussed
optically and detected like a radio signal. The photon energy or frequencies involved are such
that we can move between optics and radio techniques, and between quantum mechanical and
classical descriptions. It is also true that in this regime we are at the boundary between classical
electrical transport and coherent transport; the coupled well oscillation can be viewed as a
coherent transport phenomenon, and it is also possible to observe normal classical transport on
these time-scales. Finally, it is possible to view the terahertz generation as a second order
nonlinear optical process - technically a difference frequency generaion, and so we are also at the
boundary between coherent transport and nonlinear optics.

When we extend these experiments to excitation by two closely spaced optical pulses, we get
into a regime that exposes much more of the quantum mechanical nature of this process, and
which at first sight is counter-intuitive. Fig. 17 shows the resulting signals for excitation by two
pulses when the time separation of the two pulses corresponds to two complete oscillation
periods.
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Fig. 17 Terahertz signals for excitation by two pulses separated by approximately 2
oscillation periods. The top two traces show the resulting signals for excitation by each of
the two pulses separately. The bottom two traces show two cases for excitation with both
pulses. One shows coherent addition of the two induced oscillations, the other shows
coherent cancellation. Note that the difference between these two cases is only in the
difference in the relative optical phase of the pulses.

In such an experiment, we might imagine that the first pulses would set some charge
oscillating, and the second pulse, being of essentially the same amplitude, would set up about the
same amount again; given the carefully chosen time separation between the pulses, the second
oscillation and the first would add, and we would get twice as much charge oscillating, and
hence twice as much field generated. This is clearly not the case, as can be seen from the results.
A key error in such an analysis is that we must add the wavefunctions first, then deduce the
resulting observable. This has two kinds of consequences. First of all, if we indeed do manage to
add the wavefunction created by the second pulse to the approximately equal oscillating
wavefunction left over from the first pulse, we may indeed double the wavefunction amplitude
that is oscillating; but the resulting terahertz current or polarization is proportional to the amount
of charge oscillating, and the amount of charge oscillating is proportional to the square of the
amplitude of the wavefunction. Hence the resulting terahertz electric field could actually
quadruple, not merely double. This kind of effect is seen in the third trace (from the top) of Fig.
17.   The second consequence results because we must add the wavefunctions is that we must
add the complete wavefunctions, not merely the envelopes. We must remember that the actual
wavefunction of an electron in a quantum well is not really just the slowly-varying envelope we
have been discussing. The slowly varying envelope is just the modulation envelope multiplying
the unit cell wavefunctions. If we change the optical phase of a pulse by half a cycle, we will
change the phase of oscillation of the unit cell wavefunctions by half a cycle. This can mean that
the second pulse, if it has the wrong optical phase, can actually completely cancel the
wavefunction generated by the first pulse by coherent cancellation at the unit cell level. This
phenomenon is illustrated in the fourth (bottom) trace of Fig. 17; note that in going from the



third to the fourth traces in Fig. 17, all that has changed is the relative optical phase between the
two pulses - a timing change of only 1.4 fs!

The experiment discussed here is only an illustration of the many quantum mechanical effects
that can be explored optically in quantum wells. Further details on this and other current work
can be found in the references (Roskos et al. 1992) (Brener et al. 1993) (Nuss et al. 1994)
(Brener et al. 1994).

7. Conclusions

The optical properties of quantum wells near to the optical band-gap energy have proved to be a
fascinating laboratory for studying many novel physical mechanisms. In addition, several novel
and practical devices have resulted that offer significantly new opportunities for optoelectronic
systems. We can expect continued evolution of physics, devices, and novel information
processing systems in the years to come.

Further Reading

For an introductory summary of quantum well optical physics and devices, see Miller (1990a).
For a longer treatment of the physics, see Miller et al. (1988) and Chemla et al. (1988).
For an extensive discussion of quantum well optical physics see  Schmitt-Rink et al. (1989).
For an extended discussion of band structure and states in quantum wells, see Bastard (1988).
For extended treatments of quantum well optoelectronic devices see Miller (1990b), Miller

(1990c), and Lentine and Miller (1993).
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