The optical properties of a sample of 53 active galactic nuclei (AGN) which exhibit an ultra-soft X-ray excess are examined. These AGN have been identified as part of the Ultra-Soft Survey (USS) which is selected from Einstein IPC sources. We present
optical spectra of 27 of these AGN from which we measure continuum and line parameters, including fluxes, line FWHM and equivalent widths. Accurate B and R magnitudes are measured from CCD images. A UV spectrum of one USS AGN, E0132-411, has been obtained with IUE and is combined with the optical and X-ray data to produce a multiwavelength spectrum. We find a large proportion of narrow-
line objects among the USS AGN: a comparison of the USS $\mathrm{H} \beta \mathrm{FWHM}$ distribution with other X-ray selected samples confirms that the permitted lines of the USS AGN are biased to narrow widths. Two possible reasons for this are discussed; either we are looking at a face-on broad-line region (BLR), or the BLR lies further away from the central source than for other AGN. We compare optical line and continuum properties of the USS AGN with their separate hard and soft X-ray component
luminosities and with the optical properties of other samples. We find that we are unable to distinguish the USS AGN from other X-ray selected objects on the basis of their optical luminosity. However, the strengths of the permitted lines are relatively low. The optical to X-ray ratio, $\alpha_{\text {ox }}$, is calculated and we define a corresponding ratio

 which have no significant hard X-ray emission, contradicting hard X-ray dependent

 strongly favour geometrically thick discs over thin.

> Key words: accretion, accretion discs - galaxies: active - galaxies: nuclei - X-rays:
galaxies. galaxies.

INTRODUCTION $\quad \begin{aligned} & \text { EXOSAT spectrum of Mkn 841, a low-redshift }(z=0.037) \\ & \text { Seyfert } 1 \text { galaxy. Turner \& Pounds (1989) have reported that }\end{aligned}$

Evidence is growing that soft X-ray excesses may exist in all active galaxies. The first clear indication of a nuclear soft active galaxies. The first cle
X-ray component was found

Accepted 1991 December 31. Received 1991 December 20; in original form 1991 September 27
 Department of Astronomy, 525 Davey Lab, Pennsylvania State University,
University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637, USA ${ }^{3}$ University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637, USA
${ }^{4}$ Royal Greenwich Observatory, Madingley Road, Cambridge CB3 OEZ
${ }^{5}$ Durham University, South Road, Durham DHI 3LE

SUMMARY

Optical properties of active galaxies with ultra-soft X-ray spectra

E. M. Puchnarewicz, ${ }^{1}$ K. O. Mason, ${ }^{1}$ F. A. Córdova, ${ }^{2}$ J. Kartje,, , ${ }^{3}$

 Department of Astronomy 525 Davey Lab, Pennsylvania State University, University Park, PA 16802, USA ${ }^{3}$ University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 , USA${ }^{4}$ Royal Greenvich Observit
those secure and non-secure USS AGN for which we have optical spectra (22 AGN). Optical line emission properties of
the USS AGN are compared with those of other appropriate

 The results from Section 7 are then discussed and interpreted in the context of these models. The Appendix con-
tains notes on individual sources.

THE USS AGN

Table 1 lists the USS AGN and is divided into three sections. The first section contains the 'secure' USS sources and the second the remaining candidate USS sources (see Section
1). The third section contains sources on the borderline which fail to satisfy the present USS criteria. \dagger These nonUSS sources are listed for information only as possible ultra-
soft AGN and, while measurements of optical and X-ray parameters have been made in the same way as for the secure and non-secure sources, these have not been included in the
analysis and discussion of the results.

2.1 Finding charts

 except those only listed in the EMSS, which may be found in
Maccacaro et al. (in preparation). These finding charts were made using facilities kindly made available to us by the Space Telescope Science Institute in Baltimore. The AGN is
identified by the number 1 on the finding chart, except for identified by the number 1 on the finding chart, except for
E0957+561 which is a double (gravitationally lensed) quasar; in this case the two components are labelled 1 and 2 . Other labelled objects were examined while searching for the optical counterpart, either spectroscopically in the case of
stars, or visually using the William Herschel Telescope (WHT) TV camera for the two galaxies in the fields of El $425+169$ and E1805 +70 . The nu
correspond to the 'Star No.' in Table 2 .

2.2 The spectroscopic identification procedure

 identification procedure, we examined all the objects near the source's X-ray position on red and blue Palomar Observa-
tory Sky Survey (POSS) plates in the north and SERC J and ESO B plates in the south. Objects which showed unusual colours (e.g. a strong blue excess) were examined first at the
telescope. If a positive identification was made but there telescope. If a positive identification was made but there
were other unusual objects in the error circle, then these were also examined. If there was no positive identification or if there were no unusual objects within the error circle, then
all objects were examined in and around the X-ray error box, until we found one that was a plausible counterpart of the soft X-ray source.

Optical properties of soft X－ray $A G N 591$

品品忥

※ごった宇き

为㣽导㣽点品

 spectrum（this paper）and scaled to CCD magnitudes to compensate for light lost in the slit（see Section 5．1）．（2）Calculated from optical spectrum（this paper）and flux increased by a factor of
1.82 to compensate for light lost through the slit（see Section 5．1）．（3）From HB catalogue．（4）From

594 E. M. Puchnarewicz et al.

 Spectrograph (FOS; Allington-Smith et al. 1989) mounted
at the cassegrain focus of the telescope, in 1988 February at the cassegrain focus of the telescope, in 1988 February
and June. The FOS is a fixed-format high-throughput
 CCD. It covers the spectral range from 3600 to $5000 \AA$ in
second order and from 5000 to $10000 \AA$ in first order, with second order and from 5000 to $10000 \AA$ in first order, with
dispersions of 5 and $9 \AA$ pixel $^{-1}$, respectively.
 (IPCS) in the blue and the Faint Object Red Spectrograph (FORS) in the red. The IPCS was operated in the range 3500 to $5600 \AA$ with data collected in 2048 channels at a disper-
sion of $1.5 \AA$ pixel $^{-1}$. The FORS spectra covered the range sion of $1.5 \AA$ pixel. The FORS spectra covered the range
5400 to $10000 \AA$ in 584 channels with a dispersion of $10 \AA$
 was used for the WHT and AAT spectra, except for the
observation of E0132-411 which was made with a wide slit

 -ги!!

 Catalogue, adjacent in time and sky position to each target.

s!sípeut [enoədS $\quad \boldsymbol{\tau} \cdot \varepsilon$

The spectra taken with the WHT and the AAT are shown in
 the spectrograph slit. The expected positions of some emis-

One or both of the familiar $\mathrm{H} \beta /[\mathrm{O}$ iII $] \lambda \lambda 4959,5007$ and $\mathrm{H} \alpha /\left[\mathrm{S}_{\mathrm{I}}\right] \lambda \lambda 6717,6731$ groups of lines are clearly identifi$\left[\mathrm{O}_{\text {iII }}\right] \lambda 5007$, when observed, were used to determine the

2.4 Identification confidence

We have tested the association of USS sources with AGN by determining the separation of each AGN from the measured X-ray source position and comparing this with the probasource. We measured the star density in each USS field and performed a Monte-Carlo simulation to determine the probability of finding a field star at a given distance from the
X-ray source. The cumulative function, summed over all the identified AGN fields, which describes the probability that

 sources from the AGN are distributed: the solid histogram is
 the HB sources not identified by us spectroscopically. ower separations than expected if they were just chance associations with objects randomly distributed on the sky. Formally, there is a 2 per cent probability that the two diseven without taking into account the low surface density of AGN at this magnitude compared to stars, we can demonstrate that the association of USS sources with AGN is more
likely than with any other type of object in the field. Thus, statistically, ultra-soft X-ray emission is clearly a property of this AGN sample.

Figure 2. The distribution of separations of the USS (X-ray)
sources from the optically identified AGN. The solid histogram is the combined sample of identifications made by us and taken from the HB catalogue, while the dashed histogram isolates the HB
sources not independently identified by us. Also plotted as a solid curve, is the cumulative function which describes the probability that the nearest field star would lie at a given distance
source by chance. See Section 2.4 for further details.
Optical properties of soft X－ray AGN 595 been deconvolved from the instrumental profile（see Section been deconvile
3.2 for details of the instrumental linewidths）．
Fe it emission is a well－known feature of AGN spectra．Oster－
brock（1977）showed that it was present in 90 per cent of brock（1977）showed that it was present in 90 per cent of
Seyfert 1 galaxies．From the analysis of laboratory spectra， 675 energy levels between 900 and $50000 \AA$ are presently complex．Lines within multiplets are blended with each other and multiplets also overlap and are blended．This may pro－ duce a＇false＇continuum in a spectrum so that the actual underlying continuum is disguised．A model is required to
measure the Fe il emission reliably and to estimate the strength in the Fe in spectrum．For the purposes of this paper， however，we follow previous practice（e．g．Stephens 1989） Fe in blends between $-4500-4680 \AA$ and $\sim 5100-5500 \AA$ ． For each region，the underlying continuum was repre－

 appears to be very strong and is blended with a feature that
 also be due to Fe ir emission．This was represented by a
Gaussian profile and subtracted from the data before the flux and equivalent width of the remaining iron features were measured．Fe ir blend information is presented in Table 4.

 index，$\alpha_{\text {opt }}$ ，is an indication of the overall observed shape of underlying power law in the optical region．A power law was not an appropriate model for some low－redshift objects where the contribution from the underlying galaxy is strong
towards the red；E0436－433 is an extreme example of this and was not measured．Optical power－law indices are listed
 （1989）．According to this scheme，a＇quasar＇appears stellar it has very broad permitted lines（with FWHM typically
 a radio－quiet quasar．A＇Seyfert galaxy＇has a stellar or semistellar nucleus and $\log L_{v}<40.60 \mathrm{erg} \mathrm{s}^{-1}$ ．There are

 permitted and forbidden lines have similar widths of about

 s^{-1}（Goodrich 1989）．

둥룽 무웅웅웅헝

冏号
쿵 쿵

$\infty 2$
\％
\vdots
\vdots

合えで
荲敬

 X－ray spectra for this object（see Table 1）． spectra，such as Mg iI $\lambda 2798$ ， C iII $] \lambda 1908$ and $[\mathrm{C}$ iv $] \lambda 1549$ ，
until a match was found．A Gaussian profile was fitted to until a match was found．A Gaussian profile was fitted to was calculated by averaging the redshifts of individual lines．

The flux，equivalent width and FWHM of each emission line were measured and the results are presented in Table 3 together with upper limits on the more common lines that the local continuum represented by a second－order poly－ nomial．The line flux，equivalent width and FWHM were continuum had been subtracted．For the weaker lines which are only a few pixels wide，the FWHM was taken to be that of the Gaussian fit（these are marked＇g＇in the table）．In cases
where lines were blended，a Gaussian profile，whose FWHM
 origin，was fitted to each line．The flux and equivalent width the flux，FWHM and equivalent width of the line are marked

L6S NOV Kina-X fos fo saluadoud poud

2
i

					｜｜｜｜			～～웅우응
		筞占筞	Noie					
1	｜1 1｜	｜｜｜｜		11	1	｜1 1｜	\％	｜｜1｜
	Vi		N®O．${ }^{\text {H }}$	ºn		$\stackrel{\infty}{\circ}$ ¢		\％
	可的易品			욷 ¢ ¢ ¢ ¢				
谵 $\stackrel{0}{\text { v }}$	\bigcirc		- 억	Fiom			－	
								न－
		$\stackrel{\infty}{\infty} \times$	NTi			º ic i io io	－${ }_{\text {－}}^{\text {No }}$	
		\bigcirc						

©
\％

웅
｜1｜｜1｜｜
易芴

$\rightarrow \dot{\square}$

$\stackrel{8}{\circ}$
O쩌엉ㅇN

Optical properties of soft X-ray AGN 601
 necessary to deconvolve these i 3).
tion of this detector (see Section 3).
The optical continuum luminosity at $5500 \AA$, deconvolved H β FWHM and the classification for each spectrum
are listed in Table 5. Also listed are details from Stephens are listed in Table 5. Also listed are details from Stephens
(1989) where USS optical spectra are not available. (The observed FWHM for the USS AGN are listed in Table 3.)

Direct CCD images of the sources listed in Table 6 were

 obtained at the Isaac Newton and Jacobus Kapteyn Tele- exposure times are given in Table 6. Observations of flux standards and sky flat-fields in red and blue filters were taken at the beginning and end of each night. All of the
images were corrected for bias and flat-field variations using әогd

4.1 Magnitudes

sajmos papuaixa $\boldsymbol{\tau}^{\text {TV }}$

 images, e.g. morpholog.
found in the Appendix.
5 OPTICAL AND X-RAY LUMINOSITIES
 Hubble constant, H_{0}, and 0.0 for the deceleration parameter,

[^0]In cases where we do not have spectra, optical lumino-
sities have been determined by converting the V magnitude sities have been determined by converting the V magnitude
listed in Table 1 to the flux at $5500 \AA$ using the equations in Allen (1973), then integrating over the appropriate range assuming a power-law index of 1.0 (the average optical index
measured in our sample of spectra), having made corrections

 derived using both of these methods for the sources for
which we have spectra and find an average difference of 10 per cent.

The rest-frame flux at $2500 \AA\left(f_{2500 \AA}\right)$ was measured
directly from the spectrum or, when this region was not observed, by extrapolating the optical power-law fit to the continuum and scaling using the factors in Table 3. In the

 luminosities, the range has been extended to 0.2 keV , lower than the traditional 0.5 keV , so as to include a significant
fraction of the soft-component luminosity (see C92).
5.1 Optical luminosities
The broad-band optical continuum luminosity, $L_{\text {opt }}$, is
defined as the luminosity between 3000 and $6000 \AA$ in the
AGN rest-frame. The optical continuum flux was measured The broad-band optical continuum luminosity, $L_{\text {opt }}$ is
defined as the luminosity between 3000 and $6000 \AA$ in the
AGN rest-frame. The optical continuum flux was measured from the power-law fit to the spectrum where available (for E0436-433, the flux was measured directly from the spec-
trum). To determine the fraction of light lost through the slit, trum). To determine the fraction of light lost through the slit,
'magnitudes' determined from the spectra were compared

 1.8 ± 0.2 times lower than the corresponding CCD flux.
 scaling factor was used.
fraction of the soft-component luminosity (see C92).
5.1 Optical luminosities
The broad-band optical continuum luminosity, L

[^1]密密
602 E. M. Puchnarewicz et al.
Table 5. Spectral classifications of the USS AGN.

Optical properties of soft X-ray AGN 603

 and correspond to measurements for the separate soft and hard components respectively.
Before going on to the analysis of the survey as a whole, we take a closer look at one particular secure USS AGN, identified by Kriss (1982) and was also discussed by Cór-
 Einstein IPC field (effective exposure time $28.5 \times 10^{3} \mathrm{~s}$).
Consequently, though it is not an intrinsically bright source Consequently, though it is not an intrinsically bright source
(IPC count rate 0.01 count s^{-1}), the X-ray spectral data on this object have good statistical quality. It exhibits a soft
overall X-ray spectral distribution with little evidence of a overall X-ray spectral distribution with little evidence of a
hard spectral component. X-ray spectral fits using all of the hard spectral component. X-ray spectral fits using all of the
Einstein IPC PHA channels may be found in C92.
E $0132-411$ is also relatively bright optically $(V=17.4)$. We $\mathrm{E} 0132-411$ is also relatively bright optically ($V=17.4$). We
therefore made a particular effort to obtain an accurately

 observed it with $I U E$ as described in Section 6.2.
6.1 Optical spectrum

 $\mathrm{H} \beta=2080 \mathrm{~km} \mathrm{~s}^{-1}$) and are visible down to $\mathrm{H} \varepsilon$. Forbidden lines of $\left[\mathrm{O}_{\text {III }}\right],\left[\mathrm{O}_{\text {III }}\right],[\mathrm{Ne}$ III $]$ and $[\mathrm{Ne} \mathrm{v}]$ are also seen but $\left[\mathrm{O}_{\mathrm{I}}\right]$ and $\left[\mathrm{S}_{\text {II }}\right]$ are weak. Perhaps the most striking feature is the
presence of strong red and blue optical Fe iI blends. Fe II presence of strong red and blue optical Fe iI blends. Fe in
emission between 4500 and $4680 \AA$ is particularly strong; it extends blueward beyond $\mathrm{H} \gamma$ and blends with another Fe II
 value of $1.7, \mathrm{E} 0132-411$ has the highest ratio of blue to red
Fe it flux of the sources listed in Table 4 .

6.2 UV spectrum

We have made two observations of E0132-411 in the ultraviolet using the short-wavelength camera (SWP) on the was taken on 1990 January 3 at the Villafranca Tracking Station (VILSPA) and the second on the night of 1990 June 4 at the NASA Goddard Space Flight Center. Both were
taken in low-resolution mode and covered the range of 1150

 shown in Fig. 4.
The UV spect

5.2 X-ray luminosities

Separate hard and soft X-ray component luminosities have
been calculated for the USS AGN. The spectral fitting procedure and X-ray luminosity calculations are detailed in C92, but a brief description is given here for completeness. The
IPC count distributions (see C92) show that many spectra have a hard component in addition to the soft excess, therefore a 'mean' two-component model spectrum was fitted to all of the IPC spectra simultaneously. The hard component
was represented by a power law whose index was fixed at the canonical value of 0.7 (Mushotzky 1984; Turner \& Pounds 1989), while blackbody spectra were fitted to the soft com-
ponent. Mean blackbody temperatures were tried in the ponent. Mean blackbody temperatures were tried in the front of each source, N_{H}, was fixed at the value taken from Stark et al. (1984). A best fit was obtained for a blackbody
temperature, $k T_{\text {eff }}$ of $\sim 10 \mathrm{eV}$ in the rest-frame for the lowredshift, $z<0.5, \mathrm{AGN}$. Hard- and soft-component X-ray luminosities, $L_{\text {soft }}$ and $L_{\text {hard }}$, are calculated over the $0.2-4.5-\mathrm{keV}$ range in the rest-
frame. $L_{\text {soft }}$ was not calculated for objects at $z>0.5$ because the soft-component spectra could not be extrapolated reliably below a rest-frame energy corresponding to the lower
energy limit of the observed spectra, i.e. 0.16 keV (see C92). energy limit of the observed spectra, i.e. 0.16 keV (see C92).
The X-ray luminosities for three objects, E0150-102, $\mathrm{E} 1218+693$ and E1644-029, are not listed because they were not satisfactorily fitted by the model. $L_{\text {soft }}$ and $L_{\text {hard }}$
were calculated for two different mean soft-component spectra; one where the soft blackbody $k T_{\text {eff }}$ is fixed at 10 eV in the rest-frame of the AGN, and another where $k T_{\text {eff }}$ is fixed
at 7.85 eV in the observer frame [the mean redshift of the at 7.85 eV in the observer frame [the mean redshift of the low-redshift secure AGN $(z<0.5)$ is $\bar{z}=0.27$: a rest-frame
$k T_{\text {eff }}$ of 10 eV for an AGN at this redshift corresponds to a $k T_{\text {eff }}$ of $\sim 7.85 \mathrm{eV}$ in the observer's frame]. In both cases, the hard-component index was fixed at 0.7 . Table 7 lists $L_{\text {soft }}$ for

四 (

的

Optical properties of soft X-ray AGN 605
in the rest-frame of the AGN) and a hard power-law index
of 0.7 . This model is plotted as a thick solid line in Fig. 5 of 0.7 . This model is plotted as a thick solid line in Fig. 5.
Fitted models with blackbody temperatures of $15,25,50$ and 100 eV are also shown for comparison, plotted as thin
 ,!
 fo uo!nq!us!p E0132-411 with that of the Seyfert galaxy Mkn 841 $(z=0.037)$, using data taken from Arnaud et al. (1985). The spectrum of Mkn 841 has been redshifted to the same
 E0132-411. The relative distribution of flux between the
optical, ultraviolet and soft X-ray bands is very similar in the
 hard X-ray component in E0132-411 is depressed by more
than an order of magnitude relative to Mkn 841 .

 computed linear correlation coefficients for each parameter
 tions between the continuum parameters of the secure

 parentheses) was less than five.

 uо!!nq!

 from the same parent population, and a corresponding probability for the HGLS and secure USS of less than 1 per

The apparent cut-off at $z=0.5$ for the secure USS AGN may indicate that there is an upper limit to the 'temperature' of the soft component which is moved out of the IPC band-
pass at higher redshifts. This was previously suggested by
 The lack of secure USS AGN at $z<0.1$ is curious; soft X-ray excesses have been discovered in very low-redshift $(z<0.1)$
AGN of other Einstein samples (e g. Urry et al 1989 , Wilkes et al. 1989), and six (out of 24) of the non-secure USS AGN

fitted using a power law with an index of 0.7 ($c f .0 .8$ in the
optical).
6.3 Multiwavelength spectrum
The optical and ultraviolet spectra of E $0132-411$ are
combined with the X-ray data in Fig. 5 where we plot $\log v F_{v}$
versus $\log v$. The X-ray count rates have been converted
from counts per second to flux using the two-component
spectral model that has a blackbody temperature of 10 eV

$\begin{array}{cccc}1000 & 1200 & 1400 & 1600 \\ \text { Figure 4. The UV spectrum of E } 0132-411 \text {. This spectrum is }\end{array}$ Figure 4. The UV spectrum of E0132-411. This spectrum is
derived from the weighted sum of two exposures taken with $I U E$. The spectrum is plotted in the rest-frame of the AGN. No correc-
tion for redshift has been made to the flux. The expected positions of $\mathrm{Ly} \alpha, \mathrm{Ly} \beta$ and the $\mathrm{Si} \mathrm{Iv} /\left[\mathrm{O}_{\mathrm{Iv}}\right]$ blend are indicated.

Figure 5. The multiwavelength spectrum of E0132-411. Plotted
as solid lines are the optical spectrum taken at the AAT (also shown as solid lines are the optical spectrum taken at the AAT (also shown 4). The X-ray spectrum is represented by a two-component model, a soft blackbody with $T_{\text {eff }}=10 \mathrm{eV}$ in the rest-frame of the AGN and
a hard power law with an index of 0.7 , and is plotted as a thick solid a hard power law with an index of 0.7 , and is plotted as a thick solid
line. Also plotted as thin lines are fitted models with rest-frame $T_{\text {eff }}$ of $15,25,50$ and 100 eV (see Section 6.3). The three X-ray data points represent the counts detected in the $C 1, C 2$ and $C 3$ bands,
and were calculated using conversion factors from counts to flux derived from the $10-\mathrm{eV}$ two-component fit. The multiwavelength spectrum of the Seyfert galaxy Mkn 841 (from Arnaud et al. 1985)

606 E. M. Puchnarewicz et al.

Table 8. (b) Optical line and continuum correlations (secure and non-secure).

Optical properties of soft X-ray AGN 607

 Figure 7. (a) The spectra of six hypothetical USS AGN, which have
identical observed spectra but different redshifts (from 00 to 0.5) identical observed spectra but different redshifts (from 0.0 to 0.5),
plotted as they would appear in the rest-frame of the AGN. The redshift of each AGN is indicated on the diagram. The spectra shift
towards higher energies as the redshift increases. The dotted line towards higher energies as the redshift increases. The dotted line
shows the lower limit of the range over which we have calculated the X-ray luminosities (i.e. 0.2 keV). The solid lines cover the observed
range of the IPC and the dashed lines indicate the extrapolated range of the IPC and the dashed lines indicate the extrapolated
portion of the fit. (b) The redshift dependence of the soft X-ray
component luminosity. The solid line represents the simulated softcomponent luminosity. The solid line represents the simulated soft-
component luminosity distribution for a typical USS-type spectrum observed at redshifts from 0 to 0.5 . Measured values of $L_{\text {soff }}$ for the
secure sources are plotted as asterisks. The dashed line represents a secure sources are plotted as asterisks. The dashed line represents a
simulated distribution for a perfectly flat spectrum so that there is no redshift dependence in the luminosity, other than the cosmologi-
cal distance dependence.
the luminosity of the soft component as a whole, without data
which reach further into the 'big blue bump' from the UV
and the soft X-ray regions. The blackbody parameters which
we have derived from modelling the X-ray data are applic-
able only within the 0.16 - to $3.5-\mathrm{keV}$ range; because it is so
steep, the model soon becomes unreliable if we extrapolate
longwards into the EUV. So when looking for the possible
dependence of other parameters on the soft luminosity para-
meters (e.g. $L_{\text {soft }} L_{0.2 \mathrm{kev}}$ and $\alpha_{\text {os }}$), this very strong redshift
dependence must be borne in mind.
7.2.2 Hard X-ray luminosities
The hard-component X-ray luminosity from 0.2 to 4.5 keV ,
$L_{\text {hard }}$ (see Section 7.2), is plotted in Fig. 8 (a) as a function of
redshift, with the X-ray luminosities of the EMSS and HGLS

$\left[\begin{array}{l}0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$
Figure 6. The redshift distribution of the secure USS AGN com-
pared with AGN from the Einstein EMSS and the EXOSAT HGLS. These are plotted over the full range of redshifts and also between 0 interesting and unexpected surprise, but assembling a sample
of AGN on the basis of their observed soft X-ray spectra has of AGN on the basis of their observed soft X-ray spectra has introduced a strong redshift selection effect. We compare the
AGN soft- and hard-component luminosities over an energy AGN soft- and hard-component luminosities over an energy
range which is defined in the rest-frame. The observed portion of the steep soft component is rapidly shifted through this energy range as the redshift of the AGN increases. This is illustrated in Fig. 7(a) where a typical
observed USS-type spectrum is represented by a soft blackobserved USS-type spectrum is represented by a soft black-
body component with a $T_{\text {eff }}$ of 7.85 eV and a hard power-law
Fig. 7(a) illustrates how a 'typical' USS AGN spectrum reistered in the observer frame appears in the rest-frame at difas the redshift increases. Plotted as a solid line in Fig. $7(\mathrm{~b})$ is a simulated soft luminosity distribution (integrated over the $0.2-$ to $4.5-\mathrm{keV}$ range in the AGN rest-frame), calculated for this 'typical' observed spectrum at different assumed redshifts. The dashed line illustrates the distribution expected for a perfectly flat spectrum, so that there is no dependence
on redshift in the luminosity other than the cosmological dison redshift in the luminosity other than the cosmological dis-
tance dependence. The actual soft luminosities for the secure USS sources are also plotted for comparison with the models. This emphasizes that the steepness of the softcomponent spectrum exacerbates the selection in favour of
higher luminosity sources at the higher redshifts. higher luminosity sources at the higher redshifts.
It is thus clear from Fig. 7 that by selecting objects at different redshifts on the basis of their observed spectral shape, we have introduced a strong redshift depend-
ence into the soft-component luminosity because it is measured over a restricted band. We are unable to quantify

Figure 8. (a) The hard-component X-ray luminosity Figure 8. (a) The hard-component X-ray luminosity from 0.2 to 4.5 keV , plotted as a function of redshift, for the low-redshift $(z<0.5$) secure plotted for comparison. (b) Optical luminosities of the secure USS AGN (asterisks) plotted as a function of redshift for the low-redshift ($z<0.5$) AGN. Corresponding luminosities are plotted for the EMSS (dots) and the HGLS (diamonds). All luminosities are calculated over the $3000-$ to
$6000-\AA$ range from V magnitudes (see Section 7.2 .3). (c) The ratio of monochromatic optical to hard X-ray luminosities, α plotted as a $6000-A$ range from V magnitudes (see Section 7.2.3). (c) The ratio of monochromatic optical to hard X-ray luminosities, $\alpha_{o x}$, plotted as a
function of redshift for the low-redshift $\left(z<0.5\right.$) secure USS AGN (asterisks; see Section 7.3 for the definition of $\alpha_{o x}$). Also plotted is the distribution of $\alpha_{o x}$ for the EMSS (dots) and the HGLS (diamonds). (d) The ratio of broad-band optical to hard X-ray luminosity (shown separ-
ately in Fig. 8a and b) for the secure low-redshift $(z<0.5)$ USS AGN (asterisks), plotted as a function of redshift. The ratio of broad-band optical to 'total' X-ray luminosity is plotted for the EMSS (dots) and HGLS (diamonds) for comparison.

AGN included for comparison. These are plotted over the \quad sources, since only a small fraction of Einstein AGN appear
redshift range of 0.0 to 0.5 , where most AGN in all three \quad in the USS sample. By inference, the same is true of the HGLS since the relative numbers of EMSS and USS AGN suggest that the incidence of observable strong soft X-ray
emitting components among X-ray emitting AGN is relatively low when they are selected without spectral discrimination.
7.2.3 Optical luminosities

We have calculated the optical luminosities in the range $3000-6000 \AA$ for the EMSS and HGLS AGN from the
magnitudes, assuming an optical power-law index of 1.0 . We have recalculated the USS optical luminosities in the same way in order to make a comparison. The results are shown in Fig. $8(b)$ for $z<0.5$ and demonstrate that most of the USS
optical luminosities are typical of other X-ray selected AGN optical luminosities are typical of other X-ray selected AGN
(the only notable exception being E1704+608 which is known to be variable)

Strong correlations between X-ray and optical luminosity have been reported by previous authors in both X-ray
selected (e.g. Kriss \& Canizares 1982) and optically selected samples (e.g. Zamorani et al. 1981; Kriss \& Canizares 1985) Fig. 8 shows that this correlation also exists in the EMSS and
HGLS AGN (although the latter is not as tight).

We investigate the relationship between X-ray and optical
luminosity directly using their ratio parametrized by $\alpha_{o x}$ surveys lie (see Fig. 6 and Section 7.1). The hard-component luminosities of the USS AGN are on average lower than the
X-ray luminosities of the EMSS AGN. The HGLS X-ray
 Fig. $8(\mathrm{a})$ shows that about one third of the USS AGN have
a value for L that is significantly lower than the band defined by the X-ray luminosity distribution of the EMSS (note that there are 11 secure USS sources where we have AGN have an $L_{\text {hard }}$ that is comparable to the EMSS X-ray luminosity distribution (although generally lower than the average for the EMSS), indicating that for these objects the
soft component is superposed on a 'normal' underlying hard X-ray power law. Note that the hard -component luminosities of the EMSS
and HGLS sources will include any photons from a soft component, if present, since multiple spectral components were not differentiated in those studies. Thus if any of the EMSS or HGLS sources have significant soft-component
emission, their hard-component luminosities will be overestimated in Fig. 8(a). As an illustration of this, if we calculate luminosities for the USS sources on the basis of a single hard power-law fit to the Einstein spectra, we obtain values that are consistent with those in the EMSS, as expected since both are derived from the same count-limited sample. However, we presume that any contribution from the soft com-
ponent is relatively small in the majority of the EMSS

Figure 9. The distribution of the H β FWHM for the USS AGN
(secure and non-secure sources) compared with the Stephens (1989)
 tion is indicated by the dashed line.
 15 per cent of Seyfert 1 and 1.5 galaxies belong to this group.
Stephens' (1989) sample of X-ray selected AGN contains 42 Stephens' (1989) sample of X-ray selected AGN contains 42
potential Seyfert 1 galaxies of which 10 (or 24 per cent) are narrow-line Seyfert 1s. In contrast, when we apply the same
 or ~ 50 per cent, have permitted lines with FWHM of less
than $2000 \mathrm{~km} \mathrm{~s}^{-1}$

7.4.1 H β FWHM distribution

In Fig. 9, we have compared the number distribution of the deconvolved H β FWHM for the USS sample with those
from the samples of Stephens (1989) and Mittaz (1991; from the samples of Stephens (HGLS' on the diagram). Only Seyfert 1s and quasars/QSOs are included from each of the three samples.
The Stephens AGN are X-ray selected from Einstein IPC

which, following Tananbaum et al. (1979), is defined by:

$\log \frac{L_{2500 \mathrm{~A}}}{L_{2 \mathrm{keV}}}=2.605 \alpha_{o x}$,

where $L_{0.2 \mathrm{kev}}$ and $L_{2 \mathrm{kev}}$ are as given above. Values of α_{ox},
chromatic luminosities, $L_{0.2 \mathrm{kev}}, L_{2 \mathrm{kev}}$ and $L_{2500 \text { A }}$.
Using the method detailed in Avni et al. (1980) which takes into account the upper limits on $L_{2 \mathrm{kev}}$, we calculate an effective $\alpha_{o x}$ of 1.36 ± 0.05 for the USS secure sources (the
average detected $\alpha_{o x}$ is 1.37). For the EMSS sample, we calculate an average $a_{o x}$ of 1.33 ± 0.01 (this excludes BL Lac

Values of $\alpha_{0 x}$ for the secure USS, EMSS and HGLS sources for $z<0.5$ are plotted against redshift in Fig. 8(c). For the EMSS, the values of $\alpha_{o x}$ are those listed in Stocke et al.
(1991). We have calculated values of $\alpha_{o x}$ for the HGLS AGN, where the flux at $2500 \AA$ was derived from the V magnitudes using the equations in Schmidt (1968) and the
flux at 2 keV was derived in the same manner as the broad-

 lying hard X-ray to optical continuum. The remaining values
of $\alpha_{o x}$ are high, suggesting that the hard component is depressed relative to the optical.

 distributions.

7.4 Linewidths

Examination of Table 5 reveals a high proportion of narrowline objects among the USS sample. A narrow-line Seyfert 1
is defined by Osterbrock \& Pogge (1985) as a Seyfert 1 or

610 E. M. Puchnarewicz et al.
objects have been included with our USS measurements, and X-ray selected samples. The median of each sample is indicated by the dashed line and is lowest for the USS AGN
$\left(2180 \mathrm{~km} \mathrm{~s}^{-1} ; c f .3190 \mathrm{~km} \mathrm{~s}^{-1}\right.$ for the HGLS and 3050 km s^{-1} for Stephens).

The comparison between the USS and the Mittaz samples
is particularly striking because many of the optical identificais particularly striking because many of the optical identifica-
tions that went into these surveys were made by the same team during the same observing runs and using the same
equipment. Therefore, there should be no systematic optical equipment. Therefore, there should be no systematic optical
selection bias between these two samples. Also, both sets of optical spectra were reduced using the same software so the
method of measuring the FWHM for these samples is con-
 test indicates that there is an 8 per cent probability that the
HGLS and the USS are drawn from the same parent popula-
 USS and the Stephens samples.§ 4 per cent probability for the USS and the Stephens samples.8
These results suggest that the
ted lines is a preferred characteristic of AGN which show the USS phenomenon.
7.4.1.1 Narrow lines and radio properties of $A G N$. Narrow permitted lines are also a characteristic of core-dominated
radio sources; a strong anticorrelation has been reported

 found that whereas narrow lines are seen in both core- and lobe-dominated quasars, broad lines occur mostly in lobedominated quasars.

[^2]Optical properties of soft X-ray AGN 611 optical continuum luminosity (e.g. Kriss \& Canizares 1982;
Blumenthal et al. 1982). Stephens' (1989) sample shows
 although the $\mathrm{H} \beta$ luminosity is more tightly correlated than
$[\mathrm{O} \mathrm{mi}] \lambda 5007$ with both optical and X -ray luminosities.
7.5.1.1 Broad-line luminosities. In the case of the USS
AGN, the Balmer line luminosities are strongly correlated AGN, the Balmer line luminosities are strongly correlated
with optical luminosity (see Table 8). There is also evidence for correlations of the Balmer line luminosities with both
 $L_{2 \mathrm{kev}}$ correlation because many sources for which we have
optical spectra have only upper limits to their hard X-ray optical spectra have only upper limits to their hard X-ray
luminosity; out of seven such data pairs, only three are secure sources). A similar dependence is found for the luminosity in the He I $\lambda 5876$ line with soft X-ray and optical continuum
 There are no correlations between the $\mathrm{Mg}_{\text {II }} \lambda 2798$
luminosity and the optical luminosities. Although there is no correlation with $L_{0.2 \mathrm{kev}}$, there is a correlation with $L_{\text {sof }}$. Correlations with the hard component were not possible
because there was only one data pair (due to the wavelength
 coverage of the optical spectra and
limits to the hard X-ray component).
 S! κ K!
 $\lambda 5876$.

 ratios which are generally too low. The $10-\mathrm{eV}$ model also

 (~ 10).

 objects. Steiner (1981) confirmed this correlation in his low-
7.4.2 Relationship between Balmer line FWHM and $\alpha_{o x}$
Given the high incidence of narrow-line objects in the USS sample, we have looked for a relationship between permitted inewidth and optical and X-ray continuum properties of our sample. There is evidence for an anticorrelation (coeffi-
cient $=-0.8$) between the $\mathrm{H} \alpha$ FWHM and $\alpha_{o x}$, i.e. sources әчд оf әкџе optical luminosity have broader $\mathrm{H} \alpha$ lines. The $\mathrm{H} \beta$ data, which include additional data points from Stephens, gener-
 those objects where the hard X-ray emission is not detected. In general these do not contradict the suggested correlation.
The $\alpha_{0 x}$-FWHM correlation, which is tentative, may only apply in the presence of a strong soft X-ray excess. An investigation into the relationship between the broad-line
FWHM and α for a sample of objects which have a range of soft X-ray properties, is needed to clarify this for more specifically, the proper subtraction of any soft X-ray comα_{ox}. We found no evidence of this correlation in the $\mathrm{a}_{\text {ox }}$. Wephens sample or in the Stephens subsample of narrow-
 Blumenthal, Keel \& Miller (1982) reported evidence of positive correlation between the half-width at zero intensity
(HWZI) of $\mathrm{H} \beta$ and $\alpha_{\mathrm{ox}}^{\prime}$ (the ratio of the luminosities at 5000 \AA and 2 keV), i.e. in the opposite sense to the relation seen in our data, but they point out that their correlation is mostly
due to a few extreme points (and they have made no subtraction of any soft X-ray component).

7.4.3 Linewidths and continuum luminosities

There are no significant correlations of the broad-line
 reported between the $\mathrm{H} \beta$ FWHM and (total; i.e. including any soft-component photons) X-ray luminosity for the
Stephens objects (we calculate an associated linear correlation probability of 99.9 per cent for the Stephens sample). Evidence for a correlation between Balmer line HWZI
which is taken as a representation of the innermost radius of (which is taken as a representation of the innermost radius of
that line-emitting region) and the X-ray luminosities of Seyfert galaxies has been reported (e.g. Kriss, Canizares \& Ricker 1980), but this was not seen by Blumenthal et al. reported between the $\mathrm{H} \beta \mathrm{HWZI}$ and bolometric luminosity, $L_{\text {bol }}$ of Seyferts, but again no corresponding correlation was found for quasars (Padovani \& Rafanelli 1988; Padovani
1989). There is evidence for a correlation of the HWZI of C iv $\lambda 1549$ with $L_{\text {bol }}$ for quasars, but there is no corresponding correla
(Padovani 1989).

Other line parameters

[^3]612 E. M. Puchnarewicz et al.
7.5.2.1 The Baldwin effect. The 'Baldwin effect' is a term
originally used to describe the anticorrelation between the

 the Ly a line.

We have tested the optical spectra of the USS AGN for the
Baldwin effect and we find weak correlations for the $\mathrm{H} \alpha$ and
 sense to the Baldwin effect) and no significant correlation for
 lation between the $\mathrm{H} \alpha \mathrm{EW}$ and redshift (coefficient $=0.7$) which may make a contribution to the $\mathrm{EW}(\mathrm{H} \alpha) / L_{v}$ cor
tion, but there is none between the $\mathrm{H} \beta \mathrm{EW}$ and redshift.

7.6 Optical Fe if emission-line parameters

 7.6.1 Fe II luminosities We find very strong correlations of the Fe II red and blue blend luminosities, $L_{\text {blue }}$ and $L_{\text {red }}$, with the optical luminosity(these correlations are also scen in the Stephens subsample
 of narrow-line objects) and the optical power-law index.
There are correlations with $L_{0.2 \mathrm{kcv}}$ and a very weak correlation of $L_{\text {blue }}$ with $L_{2 \mathrm{kev}}$ (the associated correlation prob$L_{\text {butue }}^{\text {ability }} \alpha_{\mathrm{ox}}$ and α_{sx}, but these are based on only five data pairs. $L_{\text {buec }}, \alpha_{\text {ox }}$ and $\alpha_{\text {sx }}$, but these are based on only five data pairs.
There is also an anticorrelation between $L_{\text {blue }}$ and $\alpha_{\text {os }}$, but

 associated correlation probability of 85 per cent. This result
is in agreement with the results of Joly (1987), whose model requires that the ionizing flux must be low to suppress the $\mathrm{H} \beta$ emission relative to Fe II. We point out, however, that the correlation is based on few data pairs (five; although the correlation).

 ratios and the broad-line EWs $(\sim 0.6-0.8)$.
There is a weak correlation between the

There is a weak correlation between the Fe II luminosities
and the FWHM of $[\mathrm{O}$ mi $\lambda 5007$ and, although we found no correlation between the $[\mathrm{O}$ III $] \lambda 5007 \mathrm{FWHM}$ and Fe II luminosity for the Stephens (1989) sample as a whole, for the narrow-line Stephens objects there is a weak correlation with
$L_{\text {red }}$ (coefficient $=0.7$ based on seven data pairs). 7.6.2 Fe II equivalent widths
 sample. The $[\mathrm{O}$ mil $] 5007$ EWs for the USS AGN are typical
of the Stephens sample. EWs and α_{sx}.

Jackson \& Browne (1991) found a strong anticorrelation
between the $[\mathrm{O}$ IIT $\lambda 5007$ equivalent width and R, the ratio of core-to-extended radio luminosity, for their sample of radioloud quasars and suggest that this is due to anisotropic the case of an accretion disc model. There is no correlation of the $[\mathrm{O}$ mil $] \lambda 5007 \mathrm{EW}$ with $L_{\text {opt }}$ or $L_{0.2 \mathrm{kev}}$ for the USS dependence of the $[\mathrm{O} \mathrm{III}]$ equivalent width on the Balmer line

The EWs of the broad lines ($\mathrm{H} \alpha, \mathrm{H} \beta$ and He ı $\lambda 5876$) in the USS AGN are generally low compared to the Stephens

Figure 11. The $[\mathrm{O}$ m $] \lambda 5007 / \mathrm{H} \beta$ luminosity ratio ploted as a func-
tion of the $\mathrm{H} \beta$ FWHM for the secure and non-secure USS AGN. Ratios from measurements made by us are plotted as asterisks (secure USS in boxes), while measurements taken from Stephens
(1989) are plotted as diamonds.
Optical properties of soft X-ray AGN 613

 slope and optical Fe in EW.
Considering the properties of the sample as a whole, we note that the X-ray spectra of those USS AGN for which we 'average' single power law of index 6 (see Section 7.4.1). This is much steeper than that inferred for the HGLS (1.5) and for

 composite X-ray spectrum for individual objects, but unfortunately there are few measurements of $\alpha_{\text {sx }}$ for those sources
which have optical spectra (due to the high number of upper

7.7 Optical power-law index

The distribution of the power-law index measured from the
optical spectra, $\alpha_{\text {opt }}$, is shown in Fig. 13 (see Section 3.2.4 for
 the USS selects AGN with a wide range of optical continuum

 AGN with steeper soft X-ray slopes (i.e. soft-excess objects)
showed stronger Fe II emission (at 99.8 per cent significance).
Remillard \& Schwartz (1987) found a similar relation from Elvis \& McHardy (1987) found that the optical Fe in emission was correlated with the index of a single power law AGN with steeper soft X-ray slopes (i.e. soft-excess objects)

 core-to-extended radio luminosity, R, and also attribute it to

 width for the USS AGN and compare them with the Stephens sample. Upper limits for the USS AGN are indicated but these were not available for the Stephens AGN.
The plot shows that for the Fe $I_{r e d} E W$, the USS AGN lie within the Stephens range and have relatively high EWs (again, we point out that upper limits for the Stephens sample
are not included). For $\mathrm{Fe}_{\mathrm{II}_{\mathrm{blue}}}$, several of the USS AGN have are not included). For $\mathrm{Fe} \mathrm{n}_{\text {bues }}$ several of the USS AGN have
relatively low EWs at low $\mathrm{H} \beta$ FWHM when compared to the
 Stephens sample. However, we caution that there may be
systematic differences in the measurements of Fe II between

For both samples, there is an absence of objects at high For both samples, there is an absence of objects at high
equivalent width and high FWHM. There are no significant correlations in the USS data between the Fe in equivalent
widths and the $\mathrm{H} \beta$ and $\mathrm{H} \alpha$ FWHM. However, the range of widths and the H β and $\mathrm{H} \alpha$ FWHM. However, the range of
FWHM for the USS is comparatively narrow; the Zheng \&
 s^{-1} and the Stephens sample to $8000 \mathrm{~km} \mathrm{~s}^{-1}$, whereas for the
USS the FWHM lie mostly below $\sim 3000 \mathrm{~km} \mathrm{~s}^{-1}$.

7.6.3 Fe II emission and the soft X-ray excess
 $$
\text { 7.6.3 Fe II emission and the soft } X \text {-ray exces. }
$$

$$
\begin{aligned}
& \text { In a sample of nine low-redshift }(z<0.3) \text { quasars, Wilkes, } \\
& \text { Elvis \& McHardy }(1987) \text { found that the optical Fe in emis- }
\end{aligned}
$$

iewed face-on, into the cone of emitted radiation (Madau
988).
Production of the hard X-ray spectrum is believed to be
Production of the hard X-ray spectrum is believed to be separate from the soft emission for the accretion disc models.
Several mechanisms have been suggested, including synchro-
 tron self-Compton models (e.g. Zdziarski 1986), inverse-
Compton scattering of soft X-ray photons (e.g. Shapiro, Lightman \& Eardley 1976) and electron-positron pair production (e.g. Done \& Fabian 1989).
8.1.2 The 'cool clouds' model

A soft X-ray excess may also be produced in the 'cool clouds model proposed by Guibert \& Rees (1988). In this model
relatively cool clouds, confined by a magnetic field or hot intercloud plasma, exist close to the centre of the active nucleus and perhaps within the central continuum source
itself. The primary non-thermal radiation is reprocessed by
 reradiated as thermal UV and EUV continuum emission and
 duces both the soft X-ray excess and the hard X-ray con-
tinuum, as well as the optical-UV 'big blue bump' (e.g.
Puchnarewicz et al. 1992).
8.2 Models of the optical emission-line regions
 optical and UV spectra of quasars and Seyfert galaxies mus
 (NLR). As noted in Section 3.2.5, there is a class of NL Seyfert 1 galaxies which have permitted lines with FWHM
$\mathrm{H} \beta<2000 \mathrm{~km} \mathrm{~s}$

8.2.1 The 'standard' model

In the 'standard' model of the BLR, the emission lines are
 ${ }_{01} 0 \mathrm{I}$ ~ Sə!!! cm^{-3}, may be confined as filaments by magnetic fields (Rees
 medium (although recent work has cast doubt on this, e.g.,
Fabian et al. 1986; Mathews \& Ferland 1987; Rees, Netzer
 surrounding stars (Penston 1988). Each standard BLR cloud

 әuoz pəz! which draws its energy from the medium X-ray range and
emits low-ionization lines (LIL), including most of the Balmer lines, $\mathrm{Mg}_{\text {II }}$ and the Fe ir lines
8.2.2 A two-component model
 n this section we briefly summarize those aspects of AGN models relevant to our work. This is followed by an interpreation of the USS AGN properties and their implications for
models of AGN.

8.1 Models for the origin of the X-rays

We begin with a brief description of the models for X-ray emission in AGN before discussing models of the optical line
and continuum emitting regions.
8.1.1 Accretion disc models

In the accretion disc model of AGN, the soft X-ray excess is
believed to be the high-energy tail of the thermal radiation spectrum which is emitted from the inner parts of the disc. The observed strength of the soft X-rays is a function of the
angle between the line of sight and the axis of the disc. How the observed strength of the soft excess varies with this angle depends on the type of disc, i.e. whether it is geometrically
thick or thin. Sun \& Malkan (1989) have investigated the dependence of a thin accretion disc spectrum on the angle of inclination. They found that the emitted disc spectrum shifts to higher energies as the angle of inclination increases, so that discs seen edge-on have the largest soft X-ray excess. In
the case of a thick disc, a major fraction of the luminosity is radiated from the funnel-shaped, inner surface of the disc, so that the soft X-ray excess is strongest when the system is
Optical properties of soft X-ray AGN 615

The USS survey selects objects which have a high ratio of counts in the 0.16 - to $0.56-\mathrm{keV}$ energy band compared to the $0.56-$ to $1.08-\mathrm{keV}$ energy band. This favours objects with
a narrow range of spectral properties which, for AGN, is redshift dependent because the selection is made in the frame of
 blackbody temperature near to a mean of 10 eV in the rest-

 luminosity ratios than in samples selected at higher X-ray energies. A third of the USS AGN have very low or no
detected hard X-ray flux in the IPC energy range. An detected hard X-ray flux in the IPC energy range. A
example is E $0132-411$ (Fig. 5), whose hard X-ray flux is at
 841 as a proportion of the optical, tinuum. The existence of objects like E0132-411 chal-

8.3.1 X-ray and optical continua

The X-ray to optical continua of the USS AGN fall into two

 type soft X-ray excesses are not observed. (It is important not to rule out the possibility that intrinsic soft X-ray excesses,
which are not observed due to absorption or inclination which are not observed due to absorption or in.
8.3.1.1 X-ray and optical continua in an accretion disc
model. For a thick accretion disc model, the optical portion model. For a thick accretion disc model, the optical portion
of the disc spectrum is brightest when the disc is viewed faceon (Madau 1988). The difference in the observed optical thick disc is half a decade when reflection of photons from

 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

in a region distinct from that which produces the LIL,

 ase produced in clouds of cooling gas behind shocks in ahypersonic flow of interstellar matter (Perry \& Dyson 1985), whereas the LIL are formed in the outer parts of the accre-
tion disc by hard X-rays which are scattered back into the
disc from gas behind the shocks in the flow.

8.2.3 A model for NGC 5548

Strong observational constraints on the structure of the BLR Seyfert 1 galaxy NGC 5548. $\pi^{\text {L }}$ Line and continuum emission was monitored in the UV (Clavel et al. 1991) and the optical observations show that changes in the UV and optical continua were simultaneous from ~ 1300 to $5000 \AA$. The amplitude of the continuum variation decreased as the wavelength increased, i.e. the spectrum was 'bluer' when it was
brighter ($c f$. Section 7.7). The time taken for the lines to respond to changes in the continuum depended on the degree of ionization of the line; it was shortest for the HIL
and longer for the LIL. The amplitude of the variation in the lines also depended on the degree of ionization, being high

Krolik et al. (1991) proposed that the BLR of NGC 5548 has two zones with different physical conditions. Stretching
from $\sim 4-14$ light-days from the centre lies the inner, highpressure, high-ionization zone which has a roughly spherical distribution. Beyond this and at least $\sim 20-30$ light-days
from the central source is the low-ionization zone which is probably flattened; it may be an annulus with a radius of ~ 100 light-days (and which lies approximately edge-on to
the line of sight for the case of NGC 5548).

Finally, we consider the production of the optical Fe in blends. In the standard BLR model, hard X-rays ($\geq 800 \mathrm{eV}$; clouds and create a warm, partially ionized zone at high optical depths where low-ionization lines, including Fe in and two-component model of Collin-Souffrin et al. (1988) these lines are formed in the outer parts of the accretion disc by hard X-rays which are scattered back into the disc (see
Section 8.2.2). In the angular-dependent model of Netzer (1987), strong Fe if and Balmer emission do not originate in the same region: Fe if lines are produced in the plane of the acceetion dise and the Balmer predict that the strength of the optical II emission increases with the hard X-ray flux. based on the Norman \& Miley (1984) model, strong optical Fe II (relative to $\mathrm{H} \beta$) is emitted in the interaction layer
between the jets and the region through which they propagate. This region, which is in collisional equilibrium,

[^4]discs where the strong soft X-ray excess is viewed face-on

 sources seen end-on, also have predominantly narrow permitted linewidths (Wills \& Browne 1986). If the radio
 then this agrees with
also Section 7.4.1).

There is tentative evidence that the permitted lines are arrower when the ratio of optical to hard X-ray luminosity,

 the hard X-ray flux as the angle of inclination increases. Such
relationship would be in agreement with the thick-disc model (see Section 8.1.1) provided that the hard X-rays were emitted comparatively isotropically.
8.3.2.2 A more distant BLR? Rather than being associated
with a face-on BLR, the narrow lines may be evidence of a BLR which lies further out from the black hole. Krolik et al. (1991) have reported a relationship between the broad-line
FWHM and the time taken for the line to respond to variations in the continuum for NGC 5548 , a measure of the dis-
 geometry could be tested by monitoring the lines and continuum of a varying USS AGN and measuring the distance to

In the case of a distant BLR, an $\alpha_{o x}$ versus broad line FWHM correlation becomes more intriguing, as the distance ratio of the optical and hard X-ray luminosities.

The Balmer line and He i $\lambda 5876$ equivalent widths of USS
AGN are generally low compared to other X-ray selected AGN are generally low compared to other X-ray selected
AGN and, since we know that the optical continuum lumino-
 luminosities are low. $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ are produced by photons in
the $13.6-54.4-\mathrm{eV}$ range (Krolik \& Kallman 1988) as well as hard X-rays; He i $\lambda 5876$ is produced by $300-500-\mathrm{eV}$

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

For the thin accretion disc model (Sun \& Malkan 1989), Foft X-ray excesses at $\sim 0.2 \mathrm{keV}$ are seen in edge-on systems. The disc spectrum shifts to higher energies as the angle of inclination increases and plots of the Sun \& Malkan models show that the optical emission observed from a thin disc
viewed edge-on is more than two decades fainter than when seen face-on.

Neither of these trends is observed in the USS AGN; their selected AGN (see Fig. 8b) selected AGN (see Fig. 8b).||
8.3.1.2 X-ray and optical continua in the 'cool clouds' model. Ferland \& Rees (1988) have calculated model spectra
based on the Guilbert \& Rees (1988) 'cool clouds' model. Their results show that more hard X-rays are absorbed by clouds as the volume filling factor increases, and the big blue
bump grows. This steepens the slope of the optical continuum, but the optical flux in the range that we are considering (i.e. from $\sim 2500-7000 \AA$) shows little change. For this
model, then, we would expect AGN with intrinsic soft X-ray excesses to have optical luminosities which are typical of other AGN, and optical power-law indices which are
generally steeper The former is observed for the USS AGN, the latter we are unable to test because there are no data with which to compare them (but see Section 7.7 for the distribuRees caution that this is a preliminary model which should not be directly compared with observations, although the basic principles, i.e. that photoelectric absorption removes
X -rays in the medium range and reradiates the energy in the optical to soft X-ray region, still hold.

8.3.2 The predominance of the narrow Balmer lines

A striking aspect of the USS AGN is the high proportion of
 broad-line clouds in these systems have low velocities in the
line of sight and suggests a link between this and the visibility of the soft X-ray component by which the USS sources are
defined. We consider two possibilities; either an inclination defined. We consider two possibilities; either an inclination
effect or a distant BLR. If the broad-line emitting clouds are associated with an accretion disc, or are otherwise confined
 permitted linewidths would be that we are viewing the system
face-on, i.e. the BLR clouds are circulating in the plane of the face-on, i.e. the BLR clouds are circulating in the plane of the sky. Alternatively, assuming that the velocities of the clouds
are associated with motion due to the gravitational field of a

 were further away from the central black hole than for other
AGN. evidence of a face-on BLR and the BLR lies in the plane of strong soft X-ray excesses would be viewed face-on. Thick

$\|$ Note, however, that for the thick disc, if reflections from the funnel

 walls are neglected, then the model predicts a much smaller rangeobserved optical luminosities, approximately a quarter of a decade
Madau Madian
luminy between the USS AGN and other X-ray selected objects
Optical properties of soft X-ray AGN 617 in the context of hard X-ray dependent models of their production. For those sources with weak observed hard X-rays,
the hard X-ray emission must be enhanced in the direction of the optical Fe il region. Any enhanced hard X-ray emission must be in a direction which is not in the line of sight to the
observer and it must be directed away from the region which observer and it must be directed away from the region which
produces the Balmer lines (assuming that these also depend produces the Balmer lines (assuming that these also depend
on the hard X-ray flux). The observed hard X-ray emission must correlate with the hard X-rays which reach the Balmer line region. A separation of the optical Fe in and Balmer line
regions disagrees with the standard model-type clouds where regions disagrees with the standard model-type clouds where
Balmer lines and optical Fe if are produced in the same region, i.e. in the back of the clouds. In the Collin-Souffrin et ә.е ІІ әH ן disc. If the $\mathrm{He}, \lambda 5876$ and Balmer photons are emitted prefer entially in the plane of the BLR, while the Fe in photons are emitted along its axis, then the Fe in and broad lines could be
formed in the same region (although enhanced X-ray emission in this zone is still necessary), and the 'standard' and Collin-Souffrin et al. models could then apply. In this situa-
tion, we would expect to see an anticorrelation between the observed strengths of the Fe II and the Balmer lines. Howobserved strengths of the Fe II and the Balmer lines. How-
ever, we have looked at the $\mathrm{H} \beta$ and Fe II EWs from the
Stephens (1989) sample (which covers a wider range of Fe in
 find no evidence for a correlation of this kind. For an angular-dependent lonizing continuum model,
where a strong EUV excess is viewed in face-on discs, Netzer (1987) found that the Balmer lines and He I $\lambda 5876$ were not formed in the same region as optical Fe I. Formation of the Balmer and He I lines was strongest above the
poles, while $\mathrm{Fe}_{\text {II }}$ and Mg II $\lambda 2798$ were strongest in the plane. However, the evidence suggests that Fe II emission is strongest above the poles (see Section 7.6 .2 and above). This
model may be inappropriate for comparison with the USS

 USS-type spectrum and the effect of a weak hard X-ray
component was not considered. 8.3.5 Optical Fe II and the soft X-ray excess The presence of a soft X-ray excess has been linked to the strength of the optical Fe in emission, via evidence that the
 optical Fe il strength (see Section 7.6 .3). Unfortunately,
analysis of the USS AGN parameters is inconclusive regard-
 X-ray excess (mostly due to the strong redshift effect in

8.3.5.1 Fe II emission from a thick disc? There are indications (see Sections 7.6 .2 and 8.3 .4) that optical Fe II emission
is anisotropic and is emitted preferentially along the axis of an accretion disc. This would be consistent with Fe ı emis-
 beaming.

8.3.3.2 The cool clouds model. In the cool clouds model (see Section 8.1.2), both the hard and soft X-ray emission are presumed to be emitted isotropically. Therefore the line-
emitting region must be shielded in some way from the ioniz-
 line of sight to the observer (for the soft X-rays to remain visible). For instance, in the NGC 5548 model of the BLR,
the LIL region, where the Balmer and He i lines are produced, is flattened and lies behind the HIL region which absorbs the soft X-rays (see Section 8.2.3). Netzer's model
assumes a flattened distribution of 'standard' BLR clouds, in which the soft X-rays are absorbed in the HIL region in the front of the clouds, before reaching the LIL region.
8.3.3.3 A more distant BLR? If the BLR lies a long way from the central ionizing source, the ionizing flux is more
dilute and the Balmer and He $~ \lambda 5876$ lines would be relatively weak and narrow. Therefore shielding from the hard X -rays is not necessary in this case.

8.3.4 Optical Fe II emission

The optical Fe it lines are generally believed to be emitted in the presence of a strong X-ray flux (see Section 8.2 .4) the hard X-ray component. However, the luminosities of the optical Fe ir blends are only weakly correlated with hard
X-ray luminosity and there are no significant correlations with the EWs (see Section 7.6). While the hard X-ray luminosities of the USS AGN are generally low (see Section 7.2.2), he Fe $\mathrm{II}_{\text {red }}$ EWs are generally high (although This may socure
 Fe ir emission, e.g. E0132-411 and E1423+201. o produce optical Fe if; indeed the model demands very weak or no ionizing radiation incident on the Fe ir-emitting $\mathrm{H} \beta$ emission relative to Fe II. Only two of the USS AGN for which we have optical spectra have measurable Fe il emisE $0844+377$). These objects also have the lowest measured Fe in/H β ratio.
8.3.4.1 A dependence on $H \beta$ FWHM. There is evidence hat the Fe in strength decreases as the $\mathrm{H} \beta$ FWHM increases
see Section 7.6.2). If the observed $\mathrm{H} \beta \mathrm{FWHM}$ is a measure see Section 7.6.2). If the observed $\mathrm{H} \beta \mathrm{FWHM}$ is a measure
of the viewing angle, this implies that Fe is emission is anisoropic and is emitted preferentially along the axis of the BLR. Alternatively, if the $\mathrm{H} \beta$ FWHM is a measure of the distance
to the BLR, then this suggests that the Fe II emission is
 source. We note that in the Joly (1987) model, the Fe in/H β
flux ratio is greatest when the incident radiation is weak or

[^5]X-ray dependent models for the production of the optical
Fe it blends, and favouring the Joly model in which no ionizFe in blends, and favoured.
ing continuum is required.

Many other aspects revealed by the analysis of these
unusual AGN are intriguing, e.g. the anticorrelation between $\alpha_{o x}$ and Balmer line FWHM and the strong correlations between $\alpha_{\text {opt }}$ and other optical parameters. Unfortunately,

 required to search for dependences on the ultra-soft X-ray flux. Observations made with the ROSAT satellite will have
 With the support of a complete and thorough optical pro-
gramme, a $R O S A T$ sample of AGN at the lowest columns will provide a wealth of information for characterizing AGN and constraining current models. We hope that this analysis
of the USS AGN will provide a sound foundation for future

on the environment of AGN.
acknowledgments

 also assisted with the optical identification programme. We would like to thank Richard Mushotzky for his suggestions
and the referee for useful comments. EMP acknowledges an
 the Royal Society. The WHT, INT and JKT, on the island of La Palma, are operated by the Royal Greenwich Observa-
tory at the Spanish Observatorio del Roque de los tory at the Spanish Observatorio del Roque de los
Muchachos of the Instituto de Astrofisico de Canarias. This research has made use of the NASA/IPAC Extragalactic
 Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration.

STDNA甘GATY

Arnaud, K. A., Branduardi-Raymont, G., Culhane, J. L., Fabian,
A. C., Hazard, C., McGlynn, T. A., Shafer, R. A., Tennant, A. F.
\& Ward, M. J., 1985. Mon. Not. R. astr. Soc., 217, 105.
Avni, Y. \& Tananbaum, H., 1982. Astrophys. J. Lett., 262, L17.
Avni, Y., Soltan, A., Tananbaum, H. \& Zamorani, G., 1980. Astro-

Baldwin, J. A., Burke, W. L., Gaskell, C. M. \& Wampler, E. J., 1978.
\quad Nature, 273, 431.
Blumenthal, G. R., Keel, W. C. \& Miller, J. S., 1982. Astrophys. J., 257, 499.
Branduardi-R

Branduardi-Raymont, G., 1989. In: Active Galactic Nuclei, IAU
Symp. No. 134, p. 177 , eds Osterbrock, D. E. \& Miller, J. S.,
Kluwer Academic Publishers, Dordrecht.
Branduardi-Raymont, G., Mason, K. O., Murdin, P. G. \& Martin, C.,
1985. Mon. Not. R. astr. Soc., 216, 1043 .
 model, if the optical Fe ir emission was dependent on the Fe in EWs of the USS AGN would be relatively high compared to other X-ray selected AGN (since the optical luminosities would be normal; see Section 8.3.1). Evidence of this
effect for the USS AGN is presented in Section 7.6.2. We would also expect to see a correlation of Fe in strength with the slope of a single power law fitted to soft-to-medium X-ray spectra (assuming that this is a measure of the hard
X-ray flux absorbed). A dependence of this kind has been reported by previous authors (see Section 7.6.3). When we consider the sample of USS AGN for which we have optical
spectra (secure and non-secure), we find that the Fe II strengths are relatively strong and the 'average' index of a single power law fitted to their X-ray spectra is steep (6 ; see
Section 7.6 .3).

Since we assume that the cloud spectrum is isotropic, it
 of the BLR. This may be solved by assuming that the $\mathbf{H} \beta$ FWHM is a measure of the distance to the BLR. For the Joly the ionizing continuum becomes more dilute, resulting in an anticorrelation between Fe in strength and $\mathrm{H} \beta$ FWHM. X-rays in the softest range of the Einstein IPC detector, i.e. within 0.16 to 0.56 keV , compared to the flux in the medium range; 0.56 to 1.08 keV . Therefore we know that the amount of absorbing material along the line of sight to the AGN in
our Galaxy and the host galaxy must be low. The sample is dominated by narrow-line objects, implying a link between
 sight. If the FWHM describe the inclination of the BLR, this
 Rees cool clouds are another promising mechanism for producing a soft X-ray excess. Alternatively, the low velocity The separation from the central source to the BLR can be measured directly from the time-lag between line and range of FWHM would confirm whether the linewidths

Optical properties of soft X-ray AGN 619
Mushotzky, R. F., 1984. In: Advances in Space Research, Vol. 3, p.
York.
Nandra, K., Pounds, K. A., Stewart, G. C., George, I. M., Hayashida,
K., Makino, F. \& Ohashi, T., 1991. Mon. Not. R. astr. Soc., 248 ,
Nandra, K., Pounds, K. A., Stewart, G. C., George, I. M., Hayashida,
K., Makino, F. \& Ohashi, T., 1991. Mon. Not. R. astr. Soc., 248,
760.
Netzer, H., 1987. Mon. Not. R. astr. Soc., 225, 55.
Neugebauer, G., Green, R. F., Matthews, K., Schmidt, M., Soifer,
B. T. \& Bennett, J., 1987. Astrophys. J. Suppl., 63, 615. . $63,615$.
$141,85$. Osterbrock, D. E., 1977. Astrophys. J., 215, 733. Springer-Verlag, Heidelberg.
Osterbrock D E \& Pogge R. W., 1985. Astrophys. J., 297, 166. Padovani, P., 1989. Astr. Astrophys., 209, 27.
Padovani, P. \& Rafanelli, P., 1988. Astr. Astrophys., 205, 53. Penston, M. V., 1988. Mon. Not. R. astr. Soc., 233, 601.
Perry, J. \& Dyson, J. E., 1985. Mon. Not. R. astr. Soc., 213, 665. Peterson, B. M. et al., 1991. Astrophys. J., 368, 119. 1992. In: Proc. 2nd Maryland Conference on Testing the AGN
A., Córdova, F. A. \& Kartie, J. Rees, M. J., 1987. Mon. Not. R. astr. Soc., 228, 47.
Rees, M. J., Netzer, H. \& Ferland, G. J., 1989. Astrophys. J., 347, Remillard, R. \& Schwartz, D. A., 1987. Bull. Am. astr. Soc., 18, Saikia, D. J., Junor, W., Cornwell, T. J., Muxlow, T. W. B. \& Shastri, Schmidt, M., 1968. Astrophys. J., 151, 393.
Shakura, N. I. \& Sunyaev, R. A., 1973. Astr. Astrophys., 24, 337. Shakura, N. I. \& Sunyaev, R. A., 1973. Astr. Astrophys., 24, 337.
Shapiro, S. L., Lightman, A. P. \& Eardley, D. M., 1976. Astrophys. Shuder, J. M. \& Osterbrock, D. E., 1981. Astrophys. J., 260, 437.
Stark, A., Heiles, C., Baily, J. \& Linke, R. A., 1984. Privately distriStark, A., Helle
buted tape.

Stocke, J. T., Liebert, J., Gioia, I. M., Griffiths, R., Maccacaro, T., Stocke, J. T., Morris, S. L., Fleming, T. A., Gioia, I. M., Maccacaro, T., Schild, R., Wolter, A. \& Patrick, H. J., 1991. Astrophys. J
Suppl., 76, 813 (EMSS).
Sun, W.-H. \& Malkan, M. A., 1989. Astrophys. J., 346, 68.

Ulvestad, J. S. \& Wilson, A. S., 1984. Astrophys. J., 278, 544.
Urry, C. M., Arnaud, K., Edelson, R. A., Kruper, J. S. \& Mushotzky, R. F., 1989. In: Proc. 23rd ESLAB Symp. on Two Topics in X-ray
Astronomy 2. AGN and the X-ray Background, p. 789 , eds Hunt, Astronomy 2. A GN and the X-ray Background, p. 789, eds Hunt
J. \& Battrick, B., ESA Publications Division, Noordwijk. Wilkes, B. J., Elvis, M. \& McHardy, I., 1987. Astrophys. J., 321, Wilkes, B. J., Masnou, J.-L., Elvis, M., McDowell, J. \& Arnaud, K., 1989. In: Proc. 23rd ESLAB Symp. on Two Topics in X-ray
Astronomy 2. AGN and the X-ray Background, p. 1081 , eds Hunt, J. \& Battrick, B., ESA Publications Division, Noordwijk. Wills, B. J. \& Wills, D., 1980. Astrophys. J., 238, 1.
Wills, B. J. \& Browne, I. W. A., 1986. Astrophys. J., 302, 56.
Wisniewski, W. Z., Sitko, M. L. \& Sitko, A. K., 1986. Mon. Not. R.
\quad astr. Soc. 219,299 Zamorani, G. et al., 1981. Astrophys. J., 245, 357.
Zdziarski, A. A., 1986. Astrophys. J., 305, 45. Zdziarski, A. A., 1986. Astrophys. J., 305, 45.
Zheng, W. \& O'Brien, P. T., 1990. Astrophys. J., 353, 433. Canizares, C. R. \& White, J. L., 1989. Astrophys. J., 339, 27.
Chanan, G. A., Margon, B. \& Downes, R. A., 1981. Astrophys. J.
Lett., 243, L5.
Clavel et al., 1991. Astrophys. J., 366, 64.
Collin-Souffrin, S., Dyson, J. E., McDowell, J. C. \& Perry, J. J., 1988.
Mon. Not. R. astr. Soc., 232, 539.
Córdova, F. A. \& Kartje, J. F., 1989. In: Two Topics in X-ray Astro-
nomy 2. AGN and the X-ray Background, Proc. 23rd ESLAB

- $-\bar{d} \bar{\theta} \bar{G}=9$

E0337- 267, $z=0.11$. The signature of the underlying galaxy is strong in the optical spectrum of this low-redshift
USS AGN. The optical continuum is flat ($\alpha_{\text {opt }}=2.1$) and the spectrum shows narrow Balmer lines and the presence of red
 point-like on the finding chart.

E0436-433, $z=\mathbf{0 . 0 7}$. The optical spectrum is domin-
ated by light from the underlying galaxy which resembles that of a normal So galaxy. Balmer line emission is weak and
and blended with the galaxy features; the presence of Fen emis-
sin is difficult to deternine due o features from the host sion is difficult to determine due to teatures from the host
galaxy.It is a new USS identification and no hard X -ray comgalaxy.II is a new USS Tdentification and no hard X-ray com-
ponent is detected. The classification is uncertain but it appears to be a low-luminosity AGN.

E0844+37, $z=\mathbf{0 . 4 5}$. The number of X -ray counts X -ray component is relatively strong. The optical continuum rises steeply to the blue (a $_{\text {op }}=0.0$), and shows very strong
and narrow emission lines. Blue and red Fe II blends are weak and the red blend is weaker than the blue. Mg in has a

 was X-ray selected. Hutchings et al (1982, hereater

 atter MDC) report that $[\mathrm{O}$ mj is absent but confirm that Fe II
is strong. Also from the spectrum in Stephens, the optical

 identification and is classified as a N N S Seyfert 1 . It has no
significant hard X -ray component. The Balmer lines are very sigificicant hard X-ray componen. The Balmer lines are very
narrow (deconvolved FWHM $\mathrm{H} \beta=1320 \mathrm{~km} \mathrm{~s}^{-1}$) and the

 particular is strong. The optical continuum rises to the blue
$\left(\alpha_{\text {opt }}=1.0\right)$.

E0952 $+442, z=0.47$. This AGN has a very strong hard

- -ray component and was selected on the basis of its UV

APPENDIX: NOTES ON INDIVIDUAL

 E0039-019, $z=0.35$. This is a new USS identification which we have classified as a narrow-line (NL) OSO. No hard X-ray component is detected (i.e. there are no signifi-cant counts in the $C 3$ band). The optical continuum in F_{λ}
 $\alpha_{\text {op }}=0.3$. . The optical spectrum shows narrow Balmer lines
and Mg II $\lambda 2798$, and strong red and blue optical Fe II blends. It appears point-like on the quick V finding chart. classified by Stephens (1989) as a NL Seyfert 1 , has a strong hard X -ray component. The V magnitude is given by the EMSS as 17.70 (from CCD photometry) and by Stocke et al.
(1983) as 19.2. The Balmer lines are strong down to $H \varepsilon$ and the $[\mathrm{O}$ m] lines are also strong. The optical continuum is flat.
appears slightly extended on the finding chart. and has a strong hard X -ray component. The optical continnely in ($a_{\text {opy }}-1,9$, and shows strong features fom the
 also seen. We have classified this object as a Seyfert 1. It appcars extenced on the finding chart.
E0129-066
$z=0.22$. Another new USS identification which is only weakly detected in X-rays with no hard com-
ponent. The optical continuum rises slowly to the blue (power-law index $=0.8$ in F_{v}), the Balmer lines are strong and narrow and the optical Fe II blend emission is also very E0131 source which has by far the highest redshift of all the USS AGN. he corresponding range of the soft X-ray excess
the rest-frame of the AGN (i.e. the $C l$ range), is $\sim 0.5-1.9$ keV . The counts in the $1.9-3.6-\mathrm{-keV}$ (rest-frame for C_{2})
range are relatively low but strong again between 3.6 and $11.8 \mathrm{keV}(C 3)$. It is point-like on the finding chart which shows no other objects closer to the X-ray position. Ly α and
C iv $\lambda 1549$ have been detected in the UV (HB). Civ 21549 have been detected in the UV (HB).
E0132-411*, $z=0.27$. See Section 6 .
 Mkn hard a Seytert 2. I is a very low-redshift toss AGN and very narow; $\mathrm{FWHM} \mathrm{H} \beta=300 \mathrm{~km} \mathrm{~s}^{-1}$ and $\mathrm{FWHM} \mathrm{He}_{1}$ $\lambda 876=400 \mathrm{~km} \mathrm{~s}{ }^{-1}$. De Robertis \& Osterbrock 1986 .
Radio maps of Mkn 573 at 6 cm (Ulvestad \& Wilson 1984) reveal a triple source whose outer radio components are
 emission at the position of the outer radio lobes is relatively

 appears to be similar to E0845 +378 , i.e., it has broad and low Balmer lines, the continumm ness stieeply to the bue and
the $[\mathrm{O}$ II] lines are very weak. Classified by Stephens as a quasar/QSo.

Optical properties of soft X-ray AGN 621

 photometry), and as 14.7 ± 0.5 in Chanan, Margon \&
 spiral with an edge-on appearance (possibly due to local

 identification and is classified as a Seyfert 1 . The hard X-ray component is weak and the slope of the optical continuum is flat ($\alpha_{\text {opt }}=1.3$). The Balmer lines are broad; only H α is
strong and $\boldsymbol{H} \beta$ is very weak and broad. Blended Fe in emission is weak and may underlie the $\mathbf{H} \beta$ and $\left[\mathrm{O}_{\text {III }}\right] \lambda \lambda 4959$,

$\mathbf{E 1 2 1 3}+\mathbf{3 7 8}, \quad z=\mathbf{0 . 8 2}$. This relatively high-redshift object is a new identification, but no longer meets the new
USS criteria (see Section 2). The slope of the optical con-

 angular profiles. This object is point-like on the CCD R
-џ! cation. It has a high redshift of 1.12 and there is no significant detection of a hard X-ray component. The optical continuum
is quite steep $(\alpha=0.5)$ and $\mathrm{Mg}_{\|} \lambda 2798$ is broad and may

E1217 $+695, z=\mathbf{0 . 6 3}$. This is a new USS identification.最会

 on the B image. Many other galaxies can be seen in the field.
E1227+ $\mathbf{1 4 0}, z=\mathbf{0 . 1 0}$. Two observations of this X -ray E1227 $+\mathbf{1 4 0}^{\boldsymbol{*}}, \boldsymbol{z}=\mathbf{0 . 1 0}$. Two observations of this X-ray
selected object appear in the USS AGN list, one is secure

 $\mathbf{E 0 9 5 7}+\mathbf{5 6 1} 1^{*}, z=\mathbf{1 . 4 1}$. This radio-selected object is a gravitationally lensed double quasar and is variable (See HB).
 detected in the C3 band. The optical power-law index is

 Fe II emission. There is evidence of a strong and narrow C Iv
 1980); both spectra show Mg II $\lambda 2798$ as strong as

E1008 $+\mathbf{3 4 8}, z=\mathbf{0 . 1 4}$. This X-ray selected object has a spectra are published in Stephens (1989) and Kriss \& Canizares (1982), and there are no significant differences
between the two. The optical continuum is flat (in F_{2}). The $\mathrm{H} \beta$ FWHM is relatively broad for a USS AGN (3310 km s^{-1}) and optical Fe II emission is not detected (Stephens
1989. Classified by Stephens as a Seyfert 1 . 1989). Classified by Stephens as a Seyfert 1 .
E1011+496, $z=\mathbf{0 . 2 0}$. This radio-sele

E1011+496, $z=\mathbf{0 . 2 0}$. This radio-selected source has
been identified by Wisniewski et al. (1986) as a BL Lac object. The redshift of 0.20 is uncertain and is based on possible membership of the cluster A950. Wisniewski et al. after the subtraction of the soft component) and an optical
 as a BL Lac, by virtue of its unusually high $\alpha_{\text {ow }}$. It is seen at radio wavelengths as a compact core with a faint extended
halo (Machalski \& Condon 1983). A slight extension may be halo (Machalski \& Condon 1983). A slight extension may be
seen on the finding chart. No hard X-ray component is
$\mathbf{E 1 0 2 8}+\mathbf{3 1 0} \mathbf{0}^{*}, z=\mathbf{0 . 2 5}$. The optical spectrum shows very strong and narrow emission lines; blended Fe II emission is weak. This source has a flat optical continuum slope
$\left(a_{\text {opt }}=1.7\right)$ and lines in the Balmer series are strong down to opl
$\mathrm{E} \varepsilon$ It appears point-like on the CCD R image, is a new
identification and is classified in this paper as a NLSey 1 . $\mathbf{E 1 0 4 0}+\mathbf{1 2 3}^{*}, \quad z=\mathbf{1 . 0 3}$. Other names for this AGN include 3CR 245 and 4C 12.37. This is a superluminal radio Radio maps at 6 and 20 cm by Saikia et al. (1990) reveal a triple source with a flat-spectrum nucleus and a jet towards \& Barthel 1990). The optical spectrum shows a relatively narrow Mg пi 22798 line ($\mathrm{FWHM}=3750 \mathrm{~km} \mathrm{~s}^{-1}$; Foley \&
Barthel 1990). Narrow permitted linewidths and coredominated radio sources are both associated with a discshaped BLR seen face-on (see Section 7.4.1). This source is E1059 $+\mathbf{7 3 0}, z=\mathbf{0 . 0 8 9}$. This is a weak X-ray detection but the hard component is relatively strong. It also appears in
 is strong but $[\mathrm{N} \pi]$ is not seen, whereas MDC note that the

ponent relative to the soft. HCC report the presence of a
halo or broad tail and a corrected $L n: L f$ of 7.5 . The spec-
 $[\mathrm{O} \mathrm{III}]$ and blue Fe in stronger than red (both are clearly seen).
The optical continuum rises to the blue: it is also a PG quasar and the power-law index was measured by Neugebauer et al.
 $\mathrm{E} 1704+608)$. Classified by Stephens as a Seyfert 1.
$\mathbf{E 1 4 0 1}+098^{*}, z=0.44$. MDC report that this source is
located near to the Z wicky cluster $Z C 1400.4+0940$ and 7 located near to the Zwicky cluster ZC $1400.4+0940$ and 7 unusual $\mathbf{H} \beta$ profile; it appears to be square-shaped and is blended with a feature that underlies the $[\mathrm{Om}]$ lines and may be due to Fe il emission. $\mathrm{H} \gamma$ is also very broad but again this
may be partly due to blending with $[\mathrm{O} \mathrm{III}]$. The optical may be partly due to blending with $[\mathrm{O} \mathrm{III}]$. The optical
continuum rises to the blue, possibly due to strong Balmer continuum emission. This source is classified as a quasar or
QSO, and is an X-ray selected source with a very strong hard QSO, and is an X-ray selected source with a very strong hard
X-ray component, which shows evidence of X-ray spectral
$\mathbf{E} 1423+201^{*}, z=\mathbf{0} .21$. This is a new identification of a secure USS source which we have classified as a QSO. No
hard X-ray component is detected. The optical continuum hard X-ray component is detected. The optical continuum
rises steeply to the blue $\left(\alpha_{\text {opt }}=-0.1\right)$, the Balmer lines are strong and the $\left[\mathrm{O}_{\mathrm{III}}\right]$ lines are very weak. Both optical Fe It

 uncertain. Although the Einstein count rate is relatively high,
the number of counts detected in all three bands is low and it has a weak hard component.
$\mathbf{E 1 4 2 5}+\mathbf{1 6 9}, z=\mathbf{0 . 2 2}$.
$\mathbf{E 1 4 2 5}+\mathbf{1 6 9}^{*}, \boldsymbol{z}=\mathbf{0 . 2 2}$. We have classified this AGN as a
Seyfert 1 galaxy. It is a new secure USS identification which has a strong hard X-ray component. The optical continuum
is mostly flat but rises to the blue, possibly due to Balmer is mostly flat but rises to the blue, possibly due to Balmer
continuum emission $\left(\alpha_{\text {opt }}=1.4\right)$. Both red and blue Fe iI blends are seen but the red blend is weak.
$\mathbf{E} 1511+671, z=0.31$. E1511+671, E1511+671, $\boldsymbol{z}=\mathbf{0} .31 . E 1511+671$, a new USS identifi-
cation which we have classified as a NL Seyfert 1, has no

 Bat ${ }^{-1}$), and the $(\mathrm{O}$ ull lines are weak. Both Fe II blends are
strong and some individual lines are resolved. It is slightly

 Stephens, the optical continuum rises to the blue (this may be
due to a strong Balmer continuum), the Balmer lines are narrow (FWHM $\mathrm{H} \beta=2210 \mathrm{~km} \mathrm{~s}^{-1}$), $[\mathrm{O} \mathrm{III}] \lambda 5007$ is weak

 catalogue and may be a BL Lac object. Lines of Mg II $\lambda 2798$
and $\mathrm{H} \beta$ are reported in the EMSS. and $\mathrm{H} \beta$ are reported in the EMSS.
$\mathrm{E} \mathbf{1 6 4 0}+537, z=\mathbf{0 . 1 4}$. This is E1640 + 537, $z=0.14$. This is a new USS identification
and has no hard X-ray component. The optical spectrum has
poor quality; the continuum is flat ($\alpha_{\text {opt }}=1.6$) and there are
 622 E. M. Puchnarewicz et al.
tinuum rises slowly to the blue $\left(\alpha_{\text {opt }}=1.6\right), \mathrm{H} \alpha$ and $\mathrm{H} \beta$ are
broad (FWHM $\mathrm{H} \beta$ is $\left.3400 \mathrm{~km} \mathrm{~s}^{-1}\right)$, and the $[\mathrm{O}$ iII $] \lambda \lambda 4959$, broad (FWHM $\mathrm{H} \beta$ is $3400 \mathrm{~km} \mathrm{~s}^{-1}$), and the $[\mathrm{O} \operatorname{III}] \lambda \lambda 4959$,
5007 lines are strong. The red Fe il blend is very weak, whereas the blue blend is strong and blends with $\mathrm{H} \beta$. In

 s^{-1}, are broad. Grindlay et al. (1980) found variability in days apart. The continuum of the second is more depressed to the blue of $\mathrm{H} \beta$ than the first, and they say that emission marginally significant in the first spectrum but absent from marginally significant in the first spectrum but absent from
$\mathbf{E 1 2 2 8}+\mathbf{1 2 3}, z=\mathbf{0} .12$. This X-ray selected object also appears in the HB catalogue and the HGLS but no longer meets the USS criteria (see Section 2). A hard X-ray com-
ponent is not detected. It has a flat optical continuum $\left(\alpha_{\text {opt }}=1.6\right)$ and has been classified as a NL Seyfert 1. The weak. The CCD R image shows a bright nucleus with either a faint ring structure or extension and another extended object about 25 arcsec away. There are no obvious differences
between our optical spectrum and that published by
$\mathbf{E} 1255+220^{*}, z=\mathbf{0} .160$. The redshift of this AGN has been listed in the EMSS as uncertain. It is a secure source КセI-X р. component in this AGN, which was selected on the basis of longer meets the new USS criteria. It appears in the EMSS, HB and Stephens samples. The optical spectrum shows a continuum which rises steeply to the blue (optical power-law
index $=0.1$ in F_{ν}), strong narrow Balmer lines, weak $[\mathrm{O} \mathrm{III}]$ index $=0.1$ in F_{ν}), strong narrow Balmer lines, weak $[\mathrm{O}$ im $]$
and strong Fe in (the blue blend is stronger than the red). The optical spectrum appears similar in Stephens (1989). It is
classified as a Seyfert 1 object and is point-like on the CCD
$\mathbf{E 1 3 3 4}+\mathbf{0 3 8}{ }^{*}, z=\mathbf{0} .136$. In the EMSS, the identification for this object is listed as 'tentative' (i.e. it may be a galaxy,
LINER, etc.) and it is noted that $\mathrm{H} \beta$ may have a broad base and that $\mathbf{M g}$ II is marginally detected. It has a very strong E1346 $+266^{*}, z=0.92$. No hard X-ray component has been detected for this source, which also appears in the
EMSS survey as well as the EXOSAT High Galactic Latitude Survey (HGLS). There is another HGLS source very close by; a $z=0.60 \mathrm{AGN}$ with a V magnitude of 18.1 which $E X O S A T$ count rate $\left(0.0022\right.$ count $\left.\mathrm{s}^{-1}\right)$ than the $z=0.92$ AGN (0.0068 count s^{-1}, Mittaz 1991) and is further away from the USS position. The slope of the optical continuum is
steep, $\left(\alpha_{\text {opt }}=0.4\right)$, and the emission features are weak. It has steep, $\left(\alpha_{\text {opt }}=0.4\right)$, and the emission features are weak. It has
been classified as a NL QSO/quasar on the basis of the low FWHM of $\mathrm{H} \beta\left(1903 \mathrm{~km} \mathrm{~s}^{-1}\right)$, but this line is weak and at the red limit of the spectrum where the signal is relatively poor.
The FWHM of $\mathrm{Mg}_{\text {II }} \lambda 2798$ is $2600 \mathrm{~km} \mathrm{~s}^{-1}$ and may be The FWHM of Mg in $\lambda 2798$ is $2600 \mathrm{~km} \mathrm{~s}^{-1}$ and may be
broadened by underlying Fe if emission. $\mathbf{E 1 3 5 2}+\mathbf{1 8 3}, z=\mathbf{0 . 1 5}$. This X-ray selected source has
one of highest X-ray count rates but a weak hard X-ray com-
Optical properties of soft X-ray AGN 623
$\mathbf{E 1 7 0 4}+608^{*}, z=\mathbf{0 . 3 7}$. This is another PG quasar (see
Green, Schmidt \& Liebert 1986) and shows variability in its Green, Schmidt \& Liebert 1986) and shows variability in its
X-ray spectrum over a two-year period - C92 for a full description. A low-resolution spectrum from 0.3 to $10.1 \mu \mathrm{~m}$ is published in Neugebauer et al. (1987) and is fitted with a
broken power law of $\alpha=1.67$ in the low-frequency range $(>1 \mu \mathrm{~m})$ and 0.43 in the high-frequency range (the same as for E1352+183). It is a radio-selected source and other

 with no detectable hard component. It is a new USS identifi-
cation classified as a NL. Seyfert 1. The optical continuum is cation classified as a NL Seyfert 1. The optical continuum is
 red and blue Fe il are present (blue is stronger than red).
CCD images show a field crowded with other galaxies. The CCD images show a field crowded with other galaxies. The
source itself is extended; it appears circular on the R image, source itself is extended; it appears circular on the R image,
but more elongated on the blue with the major axis lying at a
 identified AGN lies closest to the X-ray position. E2318-423*, $z=0.21$. This is a secure USS AGN,
which has a strong hard X-ray component. It is X-ray
selected and is taken from the EMSS.
are also weak and Fe II is not seen. It is extended on $\mathrm{CCD} R$ and B images. On the R image, it appears to be a face ont barred spiral galaxy. The arms are very faint, indicating that
it may be an anaemic $S 0$-type galaxy. The arms are not seen on the B image.
ol E1654+352, $z=\mathbf{0 . 8 0}$. This is a new identification which
 was detected in this relatively high-redshift object. The $\mathrm{H} \beta$ and $\mathrm{H} \gamma$ are weak and broad and the $[\mathrm{Om}]$ lines are very weak. The blue optical Fe in blend and the blends around the narrow Mg if $\lambda 2798$ line are strong. It appears point-like on
the CCD R and B images and is classified in this paper as a
$\mathbf{E 1 6 5 7}+\mathbf{3 2 6}, z=\mathbf{0 . 0 9}$. A very strong hard X-ray component is detected in this low-redshift AGN which is a new
USS identification and classified as a NL Seyfert 1. The slope of the optical continuum is flat $\left(\alpha_{\text {opt }}=2.0\right), \mathrm{H} \alpha$ is strong and broad but $H \beta$ is very weak and may be narrow. $\left[\mathrm{O}_{\text {III }}\right] \lambda \lambda 4959,5007$ are relatively strong and narrow and
$\left[\mathrm{S}_{\text {II }}\right] \lambda \lambda 6717,6731$ are also very strong. Features from the underlying galaxy can be seen and are difficult to separate from both red and blue Fe is features. $\mathrm{CCD} R$ and B images reveal this to be an extended object whose major axis lies at a position angle of $\sim 135^{\circ}$. There is another point-like blue
object 16 arcsec to the east, i.e. away from the X-ray position. Many other galaxies can be seen in the field.

[^0]: from the instrumental profile by assuming that the observed width is the quadrature sum of the intrinsic $\mathrm{H} \beta$ and instrumental FWHM, and that these lines have a Gaussian profile.
 Instrumental FWHM were measured from the calibration arc spectra, at $14.5 \AA$ for the FOS and $16.0 \AA$ for the FORS. There are two objects, E0114-002 and E0436-433,

[^1]: Wisniewski et al. (1986).
 NB All H β FWHM listed in this Table have been deconvolved from the instrumental NB All *FWHM of Mg it 22798 profile.

[^2]:

[^3]: he $\mathrm{H} \beta$ luminosity and the (total) X-ray continuum luminosity of AGN, and also between the $\mathrm{H} \beta$ luminosity and the

[^4]:

[^5]: consider the nature of the Fe in emission from the USS AGN

