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The interactions of electromagnetic radiation with

ice, and with ice-containing media such as snow

and clouds, are determined by the refractive index

and absorption coefficient (the ‘optical constants’) of

pure ice as functions of wavelength. Bulk reflectance,

absorptance and transmittance are further influenced

by grain size (for snow), bubbles (for glacier ice and

lake ice) and brine inclusions (for sea ice). Radiative

transfer models for clouds can also be applied to

snow; the important differences in their radiative

properties are that clouds are optically thinner and

contain smaller ice crystals than snow. Absorption

of visible and near-ultraviolet radiation by ice is so

weak that absorption of sunlight at these wavelengths

in natural snow is dominated by trace amounts of

light-absorbing impurities such as dust and soot. In

the thermal infrared, ice is moderately absorptive, so

snow is nearly a blackbody, with emissivity 98–99%.

The absorption spectrum of liquid water resembles

that of ice from the ultraviolet to the mid-infrared.

At longer wavelengths they diverge, so microwave

emission can be used to detect snowmelt on ice sheets,

and to discriminate between sea ice and open water,

by remote sensing. Snow and ice are transparent to

radio waves, so radar can be used to infer ice-sheet

thickness.

This article is part of the theme issue ‘The physics

and chemistry of ice: scaffolding across scales, from

the viability of life to the formation of planets’.

1. Introduction
The optical properties of ice and snow are important

for the energy budgets of solar and infrared radiation,

and therefore the climate, over large parts of the

Earth’s surface. The optical properties are also used to

explain and predict photochemistry in snow, and they
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Figure 1. Compilation of the real and imaginary parts of the complex index of refraction of ice Ih at temperature 266 K. The

shading indicates uncertainty. Modied from g. 9 of Warren & Brandt [4].

are needed for designing remote-sensing instruments on satellites and for interpreting the remote-

sensing measurements. We start this perspective with the radiative properties of pure hexagonal

ice, namely the ‘optical constants’, as functions of wavelength.

2. Optical constants of ice
The dominant absorption mechanisms for ice are electronic in the ultraviolet (UV), molecular

vibration in the near-infrared (near-IR), hindered rotation in the thermal IR and lattice translations

in the far-IR. In weakly absorbing spectral regions, the absorption coefficient is measured by

transmission (e.g. [1]); in strong bands, by reflection (e.g. [2]). The absorption coefficient and

refractive index are combined as the complex index of refraction m = mre + imim, where mim is

related to the linear absorption coefficient ka as

ka =
4πmim

λ
. (2.1)

Laboratory measurements use different methods in the different wavelength domains, so

individual publications usually cover only a restricted spectral band. A compilation of these

measurements was made by Warren [3], covering all wavelengths from the UV to the microwave

(wavelengths 40 nm to 2 m); it was superseded by a revised compilation by Warren & Brandt

[4] (hereafter WB08). Figure 1 shows this revised compilation, for ordinary hexagonal ice Ih at

temperature 266 K (in fact this entire review will almost exclusively concern ice Ih).

(a) Absorption bands

There are several things to note in figure 1. The real index oscillates in the narrow range of

approximately 1–2, whereas the imaginary index varies by ten orders of magnitude. (In regions

of very strong absorption, where the mean free path of a photon is smaller than the wavelength,

mre can drop below 1.0, as at λ < 70 nm in the UV, and at λ ≈ 3 µm. However, signal propagation
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Figure 2. Expansion of gure 1e, annotated. Shading indicates uncertainty. The 1.5 µm peak may be inaccurate, based on

evidence from snow spectral albedo measurements [6].

does not exceed the free-space speed of light, c. This topic is discussed by Bohren & Huffman ([5],

§9.1.3).

At the UV absorption edge at λ ≈ 180 nm, mim drops by a factor 1010, and it is below the

detection limit of available experiments in the near-UV, 200–400 nm. The IR absorptions (1–

100 µm) can be assigned as indicated in figure 2 (an expansion of figure 1e). The fundamental

vibrational modes of the water molecule are seen in ice: bending at 6 µm, and both symmetric

and asymmetric stretch overlapping at 3 µm. The weaker bands at 1.5 and 2 µm have not been

identified in detail; they include overlapping overtones and combinations of the fundamental

modes.

These vibrational modes, because they are intramolecular, are also seen in water vapour,

shifted somewhat in frequency by the formation of the hydrogen bond in ice. The stretching

modes for the vapour (ν1 and ν3) are shifted to lower frequency by 16% in ice (table 2.1 of

[7]), indicating that formation of the hydrogen bond between two molecules weakens the spring

constant for stretching of the covalent O–H bond. By contrast, the bending mode (ν2) is shifted

to higher frequency by 3% in ice, indicating a stiffening of the spring constant for bending, as

formation of the hydrogen bonds requires the H–O–H angle to open from its equilibrium value

for the isolated molecule (104.5°) towards the tetrahedral angle of the ice crystal (109.5°).

The water-vapour rotation band at λ > 20 µm is shifted to shorter wavelength in ice as the

libration (hindered rotation) band at 12 µm. Lattice vibrations appear at 45 and 65 µm; they have

no counterpart in the vapour because they are intermolecular vibrations of the hydrogen bond.

Comparing figure 1b to figure 1e shows the relationship of mre to mim: wherever mim is large (of

order 1), the real index undergoes an oscillation, finally asymptoting to a higher level at longer

wavelength, increasing from 1.3 in the visible to 1.8 in the microwave. The real and imaginary

indices are related by Kramers–Kronig relations; in fact the mre(λ) in figure 1 was computed from

a weighted integral of mim over wavelength as detailed by Warren [3] and WB08 [4].

(b) Birefringence

Ordinary ice has a hexagonal crystal structure, so it is birefringent; refraction depends on the

angle between the c-axis of the crystal and the direction and polarization of the incident light.

For example, at the visible wavelength 546 nm, mre = 1.3104 for the ordinary ray and 1.3118



4

royalsocietypublishing.org/journal/rsta
P
h
il.
Tra
n
s.
R
.So

c.
A
377:20180161

...............................................................

for the extraordinary ray ([8], table 3.1). This small difference, only 0.1%, can be ignored for

computing reflectances and transmittances of clouds and snow, but it is large enough to be useful

for determining crystal sizes and orientations in polycrystalline ice by putting a thin section of ice

between crossed polarizers. This method is routinely used for crystal-fabric studies of glacier ice

(e.g. [9]).

(c) Visible and near-ultraviolet absorption

Water has no absorption mechanism centred in the visible or near-UV, 200–700 nm. The observed

absorption by water and ice in this region is the tail of near-IR vibrational absorptions, decreasing

with decreasing wavelength to extremely small values before finally increasing at the first UV

absorption at approximately 180 nm.

Across the visible spectrum the absorption decreases with decreasing wavelength from red to

blue, becoming so weak that Grenfell & Perovich ([1]; hereafter GP) needed a 3 m long block of

ice to obtain significant measurable attenuation. They devised a method to grow bubble-free ice

in the laboratory, obtaining the minimum attenuation at λ = 470 nm. Their measurement was of

transmission, which is reduced not only by absorption but also by scattering. Although their

ice was bubble-free and appeared visually clear, there was still a small amount of Rayleigh

scattering due to crystal defects or density fluctuations in the ice. This scattering became

the dominant source of attenuation at the blue end of the spectrum, as was pointed out by

Price & Bergström [10]. Price & Bergström showed that reported ‘absorption’ coefficients for

several transparent minerals increased from the visible into the near-UV, following closely a λ−4

dependence indicative of Rayleigh scattering: not only ice but also LiF, BaTiO3 and diamond.

Price & Bergström concluded that in all those measurements scattering had been misinterpreted

as absorption.

A different kind of experiment was therefore needed. In measurements made to test the

Antarctic Muon and Neutrino Detector Array (AMANDA), coefficients for both absorption and

scattering were inferred for glacier ice 800–1800 m deep in the Antarctic Ice Sheet. What was

measured was the distribution of photon arrival times at an array of detectors in a borehole,

the photons originating from a pulsed source in another borehole some distance away. At those

depths, the scattering coefficient is small because most of the air bubbles have dissolved in the

ice as clathrates, but the ice does contain natural fallout of dust (e.g. as nuclei for snow-crystal

formation) which contributes to the absorption. The distribution of photon arrival times was fitted

to a function with two coefficients, a scattering coefficient and an absorption coefficient [11]. The

resulting absorption coefficient at λ = 400 nm was about a factor of 20 smaller than that reported

by GP [1]. Even so, AMANDA’s ka is an upper limit because of the absorption by dust in the ice.

AMANDA’s low values of ka were confirmed by measurements of spectral transmission of

sunlight into Antarctic surface snow ([12]; hereafter WBG). As summarized by WB08 [4], snow is

a scattering-dominated medium whose scattering coefficient is independent of wavelength across

the visible and near-UV. The attenuation of solar radiation in snow can be used to infer ka by

reference to the known value at λ = 600 nm (where GP [1] and AMANDA were in agreement).

WBG [12] developed this method and derived values of ka for wavelengths 350–600 nm from

measurements at Dome C on the East Antarctic Plateau. The minimum absorption was found at

λmin = 390 nm in agreement with AMANDA, in contrast to λmin = 470 nm reported by GP [1] and

used by Warren [3]. The value of ka at 390 nm inferred by WBG [12] is lower than even the lowest

values of AMANDA, by a factor of 6. A subsequent more extensive set of similar measurements

in snow by Picard et al. [13] at the same location found values of ka intermediate between the two

AMANDA measurements.

The blue and near-UV absorption by ice is so weak, with photon mean free paths before

absorption of hundreds of metres in pure ice, that ka is essentially zero for some purposes, for

example, in computing albedo and transmittance of clouds. The non-zero values of ka have a

slight effect on snow albedo, less than 1%. The exact value of ka does matter for computation of
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Figure 3. Comparison of the absorption spectra of ice andwater in the visible and near-IR region, shown as the imaginary part

of the complex index of refraction. From g. 1 of Dozier [24], modied and redrawn. The ice spectrum for λ < 0.5 µm shown

here is now superseded by the plot in gure 1d.

photochemical fluxes in snow (e.g. [14]) and of ice thickness on the tropical ocean of ‘Snowball

Earth’ [15].

(d) Temperature dependence, cubic ice, amorphous ice, liquid water

For ice Ih, the temperature dependence of ka is small for UV, visible and near-IR wavelengths. It is

significant in the mid-IR and far-IR bands, where measurements have been made for temperatures

between the cubic–hexagonal transition and the melting point [16,17], as reviewed by WB08

[4]. The lattice vibrations shift to longer wavelength at higher temperature. Woschnagg & Price

[18] reviewed several experimental studies, concluding that ka increases with temperature by

approximately 1% K−1 for all weakly absorbing parts of the spectrum from the UV to the

microwave. Beyond 1 cm wavelength, absorption increases more rapidly with temperature; a

convenient equation is given by Mätzler [19].

In both hexagonal and cubic ice (Ih and Ic), each water molecule is hydrogen-bonded to four

tetrahedrally arranged neighbours; it is only in the second-nearest neighbours that their structures

differ. Correspondingly, the absorption spectrum of cubic ice is close to that of hexagonal ice in

the few spectral regions where it has been measured [20], except for the systematic temperature

dependence. Amorphous ice is different, especially in the far-IR. Absorption spectra in the mid-IR

region were reported for both cubic and amorphous ice by Mastrapa et al. [21].

The spectrum of liquid water is close to that of ice from the UV to the near-IR, but they diverge

in the thermal IR and become very different in the far-IR, microwave and radio-wave regions

[22]. The reported absorption length ka
−1 for liquid water reaches a maximum of approximately

250 m at λ = 420 nm [23]. Although the visible and near-IR absorption spectra of ice and water are

very similar, they are shifted in wavelength in some regions sufficiently to be useful for remote

sensing, for example, to identify the phase of clouds by reflectance at λ = 1.6 µm (figure 3) and to

detect liquid water in snow [25].

A notable characteristic of the spectra shown in figures 1–3 is that the spectra are smooth;

an accurate tabulation can be accomplished with coarse spectral resolution, in contrast to the

line structure of gases. These smooth spectra are typical of condensed phases (liquid and solid).

Figure 4 is a textbook example of the contrast, using CH3I for illustration. The spectra of liquid
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Figure 4. Infrared transmission spectrum ofmethyl iodide (CH3I) (a) as a liquid and (b) as a vapour. Fromg. 7-1 of Barrow [26],

modied and redrawn.

and vapour are qualitatively similar, but the lines of the vapour spectrum (corresponding to

different rotational states) merge into a single broad absorption feature in the liquid. One way

to think of this is that, in the liquid, the molecules experience a high frequency of collisions,

resulting in extreme collision broadening of the lines.

3. Optical properties in the solar spectrum
By ‘optical properties’ (as opposed to optical constants) we normally mean the absorptance,

transmittance, reflectance (albedo) and emissivity of bulk media such as snow, sea ice and clouds,

expressed as ratios from 0.0 to 1.0. For example, the albedo is the upward (reflected) flux divided

by the downward (incident) flux of solar energy onto a surface.

The interaction of radiation with matter depends on the spatial scales of inhomogeneity

relative to the wavelength of light. Radiation interacts with matter over a distance comparable to

the wavelength; the electromagnetic wave is not affected by irregularities on scales much smaller

than the wavelength. For example, pure bubble-free ice looks homogeneous to visible light but
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not to X-rays. At λ ≈ 0.1 nm (X-ray), the wave diffracts off the oxygen–oxygen bond distance

(0.28 nm). Moving up seven orders of magnitude to λ ≈ 1 µm (near-IR), the wave sees a sharp

discontinuity at each air–ice interface, so in snow the relevant physical processes are reflection off,

and refraction through, snow grains of size ≫ 1 µm. Moving up another six orders of magnitude

to λ ∼ 1 m, a radio wave emitted downwards from an airborne radar source to the snow-covered

surface of an ice sheet does not see a discontinuity at every grain, but does see a discontinuity

at the top surface, a discontinuity not between air and ice but between air and snow. The snow

reflects like a mirror, with an average refractive index (or dielectric constant) determined by the

snow density.

(a) Snow

Snow is a mixture of air and ice. Solar photons re-emerge from snow not just by reflection at the

surface but more importantly by successive refraction through subsurface snow grains. Photons

have an opportunity to change direction at each air–ice interface, and they have a chance of being

absorbed as they pass through ice. Many natural snowpacks, especially snowpacks of cold fine-

grained snow, are thick enough that little light is transmitted through to the underlying surface,

so in that case the absorptance and reflectance together add to 1.0. (Coarse-grained snow is more

transmissive, as shown in figure 5a.) At any particular wavelength, the most important variable

is the snow grain size r [28]. In the solar spectrum, where r ≫ λ, it is common to model a non-

spherical snow particle as a collection of independent spheres, such that the collection of spheres

has the same total area and same total mass as the non-spherical particle [29]. The radius of the

spheres re in the model snowpack is then three times the volume-to-area ratio of the real non-

spherical snowpack. It is also reciprocally related to the area-to-mass ratio, the ‘specific surface

area’ SSA [30], as

SSA =
3

reρice
, (3.1)

where ρice is the density of pure ice, 917 kg m−3. The errors in this spherical representation have

been quantified for various snow-crystal shapes [31–33]. The extinction efficiency and single-

scattering albedo are well represented by the equivalent spheres. The scattering asymmetry factor

for the spheres is too large, but its effect on bulk optical properties can be compensated by

reducing the model’s grain size [34]. The equivalent-sphere representation is appropriate only

where r ≫ λ, so it fails in the microwave region, where snow density becomes an important

variable.

In coarse-grained snow, a photon travels a longer distance through ice between opportunities

for scattering than in fine-grained snow, so it is more likely to be absorbed, and therefore a

snowpack of coarse grains has lower albedo. The area-to-mass ratio normally decreases with

snow age by ‘destructive metamorphism’ [35], so the radiatively effective grain size re increases,

and the albedo drops. Figure 5a shows the computed spectral albedo for various thicknesses of

snow with re = 1 mm (a grain size typical of old melting snow).

The theory of the optics of snow is treated in detail by Kokhanovsky & Zege [36].

(i) Wet snow

Even slight melting causes a rapid increase of grain size, so that wet snow has lower albedo

than dry snow in the near-IR. When wet snow was refrozen in a laboratory experiment, O’Brien

& Munis ([37], their fig. 6) found essentially no change in the spectral albedo; it remained low.

In discussing this experiment, Wiscombe & Warren [28] noted that the refractive index of water

(1.33) is close to that of ice (1.31), so that: ‘the replacement of air by liquid water between ice

grains can increase the effective grain size. There was no further change in albedo when the

sample was refrozen. There was then no liquid water present, but the water bridges between

grains had presumably frozen, with no change in the effective grain size.’ O’Brien & Munis’s

fig. 6 was reproduced as fig. 10 of Wiscombe & Warren [28] and fig. 5 of Warren [29].
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Figure 5. Comparison of the spectral signature of snow thinness to that of black carbon (BC) in snow, for snow grain radius

re = 1 mm and solar zenith angle 60°. (a) Spectral albedo of pure snow over a black surface for a variety of snow depths

expressed in liquid equivalent. The top curve is for semi-innite depth. (b) Spectral albedo of deep snow containing various

mixing ratios of BC in parts per billion by mass (nanograms of BC per gram of snow). (Figure and caption from g. 1 of

Warren [27].)

Wet snow can be identified in remote sensing using narrow spectral channels at 940 and

1050 nm [25], making use of the offsetting of absorption peaks and valleys for water and ice in

this spectral region (figure 3).

(b) Lake ice and sea ice

The surface waters of lakes and oceans are normally saturated with dissolved air. Oxygen and

nitrogen molecules cannot be incorporated into the ice crystal lattice, so when the water freezes

the dissolved air comes out of solution as bubbles, which become trapped between crystals in the

growing ice. These bubbles, as well as cracks caused by thermal contraction, are responsible for

the scattering of sunlight by lake ice [39].

Seawater additionally contains dissolved salt, which likewise cannot be incorporated into the

ice lattice. But because the downward growth of sea ice exhibits fingering due to ‘constitutional

supercooling’ [40], pockets of brine become enclosed in the growing ice, and the bulk salinity

of newly formed sea ice is about one-third that of seawater. The refractive-index contrast of an

ice–brine interface [41] is smaller than that of an ice–air interface, but in first-year ice below
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Figure 6. Spectral albedos of snow-free sea ice, and openwater. Broadband solar albedoα is also given. Ice thickness is given,

except for two ice types that were observed only from a helicopter. From g. 1 of Brandt et al. [38].

freeboard the total cross-sectional area of brine inclusions greatly exceeds that of the air bubbles

[42], so brine can be more important than air in determining the scattering properties of sea

ice. In drained multi-year ice the area of air–ice interfaces is greater, so they dominate the

scattering [43]. The spectral albedo of bare (snow-free) sea ice of different thicknesses is shown

in figure 6.

(c) Marine ice

Ice crystals form in supercooled seawater beneath several Antarctic ice shelves; as they float up to

the ice-shelf base they scavenge particles from the water and incorporate them into the growing

basal ice. The resulting ‘marine ice’ can be approximately 100 m thick [44]; it differs from sea ice in

that it is clear, desalinated and bubble-free. Icebergs calving from the front of these ice shelves are

therefore composite icebergs; the upper part is glacial ice originating from snow, and the lower

part is marine ice. This marine ice is hidden below the water-line, but if the iceberg’s horizontal

extent is small enough it may capsize, exposing the marine ice. Icebergs of marine ice vary in

colour from blue to green, depending on the nature and abundance of foreign constituents in

the seawater that became trapped in the ice as it grew. The addition of dissolved organic matter

(gelbstoff) or iron oxides to ice can shift the colour of marine ice from blue to green [45,46].

(d) The transition snow–rn–glacier ice

On the surface of an ice sheet, snow (with density typically 300–400 kg m−3) is compressed under

its own weight into firn (density 550–830 kg m−3). With further compression, the air becomes

closed off into bubbles when the density reaches approximately 830 kg m−3, and the material

is then called glacier ice. Deeper in the ice sheet, the bubbles become smaller under pressure and

eventually dissolve in the ice as a clathrate.

Bare glacier ice is exposed in areas near the Trans-Antarctic Mountains called ‘blue-ice areas’,

where strong winds blow the snow away and sublimate ice at a rate of approximately 5 cm per

year [47]. There is an upward flow of glacier ice to replace the loss by sublimation. In places



10

royalsocietypublishing.org/journal/rsta
P
h
il.
Tra
n
s.
R
.So

c.
A
377:20180161

...............................................................

wavelength (mm)

1.81.61.4

snow

firn

1.21.00.80.60.4

blue ice

863

856

777

668

460albedo drop-off

because of ash

snow/ice

density

(kg m–3)

white

ice

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sp
ec

tr
al

 a
lb

ed
o

Figure 7. Spectral albedos of surface types on a 6 km transect from the accumulation zone into the ablation zone of the Allan

Hills blue-ice region in the Trans-Antarctic Mountains. The density of the top 10 cm is indicated. Modied from g. 6 of Dadic

et al. [50].

the ice at the surface is 2–3 million years old [48,49]. As the upward-flowing ice approaches the

surface and becomes depressurized, the bubbles re-form from clathrate. Upstream of these areas

a transect of a few kilometres exposes a sequence of surface types: snow, firn, young white ice, old

blue ice. In this sequence, the albedo decreases systematically at all wavelengths as the density

increases (figure 7). The albedos are explained by radiative transfer modelling; the specific surface

areas required to match the observations were larger than were found by X-ray tomography of

core samples [50]. The most likely explanation for the discrepancy is that the models used the

scattering pattern for spherical bubbles, but the real non-spherical bubbles have smaller scattering

asymmetry factors [34,50].

4. Ice is blue but snow is white
Ice is a weak filter for red light. As shown in figure 1, the absorption coefficient of ice increases

with wavelength from blue to red. The absorption length, ka
−1, is approximately 2 m at λ = 700 nm

but approximately 200 m at λ = 400 nm. Photons at all wavelengths of visible light will survive

without absorption, and be reflected or transmitted, unless the path length through ice is long

enough to significantly absorb the red light. In snow the grain radii are typically approximately

100 µm, so even if 1000 refraction events are needed for a photon to re-emerge at the surface, it will

have passed through only 20 cm of ice. Snow is therefore white; the albedo of Antarctic surface

snow decreases only slightly from 0.99 at 400 nm to 0.96 at 700 nm (fig. 6 of [51]). Ice develops a

noticeable blue colour in glacier crevasses and in icebergs, especially in marine ice because of its

lack of bubbles (see photographs in [52]).

The snow surface on the interior plateau of Antarctica has a stable albedo because it is

continually renewed by light snowfall throughout the summer. Because of this stability, the

Antarctic Plateau has been used as a calibration target to monitor the drift in sensitivity of visible

channels on satellites [53,54].
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Figure 8. (a) Measured (with error bars) and modelled spectral albedo of Antarctic snow, from Grenfell et al. [55]. (b)

Spectral albedo at the top of the atmosphere (TOA), from radiative-transfer model calculations, over Plateau Station (79° S)

with solar zenith angle 66° for a clear sky (solid line) and with a cirrostratus cloud at 1.0–2.7 km height (3.7 particles cm−3,

e	ective radius= 15.6 µm, dashed line). The near-IR albedo is higher when the cloud is present, but the visible albedo

is unchanged. The dip in TOA albedo at wavelength 0.6µm is due to absorption by ozone. The drop-o	 of TOA albedo

at λ < 0.3 µm is due to the strong UV absorption by ozone. From g. 1 of Masonis & Warren [54], modied and

redrawn.

5. Clouds over snow
If we look down from the top of the atmosphere (e.g. from a satellite) at the snow surface of

an ice sheet, should its appearance change if an ice cloud is added to the scene? All that has

happened is that a thin layer of ice crystals was inserted over an already thick layer of ice

crystals.

Perhaps surprisingly, the cloud does indeed change the appearance of the scene, in two ways.

First, the particle sizes are smaller in the cloud than in the snow (typical effective radii re of 10 µm

versus 100 µm), so the albedo of the cloud scene is higher at wavelengths that are sensitive to re,

namely the near-IR, especially at 1.7 and 2.2 µm wavelength (figure 8). The 1.7 µm region is used

to distinguish snow from clouds in satellite remote sensing.
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Secondly, there is an effect on the visual appearance. The visible albedo of the scene is

not affected by the cloud, but the angular distribution of reflected radiation is altered. Snow

surfaces are rough on scales large compared to the few-centimetre penetration depth of visible

light, particularly by the wind-erosion features called sastrugi [56]. When the Sun is low, a

flat snow surface scatters light primarily into the forward direction. A rough surface reduces

the forward scattering and sends more reflected light upwards, into near-vertical directions

[51,57,58]. Covering the rough snow with a cloud, whose roughness length (in units of optical

depth) is smaller than that of snow, restores the forward scattering pattern, darkening the nadir

view [59].

6. Light-absorbing impurities in snow
The absorption coefficient of ice is so small at visible and near-UV wavelengths that parts-per-

billion (ppb) amounts of absorptive impurities can dominate the absorption and significantly

reduce the snow albedo [60–62]. The important impurities are black carbon (soot), brown (organic)

carbon and mineral dust. The main absorbers in mineral dust are iron oxides [63,64]. Figure 5b

shows the effect of adding black carbon (BC) to coarse-grained snow. The albedo is reduced

at visible and near-UV wavelengths, but not in the near-IR for λ > 1 µm, where ice itself is

moderately absorptive so that trace amounts of BC have little effect.

Light-absorbing impurities in snow have been surveyed on field expeditions in the Arctic

[65,66], North America [67] and China [68,69]. Some measurements were also made on the

Antarctic Plateau [12,55,70] and on Antarctic sea ice [71]. The values of BC range over four

orders of magnitude, from 0.2 ppb in the Antarctic and 2 ppb on Greenland, to 2000 ppb in

remote areas of northeast China. The Arctic snow outside of Greenland has typically 20 ppb of

BC, which is sufficient to reduce snow albedo by approximately 1%, depending on snow grain

size. This small change in albedo is difficult to detect by radiation measurements at the surface,

and even more difficult to detect by remote sensing [27], but it is important for climate. For the

incident solar energy of 400 W m−2 typical of late spring and early summer in the Arctic, a 1%

reduction of albedo causes a diurnal average radiative forcing of 4 W m−2 locally, similar to that

of doubling CO2.

7. Infrared emissivity of snow
In contrast to the solar wavelengths (near-UV, visible and near-IR), where snow albedo varies

dramatically with wavelength and is sensitive to snow grain size and snow depth, the radiative

properties of snow at thermal IR wavelengths are much less variable. The emissivity of snow

is independent of snow depth and impurities. It is very high for fine-grained snow, 0.98–0.99

across the infrared ‘window’ from 8 to 13 µm wavelength [72]. The emissivity of coarse-grained

snow becomes sensitive to viewing angle; it is as low as 0.93 for a viewing zenith angle of 75° at

λ = 13 µm.

Two attempts to model the spectral emissivity [73,74] obtained opposite dependences on grain

size. The measurements of Hori et al. [72] agreed with the prediction of Wald [74] in finding the

emissivity to decrease with increasing grain size. The Dozier–Warren model [73] had used Mie

theory [75] for single scattering, which assumes that the scattering properties of a snow grain

are not affected by the proximity of neighbouring grains. That approach worked well in the

solar spectrum, where the sizes of the snow grains, and the air spaces between snow grains, are

large compared to the wavelength. For the thermal infrared Dozier & Warren [73] considered the

medium surrounding a snow grain to be a mixture of air and ice, to make a correction for close

packing, dependent on snow density. Wald’s method [74] added a specular component which

lowered the emissivity for coarse-grained snow, in better agreement with the measurements of

Hori et al. [72]. Wald’s modelling approach was modified by Hori et al. [76] to include an empirical

parameter to better fit the experimental data.
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8. Remote sensing of snow and ice
Remote sensing of the cryosphere is a large research field, which I will not attempt to review.

Instead, I refer the reader to two books [77,78] and two review articles [79,80]. I will just briefly

comment here on remote sensing using microwaves and radio waves.

In the microwave region, ice and water differ greatly in their absorption coefficients, so the

fractional coverage of sea ice can be determined from microwave brightness temperatures (e.g.

[81]). For example, at λ = 1.55 cm (frequency 19 GHz), the vertical emissivity of water is 0.43, but

for ice it is 0.92. Sea ice is routinely mapped by passive microwave observations from satellite,

making use of this emissivity contrast. The signal received by the satellite is unaffected by clouds

because cloud particles are much smaller than the 1.55 cm wavelength. Again, because of this

difference in microwave absorption between ice and water, melting of surface snow can be

detected on the ice sheets of Greenland and Antarctica, allowing for monitoring of the melt extent

in summer (e.g. [82]).

Continuing to longer wavelength, where the absorption mechanism is ‘dielectric relaxation’,

the medium becomes most absorptive when the dielectric response is approximately 90° out of

phase with the oscillating electric field. This absorption for ice peaks at 3 × 103 Hz; for water at

2 × 1010 Hz (figure 9). Between these absorption features there is a long region of wavelengths,

1–100 m, where neither water nor ice is absorptive. The wavelength range 3–10 m is used for

radio-echo sounding of ice sheets because these wavelengths can penetrate several kilometres of

ice-sheet depth [84].

9. Suggestions for future research
Here are just a few ideas for research projects.

(1) Develop new methods to quantify the extremely small absorption coefficient of ice in the

UV–blue spectral region.

(2) Confirm with measurements the modelled quantitative relation between impurity

content and reduction of snow albedo. Some attempts have been made [85,86], but more

are needed, with different sizes of impurity particles and snow grains.

(3) Determine the microlocation of BC particles in snow. Particles located in the interior

of snow grains are more effective at albedo reduction than if they are on the grain

surfaces [87].
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(4) Biological processes are important for the radiation budget on glaciers and ice sheets in

locations and seasons where melting is occurring. Characterization of the red algae in

snow and black algae in ice could be crucial to understanding melt rates on Greenland

[88,89].
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