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Mg-doped VO2 thin films with thermochromic properties were made by reactive DC magnetron

co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in

the 0.5< �hx< 3.5 eV energy range. Clear evidence was found for a widening of the main band gap

from 1.67 to 2.32 eV as the Mg/(V þ Mg) atomic ratio went from zero to 0.19, thereby significantly

lowering the luminous absorption. This technologically important effect could be reconciled with

spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd

et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically,

the calculated luminous absorptance decreased when the Mg/(V þ Mg) ratio was increased from

0.125 to 0.250.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766167]

This letter reports experimental and theoretical data on

Mg-doped VO2 thin films. The main constituent (VO2) is a

well known thermochromic material capable of reversible tran-

sition between a solar-transparent, semiconducting, and mono-

clinic state below a “critical” temperature sc of �68 �C and a

near-infrared reflecting, metallic-like and tetragonal state above

sc.
1,2 The associated modulation of solar energy transmittance

makes VO2-based thin films a very promising candidate for

window coatings for energy efficient buildings.3–6 The dopant

(Mg) serves to widen the main band gap of VO2 and boosts

luminous transmittance,7 which otherwise tends to be undesir-

ably low and constitutes a major obstacle for practical imple-

mentation of thermochromic fenestration.6 Mg doping also

decreases sc and brings it closer to room temperature.7 We

present spectral measurements of optical absorption in the

0.5< �hx< 3.5 eV range of photon energy and find that these

data can be reconciled with hybrid functional calculations.

Mg-doped VO2 thin films were made by reactive

DC magnetron sputtering from 5-cm-diameter targets of V

(99.5%) and Mg (99.9%) onto glass and carbon plates con-

currently. The substrates were put on a rotating holder

located 13 cm below the targets and were kept at �450 �C

during depositions. The deposition chamber was

evacuated to 6.3� 10�7 mbar before the substrates were

heated. 80ml/min of Ar and 5ml/min of O2 (both 99.997%)

were then introduced via mass-flow-controlled inlets. A total

pressure of �9.2 mTorr was maintained during film fabrica-

tion, and sputter powers were 172W and 0–40W for the V

and Mg targets, respectively. Films were grown at

�0.056 nm/s to thicknesses d of 56 to 67 nm. We recorded d

on a Bruker DektakXT profilometer, and supporting data

were found by modeling of optical measurements. Elemental

compositions were obtained from Rutherford backscattering

spectrometry (RBS) applied to films on carbon. Mg contents

were inferred from simulations based on the SIMNRA program,8

which executes iterative least-square fits to experimental spec-

tra. Mg/(V þ Mg): z atomic ratios lay in the 0� z< 0.19

interval.

Spectral normal transmittance T and near-normal reflec-

tance R were recorded in the 0.5< �hx< 3.5 eV range for the

semiconducting phase of the films, deposited onto glass, by

use of a single-beam spectrophotometer for absolute

measurements.9 The glass is transparent, and the

absorption coefficient a was obtained from Beer-Lambert’s

Law, i.e., ad¼ ln[T/(1 � R)]. Optical band gaps (denoted Eg)

were determined—using standard procedures10—from

ða�hxÞm ¼ Að�hx� EgÞ, where A is a constant. The exponent

m depends on the nature of the optical transition and is 1=2,
1=3, 2, and 2=3 for indirect-allowed, indirect-forbidden, direct-
allowed, and direct-forbidden optical transitions, respec-

tively. Linear extrapolation of (a�hx)m vs �hx near the band

gap gave Eg as the intercept with the a ¼ 0 axis.

Figure 1(a) shows (a�hx)
1=2 vs �hx for films with different

Mg contents and presuming indirect-allowed transitions. Extrap-

olations yield two band gaps for pure VO2, Eg1 and Eg2, at

1.67 eV and �0.5 eV, respectively, which are in line with well

established data.11 It is essential to note that Eg1 shifts towards

higher energy for increasing doping levels, specifically from

1.67 eV to 2.32 eV as z goes from zero to 0.190. For z¼ 0.116,

which corresponds to about one of eight V atoms substituted by

Mg, one finds Eg1� 1.95 eV. The strong displacement of Eg1

leads to significantly decreased luminous absorptance in thin

films, as inferred from the bell-shaped shaded region in Fig. 1

illustrating the relative luminous efficiency of the eye.12

The observation of two band gaps can be rationalized

from Goodenough’s seminal work on the electronic structurea)Electronic mail: shuanglin.hu@kemi.uu.se.
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of VO2,
13 which is illustrated in Fig. 2. The crystal-field-

induced division of the V3d t2g band into djj and p* sub-bands,

and further dimerization of V atoms in the otherwise tetrago-

nal lattice, makes the djj band split into two parts. The lower

djj band is completely filled and the p* band is empty. Eg1 is

associated with the band gap between O2p and p*, and Eg2 is

associated with the band gap between the lower djj and p*.

This compelling assignment of the band gaps cannot explain

the effect of Mg, however, and hence we turn now to

calculations.

Electronic and optical properties of the Mg-doped

monoclinic M1 phase of VO2 were studied using the density

functional theory (DFT) plane wave basis-set code package

VASP.14 Core electrons were treated with the projector aug-

mented wave (PAW) method.15 We used the Perdew-Burke-

Ernzerhof16 (PBE) version of the generalized gradient

approximation functional and the Heyd-Scuseria-Ernzerhof17

(HSE) hybrid functional and performed spin-polarized calcu-

lations. The energy cut-off for basis-set expansion was put at

500 eV, and the Gaussian broadening width for electronic

smearing was 0.05 eV. Geometries were relaxed until resid-

ual atomic forces were <0.1 eV/nm, at which point the total

energies were calculated to a convergence threshold of

10�5 eV per cell for both functionals.

The crystallographic unit cell for the M1 phase com-

prises four V and eight O atoms18 and was used in calcula-

tions for pure VO2. To simulate 25% doping, one V atom

was replaced by Mg in this cell, while 12.5% doping was

simulated by creation of a 2� 1� 1 supercell wherein one V

atom was replaced by Mg. Gamma-centered k-point grids19

of 2� 4� 4 (for the supercell) and 4� 6� 6 (for the unit

cell) were used. The crystal structure—i.e., cell parameters

and atomic positions—was relaxed in each case. For pure

VO2, this procedure yielded lattice parameters agreeing with

experimental data18 to within 0%–3% for different cell axes,

always exceeding experimental values. Mg concentrations

below 12.5% would require a supercell at least twice as

large, which was deemed too demanding for HSE functional

calculations.

The dielectric function e(x): e1(x)þ ie2(x) fully

describes the optical properties of a medium at all photon

energies. The dielectric function for interband transitions

was calculated in the momentum representation, which

requires matrix elements between occupied and unoccupied

eigenstates. The imaginary part of the dielectric function can

be derived from20,21

e2ðxÞ ¼
4p2e2

X
lim
q!0

1

q2

X
c;v;k

2wkdð�ck � �vk � xÞ

� huckþe1qjuvkihuckþe2qjuvki
�; (1)

where e is elementary charge, X is volume of the Brillouin

zone, indices c and v refer to conduction and valence band

states, respectively, wk is weight of the k-point vector, �ck
and �vk are energy levels, uvk, uckþe1q, and uckþe2q are cell

periodic parts of the wavefunction at a given k-point, and e1
and e2 are components of the unit vector. A Kramers–

Kroning transformation was used to get the real part e1 from

e2 by

e1ðxÞ ¼ 1þ
2

p
P

ð1
0

e2ðx
0Þx0

x02 � x2 þ ig
dx0; (2)

where P signifies the principal value and the integral is eval-

uated in the limit where g approaches zero. The absorption

coefficient was then derived from

aðxÞ ¼ 2ðx=cÞf½½e1
2ðxÞ þ e2

2ðxÞ	1=2– e1ðxÞ	=2g
1=2: (3)

We first consider pure VO2 whose electronic band struc-

ture was recently studied with the HSE functional;22,23 the

FIG. 1. (a) Experimental and (b) calculated (a�hx)
1=2 vs photon energy

�hx, where a is absorption coefficient, for Mg-doped VO2 with the shown

Mg/(V þ Mg) atomic ratios. The shaded bell-shaped region signifies relative

luminous efficiency of the eye (Ref. 12).

FIG. 2. Schematic band structure for monoclinic, semiconducting VO2

according to Goodenough (Ref. 13). EF denotes Fermi level.
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electronic and optical properties have also been calculated

by several other methods.24 Our results are almost identical

to those of Eyert.22 Specifically, we find an indirect band gap

of 1.38 eV corresponding to the difference between the maxi-

mum and the minimum of the bands in k-space. Figure 1(b)

shows calculated spectral absorption coefficients for VO2 as

well as the doped systems. A comparison with the experi-

mental data in Fig. 1(a) for z¼ 0.116 and z¼ 0.190—which

are the compositions closest to those of the calculations—

shows clear qualitative correspondence with theory.

The match between experimental and calculated spectral

absorption is better for the Mg-doped samples than for pure

VO2, and one may ask why this is so. We speculate that a

possible answer could be that electron correlation effects in

VO2 are reduced as a consequence of the Mg doping, thus

allowing a more accurate description of electronic structure

with DFT-based methods. Substitution of some V by Mg

clearly influences the structure and leads to rearrangement of

ionic positions, notably those of V. Thus, our calculations

predict that the alternating V–V distances (0.315 and

0.252 nm, etc.) for pure VO2 along the V chain in the a direc-

tion (rutile c axis) change for z¼ 0.125 and, moreover,

become pair-wise similar (0.316 and 0.302 nm; 0.264 and

0.261 nm, etc.), as indicated in Fig. 3. It is interesting to note

that even this modest Mg content affects the structure

throughout the supercell. For z¼ 0.25, the V–V distances

along the a direction become 0.302 and 0.290 nm. We are

not aware of any experimental attempts to determine the

structural modifications invoked in VO2 by Mg doping.

We also studied the electronic properties of Mg-doped

VO2, and Fig. 4 shows density of states for z¼ 0.125 and

z¼ 0.25. The overall agreement with Goodenough’s band

scheme,13 illustrated in Fig. 2, is apparent. The band gaps

Eg1 and Eg2, calculated from the eigenvalues, are noted in

the figure. Specifically, our Eg1 and Eg2 values are 2.07 and

0.72 eV for z¼ 0.125 and 2.12 and 1.01 eV for z¼ 0.25,

respectively. Band structure calculations give clear evidence

of indirect band gaps for z¼ 0.25 and pure VO2.

Summarizing, we investigated the optical properties of

Mg-doped VO2 films experimentally and computationally.

The qualitative agreement between the two sets of data gives

strong evidence that the band gap widening—and concomi-

tantly the technically important lowering of the luminous ab-

sorptance—can be reconciled with hybrid functional

calculations. This finding may also open avenues towards

computation to discover alternative band gap widening dop-

ants for thermochromic and nano-thermochromic25 VO2-

based window coatings. Furthermore, our work may be rele-

vant to other potential applications of VO2-based materials,

such as nanoelectronic switches26 and microbolometers.27
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15P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
16J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996); erratum 78, 1396 (1997).
17J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207

(2003); erratum 124, 219906 (2006).
18G. Andersson, Acta Chem. Scand. 10, 623 (1956).
19H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
20R. Ahuja, S. Auluck, J. M.Wills, M. Alouani, B. Johansson, and O. Eriksson,

Phys. Rev. B 55, 4999 (1997).
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