Ulrike Woggon

Optical Properties of Semiconductor Quantum Dots

With 126 Figures

Contents

1.	Intr	oduction	1		
2.	Growth of Nanocrystals				
	2.1	Growth of Nanocrystals in Glass Matrices	8		
		2.1.1 The Diffusion-Controlled Growth Process	8		
		2.1.2 Preparation of II–VI Nanocrystals	13		
		2.1.3 Other Semiconductor Materials in Glass Matrices	24		
	2.2	Growth of Nanocrystals in Organic			
		and Related Matrices	26		
		2.2.1 Chemical Preparation Methods	26		
		2.2.2 Size-Selection Techniques	29		
		2.2.3 Sandwiches and Quantum Dot Quantum Wells	30		
	2.3	Structural Data	33		
	2.4	Influence of Interfaces	36		
	2.5	Epitaxial Growth	38		
3.	Energy States				
	3.1	One-Electron-Hole-Pair States	43		
		3.1.1 The Particle-in-the-Box Model	43		
		3.1.2 Coulomb Interaction	48		
		3.1.3 Mixing of Hole States	52		
		3.1.4 Splitting of States	62		
		3.1.5 Indirect-type Quantum Dots	65		
		3.1.6 Experiments to Identify One-Pair States	68		
	3.2	Two-Electron-Hole-Pair States	80		
		3.2.1 Theory	80		
		3.2.2 Experiments to Identify Two-Pair States	83		
		3.2.3 Optical Gain	91		
	3.3	Many Particle Interaction	97		
4.	Die	lectric Effects	103		
	4.1	Optical Properties of Composites	103		
	4.2	Surface Polarization and Charge Separation	110		

5.	Mee	chanisms of Dephasing 1	115		
	5.1	Coupling of Electron-Hole Pairs with Phonons	116		
		5.1.1 Phonons in Quantum Dots			
		and Coupling Mechanisms 1			
		5.1.2 Raman Scattering 1	124		
		5.1.3 Photoluminescence			
		and Photoluminescence Excitation Spectroscopy 1			
		5.1.4 Hole-Burning and Saturation Spectroscopy 1			
		5.1.5 Four-Wave Mixing 1			
	5.2	Energy Relaxation 1			
	5.3	Scattering at Defects and Interfaces 1			
	5.4	Carrier–Carrier Scattering 1	151		
6.	Tra	p Processes	150		
0.	6.1	Localization, Trapping and Transfer			
	6.2	Kinetic Models			
	6.3	Trap Processes and Nonlinear Optical Properties			
	0.0				
7.	Effe	ects of Static External Fields 1	L79		
	7.1	Electric Field Effects 1	L79		
	7.2	Magnetic Field Effects 1	187		
	7.3	External Fields Acting as Confining Potentials 1			
		7.3.1 Magnetic Field Confined Electrons 1	193		
		7.3.2 Electric Field Confined Electrons			
		and Transport Properties 1	195		
8.	Nan	nocrystals of III–V Compounds	100		
0.	8.1	Spherical Quantum Dots in Polymers and Glasses			
	8.2	Quantum Dots Obtained by Deep-Etching			
	0.2	and Interdiffusion	200		
	8.3	Quantum Dots due to Spatially Isolated			
		Potential Fluctuations	201		
	8.4	Quantum Dots Resulting from			
		Self-organized Epitaxial Growth 2	205		
	8.5	Stressor-Induced Quantum Dots 2			
_					
9.		nocrystals of Indirect-Gap Materials			
	9.1	Theoretical Description	209		
	9.2	Silicon Nanocrystals	11 0		
		and Quantum Structures in Porous Silicon			
		9.2.1 Preparation Methods			
		9.2.3 Polarization of Luminescence	°10		
10.	Con	cepts of Applications	223		
		ices			
Ind	ex		249		

,