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OPTICAL QUADRUPOLE SUM-FREQUENCY GENERATION IN SODIUM VAPOR
' Do R S

Donald Stimson Bethune

"'ABSTRACT

We ghow that secoﬁd>order’hon1inéaf opticai'préééSéés‘such as sum and
difference generation can be dbéérved in"isotropiévmedia,'despité the fact
that such processes are forbidden in the’dipole aparoximation. A theore-
tical ﬁreatment of quadrupole sum and difference frequency generation is
given, which includes the effects of spin-orbit splitting. The symmetry
of the vapor is used to derive thevform of the quadrupole susceptibili;y
tensor, and the quadrupole moment tensor is then expfessed és a scalar
susceptibility multiplied by a tensor constructed directly from the input

field polarization vectors. The. expression shows that two non-collinear

~ beams must be used. The effect of applying a magnetic field is derived.

Expressions for phase matching and output power are found.

In sodium vapor we have observed quadrupole sum frequency generation
(QSFG) of ultraviolet light. The output radiation Sho@ed very sharp re-
sonant enhancement when Wy + w, was tuned near the 3s + 4d quadrupole al-

lowed transition of Na. The experimental results generally confirm the

theoretical predictions. Deviations of the data from the simple theory

can be satisfactorily accounted for by the effects of two photon satura-

tion, induced index of refraction changes and single and multi-photon ab-

_sorption.

We also show that by applying a D.C. electric field to the sodium va-
por, interference effects between QSFG and D.C. induced, third-order sum-
frequency generation may be observed, allowing an accurate determination

of quadrupole matrix elements relative to dipole matrix elements of atoms.



We use this technique to measure
" sition moment of Na. Our result

Finally, the generalization
to the case of quadrupole pumped

frequency generation in Cs vapor

the value of the 3s — 4d quadrupole tran-
is <3$|zz/2|4d> = (2.2 * 0.4)a§ .

of the dipole forbidden susceptibilities
processes is discussed, with difference

considered as an example.
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I. INTRODUCTION

i

s\

"The nonlinear'qptical pfobértieé:of étomic‘vapors ha&e received con-
sidefable'atténtion in recent yéars. Tﬂey héve thespotential to éerve
as sources of cohefent rédiation o?er a spectréi rangé which exﬁends from
the extreme ultfaviolet to the far-infrared, ™

Théir discréte specﬁra can be exploited to‘provide ﬁot only wide ab—_
'sorption—free régions but. also sfrong resonance enhancement in their non-
linear“susceptibilities. Thus, vacuumbuv has beeﬁ generated by third-
harﬁonic generation,1 and more recently, even fifth- and seventh-harmonic
geﬁérafion of 380 énd 530 A have beeh reported.2 Tunaﬁle-vacuum‘ultrayio_
let and ihfrared have aiSoibeen produced by four wave mixing in metal va—'
porsQ3 Other processes suchvas one—pﬁoton and two;phéton stimulated
'eleétrbhié Raman scattering have been used for infrated_geﬁeréiién.

The common feature of all the ﬁroéeéses mentioned ébove is their re-
liance on the odd—order dipdle—alldwe& nonlinear susceptibilitiésg ‘Even
vérder~susceptibilities are forbidden in the dipole approximation for
centrosymmetric media. They.are, however, nonvanishing if electric quad-
rupole and magnetiﬁ dibole métrix elements are takeﬁ into.accoﬁnt in fhé
suscepfibilities, The subject has been described in numerous theoreti-
cal papers on:sécond harmonic geheration in centrosymmetric ﬁedia.6-12
Generally, one would expect that an n-th order forbiddén ﬁrocess is not
necessérily weaker than aﬁ (n + l)th—brder éilowed process. Néveftheless,
éelection rules»fér the nfh— and (n + 15th-order processes ﬁay be &ifferf

ent. For example, no bulk quadrupole second harmonic generation from a

uniform centrosymmetric medium is possible. Experimental observations of

10,13-15

surface second harmonic generation, due to quadrupole and magne-



tic dipole effects show that it is quite weak. Hidnsch and Toschek16
have considered bulk sum- and difference-~frequency generation due to
secdnd—ofder electric éuadrupole or magnetic dipole noplinear suSceptibil—
ities in a gaseous medium. With a collinear geometry they found that it
is necessary to orient the atoms in order to have difference-frequency
genération while suﬁ—frequency generation is still forbidden for ddubly
resonant pumping. Pershan6 has considered electric quadrupole and magne-
tic diﬁole contributions to.the sgcond-order nonlinear optical processes
vby usiﬁg é phenomenological approach. He showed that isotropic materials
with énémalous dispersion could be used to genérate bulk second harmonic
if two noncollineér.pump beams were used. However, he concluded that
this would be a very weak and possibly'unobservable effect.

We have recently found that with the‘noncollinear beam geometry, a
quadrﬁpole-allowed second-order sum- or &ifference—frequency'gengratién
process in vapor can be as stfong as a third-order wave-mixing process.
In fact, both processes can be easily observed when the pump laser fre-‘
quencies are tuned near single or/and double resonances of the atomic
species. More recently, Flusberg et 31;17 have demonstrated that with an
appiied dc magnetic field, quadrupole sum-frequency generation and magne-
tic difference frequency generation in metal vapors can even be observed
with a collinear beam geometry. In this paper, we give a more complete
fhéory of qﬁadrupole three-wave mixing in metal vapors. We also describe
in.detail our recent experiﬁent-of quadrupole sum-freqqency generation
(QSFG) in sodium vapor.

The body of the paber is divided into five sections. The first sec-
tion of these givés a theoretical derivétion of tﬁe second-order quadru-

pole susceptibility for one electron atoms, taking into account the spin-
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orbit coupling and possible Zeeman coupling in the presence of a magnetic

field. The effects of Doppler bfoédeniﬁg and finite laser linewidth are

discussed in a separate appéndix. ‘The phase matching condition for QSFG

is then obtained and an expression for the total power output is derived..
The second section describes the experimental afrangement and the observed
experimental résults on QSFG in sodium vapoxr. We éompare fhese results
with the theoretical predictions of the first séétion. The tﬁird section
presents theory and experiment on saturation of two-photon absorption and
self-defocusing of the pump beams aé the limiting processes in QSFG. The
effects 6f linear absorption due to both atoms and.sodium dimers and mul-
tiphotod absorption are also discussed; The fourth section describes the
use of interferénce between QSFG and dc electric—fieid—induced sum—fréduen—
cy generation to determine experimentally the quadrupole tranSition matrix
eiement relative to dipole matrix elements. The fifth section discusses
other -nonlinear procésses depénding on seébnd-order quadrupole nonl{neaf
susceptibilities. As'an»example, the susceptibility for quadrupole-allowed

difference—fféquency in Cesium vapor is calculated.



II. THEORY

A. Microscopic Expression of Second-Order Nonlinear Susceptibility

In the classical theory of radiation, the vector potential of the °

s N ' . T g —igt
far field radiation generated by a current density distribution g(r',w)e

with spatial Fourier cdmponents'g(ﬁf,w) is given by
> 11?7 5 t > '
R(E,t) = T o) (K, w), k = nw/c. (1)

> > -
For a collection of atoms or molecules with density N, g(k,w) can be ex-
v .
. * . N . 3+|+ .v -
pressed in terms of the Fourier component J(r',k,w) of the current distri-

- bution of a siﬁgle atom or molecule at r'

i = [ FE N @ R0t @
Semiclassically, 3(?',K,m) is an expectatiqn value obtained ffom

IE LKW = w@E Wi Ew)] | )

> . . \ i . . . -ipt
where p(r',w) is the density matrix operator with time dependence e *
>y T 7 . .
of an atom or molecule at r', and Jop(k,w) is a current density operator.

In a multipole expansion, ,w) can be written as

18,19 +
Jop(k

J _(kyw) =~ iw(; - iﬁ(f 3) +ick xm + ... (4)

where 3, Z and m are the electric dipole, electric quadrupole, and magne-

tic dipole operators per atom. It is often convenient to define a general-

Al
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ized polarization vector as

5 > NI(T',K,w)
P(k,w) = ___t’_w . 7 . (5)

Here, and from now on, the dependence of 3(?,&) on r' is implicit. For-

sufficiently weak applied fields, 3(§,m) can be expanded in a power ser-

ies
B = PP @) + 3P @y + . (e
with
B @0 = XV &0 knEdE" 0
: (7
>(2) » _e(2) > > > .:+ - > >
P Cw) = xR = wg Fowysky w0k swg) Bk 0.)E(R) w0,)
<(1) . *(2) | . . e
where ¥ and ¥ are the generalized first and second order suscepti-
TR e . o(1) . ©(2)
bility tensors. The microscopic expressions for ¥ and ¥ are ob-

tained from perturbation calculation using the interaction Hamiltonian

X >t > > > .
I = §- T (k) E(K s ) (8)

where

for a set of monochromatic fields with frequencies w -



The second—-order susceptibiiity may be expressed19’20

()2 _ e =
xhl (k,w Wy + Wy s k2 2,kl,wl) = ,
, , (9)
: . > -> v > ‘ 0
N p 25' <r|my (o) o<t (ky,-w)) [s><s]my (p-up) [ro0
2h2 rst _ (wtr YT m2)(wsr - wl)

0 .
where p,, . is the equilibrium population of the state |r>, and P indicates
a sum of six terms obtained from permuting the three sets of quantities
Ca > > '
[(h,—k,—@), (_1sk29w2), (J ,kl,wl)].
Here, for quadrupole second-order sum -frequency generation, we

are particularly interested in the susceptibility

N <xleif - e<elPleoes (Bl
‘;(2) _ NP _ Y
.th r,s,t (wtr R m2)(msr - wl)
' (10)
= _ % . 3@

Phy31cally Q (w) = x(Q) : E(wz)ﬁ(m15 is ‘a sum-frequency quadrupole polar-
ization induced by the nonlinear mixing of E(wl) apd E(wz). The radia-
tion pattern éf a quadrupole 8 d3x with only Qyz = sz # 0 is shown in
Fié. 1 as an example.‘ To include damping in Eqs. (9) and (10) we need to
insert a damping factor * iYmn into each denominator with the resomant

frequency CI with the signs chosen such that the denominators vanish

only‘when wi or w, is in the lower half of the complex w plane.20
From symmetry con31derat10ns, the nonvanishing elements of X(Q) are
(Q (Q) @ _ (@ . @ _ @ _ (@ , (Q

X1111° X1122° X1212 T X2112° VR Xq111 T Xa122 ¥ Xp212 T Xp1pp- Im @ddis

©
tion, a sum of equal diagonal elements of Q cannot radiate because its

. >
effective polarization (- ik - Q) is parallel to k. Therefore, we can
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define Q as a tracelegs tensor by using Ui = 3 e(rirj r Gij/3). We
x Q) Q- Q _ 4 . @ _ 1 (@ '

then have‘xllll * X9911 F X3311 = 0, and hence, X1122 T 7 2 X1111 and

Q-3 (@ -

X1912 =% X1111° 1t 1§ now easy to show that

1212 KEw) - B} .

Bl,w = 1202, (& - E(w)Ewy) + (k - Ew,))Ew)) - %
' (an
The_dot.products show that collinear QSFG is nbt'possible since we must

have both E(mi) 1 ¥ and ﬁ(ﬁ,w)‘l K.

B. Evalﬁation-of Quadrupole Nonlinear Susceptibility-;(Q)(m = Wy + wz)

We now want to caleculate the value of the quadrupole nonlinear sus-

(Q

ceptibility x for one-electron atoms, including the effect of spin-or-

bit coupling. Wé shall also consider the effect of an applied magnetic‘
field. Such a field destroys the isotropic: symmetry so that Eq. (11) no

longer holds."
(@

‘The evaluation of ¥ in Eq. (10) for oné-electron atoms is most

21 & _zon . on A .
. . H 1 =+ + =
easily done in spherical coordinates’ (u+1 (ex——ley)/V2 and uy ez)-

Using the Greek indices to indicate the spherical coordinates, the spher-

ical tensor components X(Q)

yéaB
nents Xég;k by the relation

are related to the Cartesian tensor compo-

Q@ _ i - ay@m - a C Ay LA @
Xysa8 (9y &) (g = o) (u, - ey) (ug '_ek)xzmjk’ (12)

where we use the summation convention. We can further simplify the cal-

culation by'using the standard quadrupole domponentsz1 with M = 2,1,

0,—1,—2 instead of qYﬁ.,.



N

where, for example, LI

(Q)

r | DN
Tt '
y/ V2

*t Tty

+ roro + r_lr+l

+Ir_1f0)//5' -

(ry1%0

)16

N ' 0
Xpar = — 5 P ZE: P
MaB 2h2

~

.<a'lqM|C><_c|pa|b>.<b |pBla>

a,b,c

aa Dca(wl + wZ)DBa(wl)
C @ . e
which is connected to X by the relations
ySaB
. Q _ ()
- Mo :E: <l,1\(6|2M>xY60‘B
Y56
@ (@ _
Xygap = <L-1v8|2M>x, 0 M=y +6)

and where Dab(w) = wab

It can be shown that for

Q)
XMaB

Thus, from Egs. (12), (15), and (16),

(Q
Xp -1,-1"

We find

@ _ (@

the spherically symmetric case

(Q)

' M
= (-1) <1,1ae|2—M>X2’_1’f1.

(Q

we can express Xﬁmjk

In our case, we have only one independent element of X

.3 @ _3 (@ _1 (@

X1212 T X1221 7 T 2 *1122 T % *1111 T 2 X2,-1,-1°

(13)

- ' 4 R
u - = -(x + iy)/v/2. We have from Eq. (10)

(14)

(15)

-wand <1,1y8|2M> is a Clebsch-Gordan coefficient.

(16)

in terms of

(Q
tmik’

(17)
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‘We are now left with the evaluation of xéQzl RE and in particular
(Q) b b

the matrix elements in X 1. _1° 'FoliOwing the notation of Shore and

22 ' P e (x)
Menzel™™ we can write p and q in terms of the Racah tensors C

Ty

P, = erCa
: _.“2-’(2). |
1, = (ex“/V6)Cy | | - (18)

_=[MJQK¥1H%YH1

where YKM are fhe sphericalxharﬁbnics. Then, the matrix elements of pa
and qM»between states spec?fied by the quantum numbefs n, %, s, j, and mj
caﬁ be reduced usingvthe Wignéf—Eckart theofem; which_allo&s us to write
¢

’<n'z'j‘mj,|f(r)c§K)1nzjmj> = [<ijjM|j'm5,>/(2j'+1)%]<n'l'j'ﬂf(r)C(K)Hn§j>.

(19)
Here, since the spin quantum numbers are aiways %, we have suppressed
them. The double bar matrixvelement can be further reduced in terms of

the Racah coefficients W(%jilK;R'j) and the Clebsch-Gordan coefficients22

'l| 1t ' (K) . __.‘ ] . . 4 J PR otz 1ot ‘ (K)
<" L' E(E)C T Inei> = [(25' + 127 + DY W& K2 )<L E(xr)C In2>

<n'l'ﬂf(r)C(K)nng>

o oy o
(22" + 1)2<eK00[2'0><n'2' I £ (r)Ing> (20)

J

0

(o o]

?nrg,(r)f(r)Pnz(r)dr

it

<a' ' E(r)Ing>

where Pni(r)/r is the radial wave function<of’the state [nf>.



Assuming unoriented atoms initially in the ground state |n"skm'> and

using the tabulated Clebsch-Gordan and Racah cqefficients,23 we obtain

nn | nll

3 I [
v Q) _ Ne ' sdps | 9 ,on' | 1 om' _ 5 nn'
RN Y P ;Z;, 15 |T5%,3%v15%3,3 715 Agt;]
: ’ [ 22 2 2 2 2
nnln“ (21)
+ ISEES ‘-l_Bnn' + l_Bnn' + l_Bnn'
15 [3%.3%3%,1%3%,3
L 22 22 2 2

where

ng'n" = <n"slr2lnd><ndl£ln'p><ai'plrln"s>
sdps

nn'n" gl le2hntp<n'pheln”

Spps = <n"slrlinp><nplr in'p><n'phrin's>
‘oon' _ -1 N o -1

Ajj' and}(w) Dn'p..(wl)] +[Dnd.( w) Dn'p.,( wl)

. ] ] J ]
nn' _ _ . 1 '
Bjj ' [ anj( 032 Dn'Pj . (wl)r , .

anid P' indicates the sum of two terms obtained from permutation of w, and

1
w, . The resonant frequency in the denominator D is w n. « Know-
2 - nf, nls,n"s,
. nnlnﬂ nnln"] 2
ing the values of the radial integrals in I and 1 -, we can then
: sdps Spps °

2(Q)

evaluate ¥ numerically. As an example we consider the case of sodium

. _ 16 3 o -1 _ _
vapor with N = lO. /em™, QBP; wl- 10 em 7, and‘wAd- wl w2 0.25
2

em ~. Using the radial integrals <n'27“r"n£> obtained from Ref. 24 and

the calculated values of <n'£'ﬂr2Hh£> from Ref. 25, we find the suscepti-

bility for QSFG is XéQzl - 1.2 x 10 14 esu. The terms involving B??,

in Eq. (21) can give resonant p - p quadrupole difference frequency gen-

eration (QDFG) when W, is replaced by -w

> >k ’
9 and E(mz) by E (wz). As an ex-

10
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ample, with N =.1016/cm3, W -w, = l.O'cm_l and w -w, = - 2 cm.l
_ o 3p, 1 4p 2 i
: o : 2 Q) - 3/2 -16
the susceptibility for p - p QDFG will be ¥ = 7.55 x 10 esu.
It is quite simple to extend tﬁe calculation to include the effect

of an applied D.C. magnetic field B. Taking B along 2, the transition

frequency between |nljmj> and In'l'j'mj,> now becomes

(mjamj') B O . UBB

wnzg,n'l'., ~ “ng.,n'e, + —ﬁ—»(gjmj - gj,mj,) (22)
J J J ]
where Mg is the Bohr magneton and gj is the Landé g factor. Since Zeeman
'splittings are usually small, the slight changes in the denominators in
. o° :
Eq. (14) will affect the value .of X(Q) only near resonance.

For illustration, suppose that wy + Qz éfwéd in QSFG, but that Wy is
sufficienfly far from resomance that the change in the 3s - 3p denomina-
tor can be neglected. In the.limit of weak mégnetic fields, we consider
only thg lingérzeffgét of thg Zeeman splitting of wéd,Bs on ;(Q), We
find |

Q=590+ 5% (23)
where X;(Q)(B) is linear in B, and is given by
Axégé(B) - "l <1,1as|z-M>AX§QZl L® (24)

with



12

B
Q _ Ne” “sdps (”B )
8p,e1,-1® =75 —1s \ W) x
oh
(25)
[ 4,3 4,3 4,3 ]
4.3 A3.3 43,1
oi[96 22 11 22 -, 5 22
75 D4d (w) 75 Déd (w) 7 D4d (w)
5 3 3
| ) 2 2

As an example consider the case where Elﬂﬁﬂﬁ and E2"§' Eqs. (23) and (24)

lead to

e @
Py = - 1(k X)XZ,—l,—l(O)ElEZ

(26)
P == (k - 2)Cayl® (B)E,E,.

X . 2,-1,-1

For collinear QSFG along E,Ythe above equations show that both PX and P
vanish at B = 0 but Px # 0 when B # 0, confirming that only magnetic-

field-induced QS¥G is possible.17

i (@ @ ' - .
The mabpltudes of XZ,—l,—l and X2,-1,—1(B) at wy + Wy = W4 with Dop-
pler broadening are approximately in the ratio
- . - . |
(Q (@ ~_"B
IX,21,-1® 1y 2y 4 R, (27)

. . : -1
At one torr, the Doppler width of the 4d - 3s transition Qd;f.085 cm
and this ratio is less than one until B ~ 2 kilogauss. Comparable QSFG

may be obtained with B ™~ 10 Gauss however (see Appendix A),

In a similar way a magnetically induced AX(Q)(B) for the p ~ p‘ferm
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-of the susceptibility'can be calculated. 1In their magnetically induced

B e aq 17 : '
VDFG experiment, Flusberg, et al. tuned two collinear lasers near the

2 2 -2 2

6 Pl/2 - 7.Sl/2 and 6 P3 -7 S% transitions of thallium vapor in a transverse
. e 2 : : '
magnetic field, and ob§erved a collinear difference frequency beam near
w o, = 7793 cm ~, due mostly to magnetic dipole radiation.

6P, -6“P ) '

53 o
-2

C. Phase Matching and Output Power of Quadfupole Sum-Frequency Generation
' i : > A
We assume two single mode pump beams with Gaussian profiles, Kl x kZMy

and El + ﬁzﬂg. If diffraction can be neglected in the interaction region,

we can write the two pump fields as

>, - o > o 2 2 .
B, = §i,2 exp(ik; , T - o] ,/20] ) (28)
where
2 .2, a2
pl ='y" + (x cos 61 z sin 61)
bg ='y2 + (x cos 8, + z sin 92)2 .

2

Oi is the angle between Ei and 2,“and both angles are defined to be

positive. Then. from Eq. (11), we have

‘ 2 2
p P
> (Q) Y 2 .3 CE4r )y - L _ 2
P(k’m) = _1X2,—1,—l[8l(k &2) + 82(k &1)] X exp 1(kl k2) r 02, 202
1 2
(29)

where we discard the term in Eq. (11) « K since it cannot radiate along
K. Using this expression for‘f(ﬁ,w) with Eqs. (5), (2), and (1) yields

a vector potential



R it N RN T e
(r,e) = = ~wxy 2y, 118 (k - &) k- 1)])"
, . (30)
' 3 | N\ ak?  dak? + bak® + ghk Ak
(. . ™ _ > exp| - vy _ X z X z
. 2 4a . . 2 '
(al + az)alazsln (6l + 62) 4ala251n (61 + QZ)
wﬁere we have defined
‘ 2 2
a, = 1/20l - a, = 1/202
= } b = cos2 6' + co 2 6
a= o T : 1 AR U RS
d = s'n2 6, + sin2 0 = a.cos 0.sin 6, - a.cos 6 sin 0
S RS T 2 E7 % 1 1% 2% ¥y
> > >
and Ak = k - (kl + k2).

For arbitrary linear polarizations with ¢1 and ¢2 the angles between
gl and y and gz and y respectively, the polarization in'Eq. (29) has x

and y components

R (0) R . ) ,
P_=- 1X2,—l,—1kE(w1)E(w2)[Sln ¢,sin ¢231n(62 61)]
(31)
_ , | o ,
Py - 1X2’_1,;1kE(ml)E(m2)[31n ¢1cos ¢,sin el - sin ¢2cos ¢lsin 62].
Since klsin 61 = kzsiﬁ 62, if kl = k2 then 61 = 62. Consequently
Px o« (62 - 61) becomes very small, while Py « sin 6131n(¢l - ¢2) and is a

maximum if (¢1 - ¢2) = + 90°, Assuming k2 > kl, the case with gl L
(Kl x KZ) and gz { Kl % KZ gives the optimum output power, and output po-

larization parallel to Kl x KZ Il y. The sum frequency output power is

given by

14
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| 2(w) = j.—QE-IXIZ r2 da : (32)
) ' _2ﬂc' o . ,

which can be readily integrated to give for the optimum case

2
- 3 Q - -Ak™/2d

Pw) = 2= |x,! 1, S 2o@piwye 5w F (33)
. c .

where the geometric overlap factor F is defined

451n

51n(6 + 6 )

ro\(".

o0
F o= 172

2
1 + a251n 6 )

b -
FEw) o e

+ o )0&31n2 8

R

We can find the pﬁase—matching angle ep-= elp + ezp‘from the phase-match-

ing condition Akz = 0. We obtain, using Wy = Wy + Wys

2. ' Wy Wy
(1 ~cos B8 )=0/2=(An, - An )1 +—]+ (An, - An_ )| 1 + —}(35)
) P R 3 W, 2 3 wy

where Ani = n(mi);—l, and higher order terms in the An, have been neglect-

i

. b o B ~ _
ed. S}nce k | z we also have (elp ezp)/ep = (k kl)/(k2 + kl)' The

2
refractive indices can be computed from a standard Sellmeier formula.

From Eq. (35), it is clear we must utilize anomalous dispersion to achieve
‘ : . . 6 .

phase matching, as was noticed by Pershan for the second harmonic case.

If we let 0 = 61»+ 62, we can also write the phase matching factor in

terms of the phase-mismatch angle A8 = (8 - ep):
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exp (- Aki/Zd) = exp(- AGZ/ZOS) . (36)_
where
2 2,2 2,2
Oy = (1/201kl + 1/202k2). , (37)

Although the theory given in‘this section neglects Doppler broadening
and finite laser linewidth, these effects can be included in a fairly
straight-forward way. This is done in an Appendix. It is shown there
(Q)IZ

that for the case where Yds << Qd§< YL’ when |x is evaluated to find

the output power, we should use an effective susceptibility near resonance

Vora
Q) 2 ) m v [y

Ix | , which has frequency dependence (where Yy

eff ) ‘(w - e - )2 + 2 L
4d ~ Y1 T 92 L

is the sum of the laser linewidths and stz.085 cm-l is the 4d »> 3s Dop-

pler Width), instead of the dependence |1/(w4d - wl - wz - iY)I2 (where Yy

is the natural linewidth) obtained from the theory given above.
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III. EXPERIMENT

A. Choice of Atomic Vapor
To observe QSFG most easily, we should take advantage of the reson-

*(Q)

ant enhancement of ¥ We selected atomic sodium vapor as our medium
because it has levels well matched to our flash-pumped tunable dye lasers. .
In addition, the quadrupole susceptibility can be calculated theoretically,

since the necessary atomic parameters are well known. A partial level di-

agram for sodium is shown in Fig. 2 with the sum frequency process we have

"investigated indicated schematically. For N = 1016/cm3, YL = .25 cm—l,
. _ o -1 . o
Waq ~ wl - wz = 0 and Awl = w3py wl 10 em ~, the effective nonlinear
Q) s o . =14
defined at the end of Section II is 3.05 x 10

susceptibility Xg.-1,-1 |
esu. Using Eq. (33), we estimate an output power P(m1 + wz) =_[P(wl)P(w2)/‘
(11.7 X 106)] watts at exact phase matching, or about 1W for two 4 KW input
beams.
B.  Experimental Arrangement

The experimental arrangement is shown in Fig. 3. Two flash-pumped
dye lasers provided ~ 600 nsec, linearly polarized pulses of light, with
. peak powers of about 1 - 5 KW. One laser used with Rhodamine 6G in etha-
nol was tunable between 5700 A and 6300 A, while the other with Rhodamine
6G in a water-hexafluoroisopropanol (2:1) solution was tunable between
5600 A and 6100 A. Both lasers were tuned with interference filter-etalon
assemblies and had linewidths of = 4 Ghz. A motor rotated the etalon to
allow continuous tuning. The two lasers were fired synchronously. The
relative jitter in the overlapping of the two pulses was about 100 nsec.
The puléevshapes and temporal overlap of the pulses were monitored with a

photodiode (PD 3) and an osciiloscope. Two long focal-length lenses



(f1 = 40 cm, f2_= 50 cm) focused the beams to a common 0.25 mm spot at

the 6enter'0f é heat pipe o'ven.26 The angle of intersection could be

. finely adjusted by giving beam 1 a parallel displabement beforé focusing. -

With careful adjustment of the position of the lens L1, the actual point
of intersection remained fixed.

The heat pipe oven was éonstrqcted from type 347 stainless steel tub-
ing 20.3 cm long, 3.18 cm in diameter, and was flattened somewhat to a
cross section of 1.9 cm % 4.5 cm. The actual sodium vapor zone was about
lOlcm iong and was fixed by water—cooled A% flanges clamped to the heat
pipe. The wick was made of several layers of 100 mesh type 304 stainless
steel cloth. A glass input window and a fused silica output window were
used on the heat pipe. The pressure was éet by the He buffer gas, énd
was stabilized against outgassing by pumping continuously with a liquid-
nitrégén—cooled zeolite pump, which could not pump He. The heat pipe was
operdted between 0.1 and 30 torr. At the higher pressures, molecular ab-
sorption due to sodium dimers became significiant and made the vapor ap-
pear very dark and violet in color.

The output radiation was filtered against fluorescence and scattered

pump radiation by using a Corning 7-54 filter and a Jarrel-Ash % m mono-

18

chrometer with 500 p slits, and was detected by a UV-sensitive photomulti-

plie;. The output current from the photomultiplier was fed directly into
a gated electr§meter27 which integrated the current with a time constant

of about 5 sec. The output signal was then displayed on a chart recorder.
Additional photodetectors.(PDl and PD2) and gated electrometers were used

simultaneously to measure the average laser powers.

C. Results
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. In our experiments, we could vary the laser frequencies, the laser
powers,’the léser polarizations, the beam intersection angle 6, and the
sodium vapor pressure (or density N).

When wlv+ Wy was tuned near ®sd (34548.8 cm_l), and 6 was set near
16

the phase métching angle ep for N ~ 10 cm—3, a strong ultraviolet beam

at w = w, + w, was detected. Its linewidth was found to be spectrometer

limited (AX < 3 A). The output beam was highly directional and had a di-
vergeﬁcé-angle‘léss than 10 mrad. In contrast, fhe strong ultraviolet

fluoféécence from 5p + 3s and 4p - 3s transitions (A = 2853 A and 3304 A
respéctively) appeared in all directions and was drastically reduced when

a small aperture was inserted in front of the photodetector:
The polarization characteristics of the output were also measured.

With E(wl) Il Kl x Ez and E(wz) 1 Kl X Kz the output was strong and polar-

ized élong.ﬁl-x KZ’ as predicted by Eq. (11). When El ] Ez, the signal
was weaker by several 6rders, again in agreement with the prediction of
Eq. (31). Errors in setting the polarizers and analyzers were probably
responsible for the residual signal. |

The resonance behavior of QSFG was investigated by keeping wy fixed

and 6 adjusted to the phase matching.value ep, and then scanning w, over

a narrow range with w, + w Phase matching should remain unchanged

1 2 % Wuq-

for the small tuning of Wy The sharp resonance observed when wy + W,

goes through w is shown in Fig. 4. This curve was taken at low input

4d
pbwers (i%wl) = 2W andqy(wz) = 25W) and had a width of .25 cm—l, which

was dominated by our laser linewidths. The Doppler width for the reson-

) -1 ) . )
ance is narrower (™~ .086 cm ). This resonant enhancement was most impor- -

tant for strong sum—frequency output. At resonance, we could easily de-

tect the output even if w, was detuned from w by ~ 100 cm—l or more,

1 3p,,

2

19
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but away from resonance, the output signal quickly dlsappeared

To study phase matching of QSFG, the beam intersection angle 6 was
scanned contlnuously whlle other parameters were fixed. A typical phase !
matching curve is shown in Fig. 5, together with the correspénding»theoré—
tical curve obtained from Eqs. (36) and (33) with Oy = .92 mrad. This
value of %y is in teasonabte agreement with the value 1.1 mrad calculated
from Eq. (37 using the measured values of the beam waists. The peak of
the experimental curve appearg at an angle ep within 1.2 mrad 6f the value
predicted from Eq. (35) using the measured Na vapor pressure to calculate
Anl’2 from the Séllmeier formula. To check Eq. (35) in more detail, a
set of measprements of Bp was made for various densities and detunings
Awl. The results are shown in Fig. 6, in comparison to the curves of 0

1

in the calculation. The agreement between theory and experiment is within

-vs N and. Aw, calculated from Eq. (35). No adjustable parameters were used

4 mrad in»all cases.

In Fig. 7, we show the results of a measurement of sum-frequency out-
put FYm3) as a function of tﬁe input laser powers at phése matching. Asb
expected, waB)'alinZ) for fixed 6«wl) throughout the measured range.

For sufficiently low me ), 5kw ) is also proportional to f“w ). .However,
at higher ¥ (m ), J(w ) reaches a maximum and then begins to fall again aé
f(ml) is further increased. This was due to resonant saturation, self-
defocusing, and induced phase-mismatch. We shall discuss these effects
in moré detail in the next section.

(Q)

Since the susceptibility yx is proportional to the. atomic density

. 2 -
N, we expect fkw3) at phase matching should increase as N~ . Measurements

of fxwé) vs N for two values of Aw, are shown in Fig. 8. Over a limited-

1

range, the expected Nz'dependence holds. The larger output for the case
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.of sm_allerAwl demonstrates qualitatively the additional resonant enhance-

(Q

ment due to Awl in ¥ . The shafp decreases of the output observed at high-
- er densities are due to atomic absorption,‘which will be ‘discussed in the
next section.

Thus, the predictions of Eq. (33) for sum-frequency generation are
generally coﬁfirmed by our experimental results. Besides the twd devia~-
tions ffom the elementary theoryvnotéd above,.several additional complica-
fions were observed. As Awl detuning was decreased, or N increased, the

w, beam traversing the cell was strongly defocused. This defocusing was

1
accompanied by a substantial increase in the width of the phase mat;hing
curve and a decrease inbthe output power. Also, as the product, I(ml)I(mz)
became large, a significant broadening of the resonance curve-P(mB) vs m2
was observed, again accompanied by a reduction inwﬁ(m3) below its expected

value. These effects limit the sum-frequency power output and deserve a

more detailed discussion.
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IV. LIMITING PROCESSES

In their study of third harmonic generation in alkali vapors, Miles
and Harr1324 have discussed various processes which limit the output power
and the conversion efficiency. These processeé include one photon ;ﬁsorp—
tion, multiphoton absorption and ionization, saturation, self-defocusing,
and phase mismatch dueito‘optical—field—inducéd refractive index. In the
experiments descfibed in the last section, severél of these processes were
important. In particular, the strong two-photon resonance and the one-
photon neaf—resonant 3s + 3p transition in sum-frequency generation can
iead to strong self-defocusing, saturation, and multiphoton ionization
under certain conditions. We discuss these observatiéns separately in

the present section.

A, Linear Absorption
The linear absorption cross section for atomic sodium can be calcu-
. . - . 24 .
lated from the data given by Miles and Harrls.2 In the density range we

investigated, pressure bfoadening dominates the linewidth, and for Awy =

(w - w,) and Aw! = (w - w
31)1/2 1 1 _3p3/2 1

absorption cross section is

) much larger than the linewidth, the

2 re f 6vS(N/NO)

D2

o

a (38)

-13
where re = 2.818 x 10 cm, f is the oscillator strength of the D lines
and is .982, Gvs is the pressure broadening coefficient in cm-l,'and for

the 3s - 3p transition has the value 42.7, N is the atomic density, and
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N0'= 2.69 x 10°"/cm™. D is an average frequency denominator given by
1 .11 .2 1 | -
= = = + 5 — : (39)
D2 3 sz- 3 Aw'z
1 1

where the frequencies are in cm_l. The sum-frequency output power fTQ3)
is proportional to N%ijl)waz) where 5%wl) and‘ﬂwwz) are the average
pump beam powers in the nonlinear interaction region. For an interactio

length less than 1 cm, the variation of the pump powers over the interac

1

tion length is negligible. Assﬁming the pump beams traverse a distance
in the atomic vapor before they overlap and assuming only absorption at
’ Wy is appreciable, we then have
2
ijl) « exp(~ NoL) = exp(- aN")
| (40)
6Tw3) o Nzexp(— aNZ)
where o = oL/N is independent of N. The maximum output should therefore
occur at
N, D0 Vs
Nopt - l/u “\2r fév 1] - (41)
e s
i 1 = . : : 14 .
Since L ® 5 cm in our case, our NOpt should be 4.77 x 107 D. 1In Fig. 8§
- we show the observed variation of.f7w3) with density. For Awl = 40.8 cm
and Aw! =58 cm_l, D = 50.1 cm_l, so we expect the maximum QSFG to occur

at 2.39 x 1016/cm3 in fair agreement with the observed value of 2.5 x

n

Lv

1016/Cm3. For Aw, = 80.4 cm_l and Aw! = 97.6 cm_l, D = 90.7 cm—l and the

1 1

23
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o - . : 16 3 . ) .
expectéd maximum is at 4.33 x 107 /cm™ while the observed maxiumum is at
ol6, . 3 o o .
5 x 107" /cm™. Since the vapor path is not accurately known, the agreement
in both cases seems reasonable, and we conclude that atomic absorption 1li-
mits the Vapof density which can be ‘used in our experiment. Dimer absorp-

tion was found to be much less important.

B. Saturation of TwofPhoton Absorption
‘As is well known; when the intensities of the pump fields are suffi-
ciently 1arge; even two-photon absorption can.be saturétéd. This has been
observed in Cs vapor28 and in Thallium vapor. |
As shown in Eq. (14), the third-order susceptibility for our qﬁadru—

pole sum-frequency generation involving the 3s and 4d states is

<4d|pa|p><plp8|3s>

(@ _
X = (Nap<3s|qy|4d>/280,) D . (42)
P wy oy
where Ap = (p3S - p4d) and sz g T Twy - iy. - The optical Stark

shifts of all states are negligible in our case. Saturation comes in

through the dependence of Ap on the pump field intensities:30

A 0
bp = (43)
1+ WTPT1
where Apo is the population difference at thermal equilibrium, W is the

TP
two-photon transition rate and T, is a relaxation time for the population

7

1

in <4d|. 1If only radiative decay is considered, a value T, = 1.1 x 10~

1

. ‘s c1aes 1
sec can be derived from tabulated transition probabllltles.3 The rate

WTP-for cross polarized beams takes the form

' 2
Wy = 2 - 200y awy| ) | (44)
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with

Qz ; :E:<4dlpz|p><p]py[3$>E(wl)E(w2) 2 ws)
v 2
p h (wp - wl)

30,32

denoting the two-photon Rabi frequency. The square of the induced

quadrupole moment density is given by

2.2 2
N°Q |Aw2|

|2
2

l.QM = lxg : E(wl)E(wz)lz = (Apo)2k35|quéd>[2'r i .
[Iszl + 2y Q Tl]

-

: (46)
If the pump beams have Gaussian profiles, then QZ also has a Gaus-

sian profile. It can be shown that, for the unsaturated case at exact

phase matching, the output power is
Fwy) “_f lq)? a. (47)

This relation should hold approximately for the weakly saturated case

(2yTlQ2 z‘yz) with small induced -index changes. We then find
2
2 o -y v
Flug) = —5 \//i. 77 3 NI (48)
Iszl -0 [1 + (B7y /Iszl Yexp(-y )]
2
ZTIQO

, and QO = Q(r =-0).

In our experiment studying two-photon saturation effects on sum-fre-

where B =

quency generation, we varied both laser intensities by using pairs of

Glan-Thomson polarizers as attenuators. We fixed wy at Aw] =+ 41,2 cm_l,

and the vapor pressure at 0.4 torr. These values were chosen to make the
self—defocusing‘effect negligibly small (see the following section). The

frequency w, was then varied to w, + w, over the two-photon resonance and

2 1 2



the peak output power and the resonant linewidth were recorded as func-

‘tions of the product of the iﬁcident intensities. The results afe shown

in Fig. 9, together with theoretical curves obtained numerically from Eq.

(485, using the parameter 82 = (7.6 x 10_25)1112(esu). The data on peak

.output power agree well with the calculated curve. The data on resonant

linewidths havé large errors due to laser fluctuations but'show_an in-
172

crease with I.I, in agreement with the predicted variation. The fact

that defocusing was negligible in the experiment was confirmed by the fe—

sult that fTw3) is symmetric with respect to Il

ahd Iz,'since qtherwise
the differencé in the self-defocusing strength of the two pump beams
would introduce an asymmetry in the results. The parameter 82 can be es-
timated theoretically from Eq. (48) using Tl = 1.1 x 10-”7 sec, y = 4.7 x

lOlO/sec (taken as the sum of the laser linewidths), and

2 .
o _'(‘*‘0)“ s 22 (1 Y 49)
={—) 2. 8
LT, \he/ 4 7dp 7ps /3 day 3wy
where lzdp‘ = <4d|z|3p> and |zps| = <3p|z|3s> taken from Ref. 24 are .864
and 2.51 respectively, Awl =+ 41.2 cm—1 and Awi = + 58.4 cm_l. We find
2 _ -25 . ,
Btheo. = (5.42 x 10 )IlI2 esu. Since there are large errors in absolute

intensities used in Eq. (49) , the agreement with the experimentally de-

duced value of (7.6 x 10_25 Illz)esu should bé considered satisfactory.
C. 1Induced Refractive Index Changes and Self-Defocusing
High pump intensities can induce refractive index changes in an atom-
ic vapor through saturation of the dispersion,33 two-photon resonance,
and induced population redistribution. For w “’w3p, saturation of the

3s - 3p transition gives, to the lowest order, an induced refractive in~-

\
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Sn(w) = - 8ﬂNh(———ﬁ—£—) Ef-[ 3+ 3]|E(w)[ (50)

, » : 2J19 Aw 9 Aw'
where.Aw = - w, Aw' = w - w, and T, and T, are longitudinal and
transverse relaxation times, respectively. When Wy + W, *=m4d, the two-

photon resonant dispersion also leads to an induced refractive index

1 11 1 2

x 2 + 18 Aw,Aw

By 118 4y 1291 18 aw

ea. \4
o) - o)_zz .3,
Gn (wl) ZﬂNh( h szzpd A :
S . : 1 1

, v (51)
and a similar expression with lE(w2)|2 replaced by IE(ml)l2 for 6n'(w2).

We have neglected here higher order contribution to én. For values typi-

cal of our experiment, N = 1016/cm3, Awl = 10 cm_l, I(wl) = I(wz)‘=
5 2 ~ N -1 .

10" W/cm™, and |szi = |(w4d W "W, - ir)| = .25 cm ~, we obtain
Gn(wl) =~ 1.13 x 10—5, |6n'(ml)] = |6n'(w2)| = 2 x 10—6. It is seen

that én'(w) is negligible compared with dn(ml). At exact two-photon re-
sonance, 6n'(w) is purely imaginary, and corresponds to an absorption
length of 2.3 cm.

The field induced refractive indéx can effect the generation of sum-

36,37 and by destroying the

frequency by self-defocusing of the pump beams
phase matching. Consider self-defocusing first. In the paraxial approxi-

. 38 , s ' . '
mation™ the beam radius ¢ changes as the beam propagates according to

02(2) | 2,.2

= z“/R + 2z/R+1
02(0) eff | .
(52)
R2 =rZ24+r2Z+ R;i

eff _d

s L
v+ 2 |E(m2) ‘

27
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- where 2z is the ‘distance travelled through the mediﬁm, R is the radius of
.curvature of the wavefront at z = 0 (R < 0 for a fpcused beam), Rd ;
2k02(0) is the diffraction length, R§L = - ngoz(O)/46n0 is the non-linear
diffraction 1engthf with 5n0 and n, the induced refractive index on the

beam axis at z = 0, and the background index respectively. Then, the ra-

tio of the two beam radii with and without self-defocusing is

%(Q - [1 + c(z)|6a°]17
o (z)

(53)
¢z = (n(2)02(0)/4)(z_2 +2R2) T+ R;z + R7?.

Self-defocusing of the beams may affect the sum~-frequency power output.

As seen from Eq. (34), we have

out

P  (w) =F 252/(01/02 + 02/01) (54)

where 01/02 is thg ratio of the two pump beam radii in the intersection
régiod. In our casé, only self-defocusing of the Wy beam was appreciable.
To estimate its importance we found from measurements that in our experi-
" mental case, C(z) =2 x lO5 in the beam intersection region. Then, with
6;0_= - 10_5 the output will be reduced by 257%. '?or strong self-defocus-
iﬁg Qith ol(z) >> og(z), 02(2) in the beam intersection region, fhe out-
put power A(w) becomes proportional to‘f’(t.uz)j’(wl)l/2 rather than f(wz)f(wl),
as can be seen_frbm Eqs. (53) and (54). ‘
Possibly a more devastating effect of 6n is the breaking of phase

matching. Let us assume that for phase matching with én = 0, the angles

the pump beams make with z are 0 and 6

1p The induced 8n, = 6n(wi)

2p°
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change the k vectors so that Ak ¥ 0, and the output power of Eq. (33) be-

comes .
- [(én, -8n, cos 0, duw, + (Gh - Sn cos 8, Jw ]2 :
} 3 1 1p771 3 2 2p’ 2
Flw,;) = exp — . (55)
3 (072 sin2 0, + 0-2 ‘n2 8 )c2 '
1 1p 2 St 2p
Since in our .case an “'6n3 =~ 0, using k131n elp = RZS}n 62p we find
‘v o - 6ni
57 ) o« (
J(wB) P2 tan2 0 (0—2 k—2 + 0_2 k_z) o0
1 1p71 1 "2 2
If ny =1, wy *’wz and ol ~ Oos the denominator in the exponential is
(2 eip kIz 0;2). For our experiment this is about (1.8 x 10_5)2. Thus,

a vélue én = 10-5_will reduce the output power by 27%. At larger 6n,
because the factor in Eq. (55) is a Gaussian, the induced phase mismatch
cuts off the o;tput power much moré sharply than self-defocusing.

We now want to obtain éome estimate of Sn(wl) and its effect on sum-
frequency geperation under our experimehtal conditioﬁs. In order to‘de—
duce dn(wl), we méasured the self-defocusing of the beam at w; = Q3P.
The experimental arrangement is shown in Fig. 10. Let eB and 60 be
the full divergence aﬁgles of the beam at wy with and without self-de-
focusing respectively. Then we have (eB/BO)2 inversely proportional to

the ratio of powers transmitted through the pinhole (diameter = 0.5 mm)

with and without self-defocusing. = From Eq. (52) we find

D
i

2 2
ho (0)/Reff

(57)

]
~
<D
~

|

[\
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-, 0,2 2 ;=2 ~ : '
where (6) = 4o (OO(R "+ R 2). We can then obtain Gno from the mea-

d
sured 60 andneB. 'Fof oﬁr focused 1aéer beam, we had (n060/4)2_= 2.25 x
1076 | |
The fesulfs of dur”self—défocusing measurement are shown invFig.vll.
The.curve of Fig. (11a) shows the measured values of [(GB/GO)2 - 17,
which acéording-to Eq. (57):is proportional to Gno(wl), aé-a function of
Ami' ' The defocusing increases sharply-for'small deﬁunings. The solid

curve was calculated, aside from a proportional factor, from Eq. (50),
wifh |E(w1)|2 = IEO(wl)|2 exp(- al), where E, is the field.in.the Beam
intersect;on region.in the ébsence of absorption, o is the absorption
coefficieﬁt, and % is the distance from the vapor boundary to the Eeam
intersection region. The magnitude of Gno(ml) deduced from the experi-

mental result. of (GB/GO)2 at Aw, = 14.9 cmnl for example is 6n = 4.5 x

1
10—5.‘ This is in rough agreement with én = 1.3 x 10-5 calculated from
Eq. (50).

The curves of Fig. (11b) show the results of simultaneous measure-
meﬁts'of self-defocusing and sum-frequency power output. As the Wy
beam begins to self-defocus, the output starts to fall. To assess the
relative importance of self—defocusing, induced phase mismatch,.and two?
photon resonant saturation,.we consider the case with Awl = 41,2 cm—l,
I(wl) =-4.6 X»lO5 W/cmz, and I(mz) = 5.5 x 104 W/cmz. The experimental
measurement of.self—defocusing gives Gh(wl) =1.5 x 10f5. In this case,
the effects of self—defocusing, induced phase mismatch, and saturation
oﬁ ka) are ¢omparable. Using Eqs. (53), (54), and (56), and Eq. (48),
we estimate the reductions of #(w) due to the three méchanisms are 0.8,

0.5, and 0.5 respectively. The total reduction of @(w) is roughly in

agreement with that observed. For larger values of 8n, the effect of
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ihduged‘phase mismatch‘begins to dominate. While self-defocusing and sa-
-turétién wouldba; worst éause #(w) to decrease slowly with &le), the in;
duced phase—mismétch could cause /”(w) to decrease sharply Qith increase
éfif(ml).‘ This was actuaily observed in our experiment. When the induced
phase‘mismatch is impdrtant, the phase-matching curve is appreéiably
broadeﬁed, as was aiso oﬁserved. .We notice that in order to avoid the
detriméntal effects on #(w), we must have 6n S 10_5. This a fairly strin-
gent'requirement. It limits the laser intensity I(wl) to “7106 W/ém2 even
fovawl = 40 cm._l at a pressure of 2 torr. Induced.refractive index
chénge is therefore the strongest limiting factor for sum-frequency gener-

ation in our experiment.

D. Multiphoton Ionization

Multiphoton ionization also plays an important limiting role in near-
resonant nonlinear processes. Miles and Harrisz4 suggest that it may be
the dominant process limiting allowable ihcident power, and the recent re-
port39 of nearly complete photoionization of a sodium vapor by a single
dye laser pulse emphasizes its importance. Teague and Lambropolous40 have
recently calculated three-photon ionization cross sectibns for sodium un-
der_near—resonant'conditions. For a laser frequency 11 cm“l below the

‘ - . . . (3) ~-75
3s » 3p, transition, their calculated cross section is ¢ = 2.38 x 10
- 2 . . .
6 2 ' . . 2 24 2

em . sec”. TFor our laser intensity I(wl)(l MW/cm™ ~ 3 x 107 /cm® sec) this
gives an ionization rate 6.2 x 10_2/sec, or for a laser pulsewidth of
500 ns, an ionization probability 3.1 x 10—8/atom. In the absence of an
applied electric field and avalanche breakdown, this ionization level-

would not have much effect. However, the ionization cross section in-

creases dramatically when a second laser beam is present with wy + w, =

31
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=+ 11 cm—l, Teague and Lam-

3 _ 415 x ,10"6_9 em®

. . ; - l
Wy qe ForAml + Wy T Wug T 0.5 gm , and Awl

bropoulos estimated an ionization cross section ¢

secz. With I(wl) = I(wz) =1 MW/cmz, the correéponding ionization rate

is 0(3)1112(11 + IZ) = 2.16 x 105/sec, giving a fractional ionization of

~ 10%. 1In our experiments, we have not measured the ionization rate di-
rectly. However, from current induced between two electrodes in the cell,
it seems quite certain that fractional ionizations above one per cent

were present at the highest intensity levels used (I, ~ I “‘.SIMW/cmZ)

1 2

with w, + w, =

1 9 w4d and Aw

-1
1 —A10 cm . ‘
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V. MEASUREMENT OF A QUADRUPOLE TRANSITION MOMENT BY INTERFERENCE OF QUAD-

RUPOLE AND DC-FIELD-INDUCED SUM-FREQUENCY GENERATION

A. TIntroduction

In recent years, there have been a number of calculations of atomic

- quadrupole transition moments.zs’z‘l’_-'43

The corresponding'experiméntal
work is however extremely rare. Bogaard and Orr42 have proposed measur-

ing the quadrupole moments by observing the field-induced birefringence

*

of an atomic vapor in a strong electric field gradient, but concluded the

efféétlis.much too small‘to allow a decent signalfto—noisé ratio. Lambro-
poulous et al.44 have reported the obsefvation of a multiphofoh ionizge
tion process involving a quadrupole trapsition. By comparing the ioniza-
tion rate of tﬂe (3s » 3p » 4f > continuum) process with that of the

(3s > 3p > 4d » contiﬁuum) process, they were able to deduce the 3p.+ 4f
quadrupole moment. The accuracy, however,‘depeﬁds criticaily on the di-
pole matrix eiements of 3p ; 4d; 4d.+ continuum, andléf > continuum. We
have found that it is possible to use a nonlinear optical technique to
measure quadrupole transition moments relative to the known dipole matrix
elements. The technique is based on the interference between quadrupole45
and dc-field—induced46 sum-frequency generation. It gives not only the
magnitude but also the sign of thé quadrupole matrix elements and has an
inherently high accuracy. A similar method based on the interference be-
tween'magnetic—dipole'and dc-field-induced dipole transitions in single-
photon absorption has been used to measure the magnetic-dipole matrix ele-
ments in étomic vap_ors.47 As a pfeliminary exaﬁple, we have measuréd

3s + 4d quadrupole moment of sodium.
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B..'Theory
S > : o> A L
Lem.Ei at Wy and E2 at w, be the incoming pump fields. The nonlin-
. 3NL g e -
ear polarization P responsible for the sum-frequency generation at Wy =

wy + w, near q quadrupole resonance is given by45

NL > e e | 3 ] > "
= - . + . .
B (w3) iky - X, X Ey| : EE, (58)
=2 . ) «(2) . v
where EO is. the applied dc field, XQ is the quadrupole second-order non-
 linear susceptibility, and Y(B) is the third-order nonlinear susceptibil-

ity. Since the sum-frequency signal 'is proportional to [?NL(N3)|2, vari-

ation of the sum~frequency signal resulting from variation of E_ shpuld

éZ)/x(3)

pole matrix element can be deduced in terms of dipole matrix elements.

0

yield a value for the ratio y , from which the particular quadru~-

More specifically, consider the case of sodium vapor with wy close

resonant with @, .. Insertion of the microscopic ex-

4d
and Q(B) in Eq. (58) leads to

to w3p and wy + w,
pressions for ;(2)

Q
o N
B (0. = Ne [— ik, - M)+ l x <4d|F[3p><3p|F|3s> : EjE
3 h2 3 Q 0 (wl - w3p) (u)3 - m4d + 1ir)
where ﬁQ = <3s|y T ?|4d> and
o= e :z: = <3s|r|np><np|r|4d> + <np|r|4d><3s|;|np> C (59)
D h(u) - W ) hy
np 3 np np

If we use the noncollinear geometry for sum-frequency generation shown in

Fig. 12 with Kl and KZ in the x - 2 plane, k along z, EO and El along ¥,

3

and §2 = (x cos 62 + z sin 62)E2h +y E2y’ then from symmetry arguments,

we can write

34
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Px (w3) f (MD)Xy Fyx EoE B, cos 6,
| (60)
pNL'(u,)=[-ik<ﬁ) F ' sin 6.+ (M) F E.(E. JE )]EE
y 3 3Molys Ty 2 ¥ Moy By Eo(Byg/Eg ) ErEyy
where
3.
- <4d|y)3p><3p|x|3s>
yx hZ (ml - w3p)(w3 = Wy + ir)
= Fyz = (J§72)Fyy = (V3/2)F (61)

M), = (MD)yy_= (2//§')(MD)Xy , () = (2//§)§Mq)yz,

The sum-frequency field f3(m3) is now directly proportional to [§ PEL(NB)

~ oNL C s
+vy Py (w34 . Thus, if EZ is circularly polarized so that E2y/E2h =+ i,
then the ; component of the output Es(m3) will vanish when

E, =% (3/4)k3(MQ)zz sin 62/(MD)ZZ. (62)

If Ez is linearly polarized in the % - 2 plane, then the output §3 be-
comes circularly polarized when

Ey =+ k3(M-Q)Zz‘ tan ez/(MD)ZZ. - (63)

In either case, from the measured value of EO, we can deduce the ratio

(MQ)zé/(MD)zz including the sign.



C. Experiment

1. .Expérimental Set-Up

“As an application of.the'technique described above, we have measured
the quadrupoleAtranéition moment <3s|%zz|4d> of sodium which enters the
QSFG_experimént described earlier.

In order to apply a transverse eléétric field, a pair ofvstaiﬁless
steel_electrodes were inserted into the heat pipe. The electrodes thém—
selves were flat.plates‘“‘l.S cm x 3.8 cm x 0.3 cm, separated by 0.095 +
.005 cﬁ, with all edges and corners rounded. Each was supported by two

Alumina rods which seated in round grooves along the long edges of the

plate; To avoid condensation of sodium on the plates and eventual short-

ing, two-hole borea Aluﬁina rods were used, and nichrome wire was thread-
ed through thé rods, allowing them to be heated above the wail tempera-
ture.of the heat pipe.

The dc field was applied in a 10 usec square pulse, s&néhron—

ized to the 0.5 psec dye laser pulses at wy = 16900 cmnl.and Wy =

l7649‘cm_l. We operated the heat pipe at a vapor pressure of 1 torr.

When w, was tuned .~ .10 c:m-.1 below w

1 andvfkwl) ~ 100 W, even with no

3p,

2

input at w, an ionization current of approximately 1 Amp peak current was

2

measured with ~ 50 V applied across the plates. The current rose sharply,
vsynghronous with the laser pulse, and decayed more slowly, with an appar-
ent decay time of severélAmicroseconds. In order to avoid this heavy

ionization of Na by resonant three .photon ionization processes, we limit-

ed the peak laser power at w

1

to ~ 10 watts and that at W,y to ~ 100 watts

and tuned m‘bquite far (56 cm_l) from w

1 At these power levels, ioni-

3p,°

2

zation of Na was less than 1% as judged from the induced current between

the two electrodes. However, with the angle between ﬁl and ﬁz adjuéted

36
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‘to phase matching for sum-frequency generation (61 E562 = 13 mrad), the

output signal at E

0 = O still had a peak power of ~ 1 uW and could easily

be detected.
2. Resulﬁsi

: > ' . : aAl :
Our results with E_ linearly polarized in the x - y plane are shown

2
.‘-.‘. . ; A I i

in Fig. 13-as Ix(w3)/1y(w3) versus EO’ where Ix(w3)‘and y(w3) are the
sum-frequency output intensities polarized along % and § respectively.

Following Eq. (60), we should have

2| (64)

Ii(wj)/ly(w3) = I(MD)zz EO/k3(MQ?ZZ_tan 8

0

- put should be circularly polarized. We found experimentally that this

which becomes unit&”when E_  satisfies Eq. (63). When IX/Iy = 1, the out-
was indeed the casé_since the output transmitted through a linear uv po-
~larizer was then independent of analyzer rotation angle to within 107%.
In the absence of a4 uv circular polarizer, we did not analyze the handed-
ness of the circular polarization. Using Eq. (64) to fit the data points
4

* * 1 = +

in Fig. 13, we obtained I(MQ)zz/(MD)zzl (4.4 = 0.4) x 10 statvolts.
The uncertainty was mainly due to laser power fluctuations.

We also used a Polaroid circular polarizing sheet to left circularly
polarlze gZ’ so that E2y/E2h ~ + i, and measured Iy(w3) as a function of
EO. The results are shown in Fig. 14. According to Eq. (60), we should
‘have
l2

Iy(w'a) « |(3/4)k3(MQ)zz sin 6,/(M)) - E, (65)

As EO increases to positive values from O, I?(m3) should first decrease

37
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if (MQ)ZZ/(MD)ZZ‘is positive. This was the case we found experimentally.

v

Since the circular polarizer we used was not perfect, we did not' have

o @s predicted by Eq.

of Eq. (62) corresponds to the observed minimum

Iy(m3) go exactly to zero at a certain value of E
(65), but if we assume E0
of Iy(w3), then we could deduce from the experimental data (MQ)ZZ/(MD)zz _
{ (4.45”i 0;8) x 10_4 statvolt, which is very close fhe value derived ear-
lier in the measurement with linear polarizatioms.

Wé can now find the quadrupole transition moment (MIQ)Zz = <3s|% zz!4d>
of sodium if (MD)ZZ is known. The latter can actually be calculated from.
the tabulated transition frequencies and.dipole_matrix elements for so-
dium;z4 According to Ref. 24,lall dipole matrix elements between 3s and
np and between np and 4d with n =3, 4, 5, 6 are negative except <5p|z|4d>
which is positive. Using these matrix eleménts, we obtained from Eq. (59)
(MD)zz =+ 5,1 x 103 aé/statvolt aﬁd‘hence (MQ)zz =+ 2.2 ag, where ao-is
the Bohr radius. This is about 50% larger than the value48 | M )zz|:=
1.36 a.u. calculated by Tull et al.z-5 Aside from possible large uncer-

tainty in the calculation, we do not know other causes for the discre-

pancy,

D. Discussion

The technique described here éan'of course be used to measure other
's > d quadrupole transition moments. It can also be used to measure
P * P quadrupole moments by observing interference between.s >p>p-~>s
quadrupole sum—.(or difference-) frequency generatidn and s +p »>d > p >
sors»>p>s >p+>s de-field-induced sum- (or difference-) frequency
generation. |

The dc-field-induced sum-frequency generation is of some interest by
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itself. Unlike the quadrupole case, the nonlinear susceptibility X(3)
‘gives honvénishing‘SFG for tﬁe coiiinear beam.geometry. As a result, dc-
field;induéed sum-frequeﬁcy generation with collinear'phase matchiﬁg is
possible. The procesé is in fact mbre effiéient fhan the . quadrupole pfo-
cess at a dc field EO_é 500 v/cm.. However, fﬁe efficiency of resénant
-obtical mixing in métal vapor islélwayé limited at high laser intensities
by sathration; muitiphoton ioniéatién and sélf—defdcusing. in-ordef to
bimprove the effiqiency, thé pﬁmp béams must be‘expanded; This réquires
greater electrode platevseparation and higher véltagevaéross thebplates
in the dc—field—induced case. Consequently, the problem of avalanche
breakdown 1n1t1ated by mﬁltlphoton 1onlzat10n of étoms in the dc field
becomes much more severe and may prevent the use of the dc-field—lnduced
‘process for very eff1c1ent sum or dlfference frequency géﬁeratloﬁ. The

- altérnative of applying a transvérée magnetic f;eld as in the experiments
of Fiusbefg et al.17 avaids fhis problemrénd méy givejeffi;iént collinear
three wafe-mixing if‘pﬁaée matching can be achieéea at reasonably high

"densities.

E. Conclusioﬁ

Our expefimént'confirmé the possibility of using this nonlinear opti-
cal techniqué for.measuring both the magnitude énd the sign of atomic
quadrﬁpole transition moments relative to the dipole matrix elements.
The technique is iﬂherently very accurété. Iﬁ the present work,.it is
limited by the pulsed‘laser‘pOWér fluctuatibns. However,_since the sum-
frequency signal is far abdvevnoiée,“it'is possible that‘stabie_CW dye
lasers can be.used for‘suéh measurements. The acchracyvof thé meaéure—

ments can then be greatly improved.
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VI. QUADRUPOLE PUMPED PROCESSES

We have so far considered the sum-frequency generation process in

which mixing of two pump beams at Wy and w, induces a quadrupole polari-

zation at y = wy + Wy As seen in the derivation of the generalized sus-
ceptibility of Eq. (9), we can also have an electric dipole polarization
induced by mixing of two pump fields, one of which is coupled to a quad-

‘rupole transition. We can write, for example,

(@) N
B =% T =g *ay) o GEDE w)E, ) (66)

where El is coupled to a quadrupole transition. If Wy and w, are both near

quadrupole transitions, a second term with W) and w, permuted should be

added to the sides of Eq. (66) and Eq. (68) below. For difference-frequen-

*
cy generation, we simply replace Wy by —w, and E . At frequencies

. 2 2
| RCR
sufficiently far away from resonance so that damping is negligible, ¥

by E

: <>
for the difference frequency w = w; - W, and X(Q) for the sum frequency

: _ 0
w = Wy + Wy discussed earlier are related through the permutation symmetry5

(Q,) |
1 (wy = & = wl)* = + mz)- (67)

(Q) -
XaBy6 8 (w

XBY o s |

RCH

The microscopic expression for y can therefore be obtained directly

Q Q)

Lz d
from that of ¥ . At resonance, the microscopic expressions of the x

(Q)

and ; should be modified to include the damping coefficients properly

“(Q).

in the frequency denominators as discussed earlier in Sec. IIA for ¥

Using symmetry arguments, we can also write Eq. (66) in the form
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' . (Ql) >—> >
P i T, s e Y e)E K - B K@ - L (68)

“As an example, we consider the possible case of quadrupole-pumped
differenceefreQUency generation in Cs vapor. We assume two pﬁmp fields

at Wy and w, which are respectively at resonance_with the 4s - 6d quadru-

pole transition with w = 22631.8 cm—lvand near resonance with the 4s -

6d
. 5/2 -1 , (Ql)
7 = 21946.7 cm ~. The dominant term of X_1.2.-1
p3/2 . ? ?

(w = wy - mz) for difference frequency generation at w =~ 685 cm“l is

7p transition with w

: o, +6,7,6 : »
(Ql)' - Ne3 Isdgs 9. 1 (69)
Xe1,2,-1 7 2715 \I5 7 Qugy, - 0y -wy) | |
- 5/2 P3/2
To estimate IZ&;;6, we can use the tabulated radial integrals for Cs, and

the conservative approximation <6S"r2”6d>CS = <3s”r2"3d>Na, the quadrupole

. radial matrix element of Na from Ref. 25. For N = 1016, w, . -w, =
. : ! - 6d 1
-1 ' -1 Q) /2 5
.25 em 7, and w._ ~-w, =2 cm ~, we obtain ¥ = 2.1 x 10 esu.
. : --w7p3/2 "2 S -1,2,-1
This should yield an infrared output power J;r = ﬂlfé/l.S X 109 W at ~

685 Cm_l (14.6 ym). For two 40 KW input beams the output power should be

about .1 W.
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VII. SUMMARY AND CONCLUSIONS

We have demonstrated that second-order sum—frequeﬁcy generation is
oBservable in isotropic media. The requirement that the medium lack in-
‘version symmetry.for second order nonlinear susceptibilitiés is replaced
by é'requirement that a tensor product of the input fielas lack two-fold
symmetry about the phase matching direction. This requires a noncollinear
geometry.

| The sum-frequency generation is described by a quadrupole suscepti-
bility which gives the quadrupole moment density induced by two fields.
The-spheriéal symmetry of the atom allows us to define a scalar suscepti-
bility, and derive the geometric structuré of the atomic quadrupoles di-
rectlyvfrom the input field polarization vectofs.

| Since they are lower order in perturbation theory;vdipole forbidden
susceptibilities éan have effective magnitudes comparable to third or
higher order dipole allowed susceptibilities. For example, at resonance
the sodiﬁm quadrupole susceptibility has magnitude lO—14 esu, or when mul-
tiplied by k, an effective dipole susceptibility of lO—9 esﬁ, which is as

(2)

1arge'as X in quartz. However, the noncollinear geometry gives a radi-
ating trangverse component of the effective dipole fifty times smaller.
Our results emphasize the fact that laser sources make it possible to ob-
éerve and ekpldit'weak transitions, which until recéntly, could be safely
neglected.

Application of a transverse magnetic field alters the relative
strengths of interfering resonant contributions to the susceptibility,

SO that_collinear QSFG becomes possible. Although the B-field induced

susceptibility is reduced by the ratio of the Zeeman splitting to the
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Dopplef width, this is compénsaﬁed by the nearly transverse effective di-
‘pbie ﬁolarigation,.sq'the B—fieid induced and non—Bffield'indﬁced signals
may be comparable for a field of ~ 10 Gauss.

Our experiments in Nayvapor on QSFG showed the very sharp two-photon
resonance enhancement and phase matching characteristics expected from
theory, andvverified the dependence of the output power on several other
parémeters. Deviations from the simple theory at higher intensities and
deﬁsities, or small detunings from the intermédiate state can bé satis-—
factorily éccéunted for By fhe effects ;f 1) linear absorptioh associated
with the D-line resonances (which also give the dispersioﬁ necessary for
noncolliﬁear phase matching); 2) saturation of the two-photon 3s - 4d
transition; and 3) loss of phase matching due to induced index of refrac-
tion changes in the vapor. By expanding the input beams the las; two ef-
fects may be circumvented, at the price of making the phase matching more
critical, and requiring very low divergence input beams.

" We have also shown that by applying a D.C. electric field to ;he va-
‘por, the D.C. induced third-order sum frequency light interferes with the
QSFG, allowing the quadrupole transition moment to be measured relative
to the dipole matrix elements of the atom. In this way we have measured
the 3s > 4d quadrupolermoment of Na. This technique should allow accur-
ate determination of bqth electric quadrupole and magnetic-dipole transi-
tion moments.

Finally we have describedvthe.extension of dipole forbidden suscep-
tibilities to the case of difference frequency generation in Cesium, with
direct pumping of a quadrupole transition resulting in a dipble allowed
output radiation as a possible source of 12-14 yu radiation.'

This work is supported by the U.S. Energy Research. and Development
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APPENDIX.A: EFFECT OF DOPPLER BROADENING AND LASER LINEWIDTH ON TWO-
PHOTON RESONANT QSFG
N ]

If we assume the atoms of the vapor have velocities distributed ac-
cording to the Maxwell distribution V(;), which we take to be normalized,
: e e , nn' nn' | ,
the dispersion functions Ajj' and Bjj' in Eq. (21) must be replaced by a
sum of contributions from different velocity groups. For atoms with ve-
locity 3, the laser frequencies are shifted in first order to (wl - Kl .

3) and (wz - ﬁz . 3). The dispersion functions become

- -

nn' "’ S 1 : :
A5 =/"(")d v r—— T
D, (w-%k - v)Dn,p (w, -k, * v)

nd .y 1 1
]
1 ’ v
. + . . > - > o (Al)
D (=o' + k- * v)D , (v, +k, - v)
d np,, 1 1
. . J"
' - e | .
8", = [ v(nav . L
33 : D (-w, + k., + VD (w, =k, = ¥
“np, 2 2 n'pj, 1 1
: ) . > - > . _
where we have set Wy + w, = and kl + k2 = k. In this appendix we con-

Sider.thg case‘where w = w4’ while all othgr terms are far enpugh off
resonancé-to be unaffécted by qupier broadening or finite laser liné—'
width. ﬁe concentrate oﬂ the fi?s;uterm of (Al) and suppress the prin—-
cipgl quantuﬁ numbers, Wiﬁh the ;ollision broadened width Yod . Z vy in-

J
serted, we have

gy 3>

’ . v(wd
EE =/ ' A > trld = ’ ‘ > > ° (A2)
1] (w ~—w+k v -iy)(e - w, +k, - v)
d. : P: 1 1 i
] N . ,
With the assumption k., v << @ - w, where w is the center frequency
- 1 : pj, L1 Ll

of laser 1, the second factor in the denominator can be set to its v = 0
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value and removed from the integral. Then, with k || z, the Vo and v

integrations are trivial and, with v,

= v, -
2
-(v7/2mk_T)
® B
A - _h dv e :
i3’ (w: = w) (w, =+ kv - iy)
TP 17 S dj .
J (A3)
Z(Aj + il)
= (w - w,)Q
. 1
PJv
' Nt . X . . 50
where h==/h/2nkBT, Z is the plasma dispersion function
- ® 2. |
Z(x + iy) = w dt exp(-t7)/(t - x - iy), - (a)

Q = wVZkBT/mc2 is the sum-frequency Doppler width, and Aj + il =

(w - mj + iy)/Q. If several wj values a?e near two photon resonance and/
or a magnetic field sblits.the state into Zeeman sublevels,:we mgst sum
over these levels according to Eq. (14), with weighting factors derived
from the products of Clebsch~Gordan and Raéah coefficients which arise

when the matrix elements are evaluated. We call these weighting factors
maf '
ji'm

and m = *+ % is the ground state z spin component. The m, values in the

, where j and j' are the total angular momenta in the d and p states,

d and p states are fixed by mj = m+8, m.j =m - M. The total disper-
P d
sion function in the near resonant case is then given by

Z(a, + il)
= E Wb im
AMaB(m’wZ’wl)v 3m ji'm (mp.' —.wl)Q

J C(A5)

(Q L
G AMaB(w,wz,wl).

XMaB

(Doppler)

The induced quadrupole moment will have time dependerice
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Q) = G[ﬁ—iwt%ae(.w,wz,wl)Ea(wz)EB(wl)dwzdwl' | -(A6') |

with the Fourier transform

QW) = ¢ .}f Ay (0 7010 B 0 — 0B (0 Ddwy . aD)

. ' _ 3 2 nn'a" ]
G is a constant (Ne~/2h %) (1 /15). For our case, the intermediate

state detuning, (wp - wl) >> YL’ the laser width. The factor (w -
. ,

. Ps

_ h| J

wl)vcan>therefore be set to the line center value:(wp - wL ) and can
.o . T ’ j' l

be removed from the integral, leaving

Quw) =6 AMaB(“”“’ - le’wL'l)‘/‘. Ey(w = w)Eg(w )dw, -

(A8)

2G AMaB(w’,w - ‘_”Ll’wtl)gaﬁ(w)

ﬁhéré ﬁas(w) is the Fourier transform of the product.(Ela(t) . EZB(t))'
If the lasers are assumed to have Lorentzian spectral distributions, we

have

Y + v ki
( L Lz)/ . (A9)

la"28 (w _ wL _ wL 2 + (YL + YL 2
. 1 2, 2} ¥

8,57 = 1
' 1
The total power radiated by the quadrupole distribution in a particular

direction will involve terms proportional to

/Q;(t)QM,Ft).dt zn/ Q;(w)QM,(w)dw

© (A10)
, | -

4&;'2(—21) o) [ d
c I_lIZ()‘hx 28 la'AZB') AMaBAM'a's'(‘”"‘*"“’Ll’_‘*’Ll-)FL(‘*’) 0

]
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YL

where F_(w) = ‘for the Lorentzian line case, with y_ =
L - 2 2 S L -

R C RN R S :
(y + v, ) and w. = w + 0
Ll L2 ‘ L Ll L2

larization vectors.

, and K and K are the electric field po-

1 2

The function Z(n)_has approximate forms for large and small |n| which

aid in approximating the integral in Eq. (Al0):

)
Inl << 1, Imn > 0: Z(n) = ivn e -2n 1 - %ﬂ, + %%' - ... (Alla)
h{»l:zm):-ll+4%+¥%.“ . -~ (Al1b)

If we consider a single unsplit level, the integral over frequency in

Eq. (Al0) is proportional to

Loy 12 :
lZ/IZ(A + ;I‘.) I F (w)dw - L (A12)
L :
Awl _Q _ :

. where Awl = (o - le)-
If we ignore Doppler broadening (Q + 0) Eq. (Allb) shows

2
Z + i 1. .
' (A : 1F)l ~ = 5 s (A13)
(md -w  +y
and the integral (A12) gives the dependence on wp
(y ¥ v,)
1.
- L 5 (A14)

2
(wd - wL) + (y + YL)
and if YL >> y the maximum power #(w) is reduced by one factor of (y/yL)

from its value for two monochromatic lasers. In the Doppler broadened

case, the limits of very narrow and very broad ‘laser lines give approxi-
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mate‘éxpreSsions for (Al2)

o — ; 2
Z(AL +.1F)

M. 1L S e :
Yy << [Q] sz 5 AL = (wL - wd)/Q . (Al5a)
g
F (0,) p~ )
v > [é] -15- Lszd |Z(a + ir) | =
Awl /.
_ | ~ (A15b)
F. (w,) _ 2
JELQ -h@ﬂl-ﬂhﬂh”]
Awl

whefe Q(x) is the standard error function. For the usual case where

 >>.y, these have the maximum values 1r/§22 and /EEY(YLQ) respectively.
Our experimental case correéponds most closely to (Al5b), since we

have y = 1.5 x 10—3 cm_l, Doppler width £ = .085 cm“l and laser béndwidth

YL > 25 cmil.

1f we'now consider the effect of fine structure and Zeeman split-

ting, Eq. (A5) must be used for A. This leads to the replacement of the

éxpreSSioh in (A12) by

M' a 'g!

. : % ‘
B o' Z (w/9 - Q, +1F)Z(w/Q - QJ o' +il')
. T J "m Janl ) J' "y FL(w)dm
JJ 'm Aw Aw

l' ll' 1 . l (Al6)

where Qﬁge [wd + z?ﬁe uBB/h]/Q is a normalized transition frequency
with z?gB = (gjmj —Ag%m) as a Zeeman splitting factor, and Awi = ij' -

w o, A" =W - w, . The dependence of the output power on B very

Ll 1 pjl" L]_ )

_ near resonance can be determined by using Eq.(Alla) for-the Z -functions,
since T is .small compared td 1. 1In this approximation Z is a Gaussian.
With the additional assumption y —>> @, FL(Q) ~ Ft(wa).can.bexremoved

from the integral, which can then be evaluated.: The result.is .
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'B' -1 T [ MaB M a'p!

e 2 O ) g el

v iji'm jj'm J it Bwjbuwyt AN 2 expl-( Tyt ) Y21,
J"J"' . (A17)

If the exponential is expanded in powers, we have to lowest order

2

L l . MOLB . M'Q'B'
exp ¥ (1 - = lfw, - w + (z, - Z,u_» Ju,B/h ) . (A18)
| ( ZQ2 [( dj _ dj") jm 3''m ‘ B
If we let Amevbe thé fine-structure splitting, (wd -0y ) is O_if j=
' k| i
j" and % Awfs for § # j". Then we have the magnetically induced sum-fre-

queﬁéy powers linear and quadratic in B, and independent of B.prOportion—

al to
A, w_ /R : wE/ZQZ : 1

respectivély,.where wB‘E uBB/h. Thé 4d fine-structure splitting for so-
dium is Bw__ = 0.035 e '. For a B field of 100 Gauss, wB»“ 4.7 x 107
cm_l and the ratios are 2.26 x 10--2 and 1.50 x 10—3. Since the magnetic-
ally induced quadrupole is rotated 90° with fespect to the B independent
quadrupole, the output powers will also be'proportional to cos2 ep and
sih2 Gp respectively.‘ Since ep is small, this compensates for the smal-
ler sﬁsceptibility for magne;ically induced QSFG. For ep ~ 40 mrad, the

two contributions to f(w) will be equal when B = 10 Gauss. The factors

W???m are given for both the s » d quadrupole and p - p' quadrupole cases

in Table I. They are normalized so that :E: W2 Jl -1 = 1. Table II
Mo _ i3im >
gives the Zeeman factors zjm (ngJ - gj,m) for calculation of the magne-

. ' .
tic effect. 1In the second term of Ajj' (Eq. 21) the Zeeman factors for

(-m) must be used in the "m" term in the average over ground state spin.
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TABLE I. SPIN-ORBIT SPLITTING FACTORS ! ii'm

a.) d » s quadrupole transition: 'j ='jd, j' = jp

ji': 5/2 3/2 ©3/2 3/2 3/2 1/2

Wi 1i-1 1/2 0 0
ij'm 1/10 - 1/15 Co3
10-1 _ . -1/5 1/30 - -1/3

Wijm T 1//2 -2/5 -1/10 0

W%T%O =1//2 - . -1/5 -2/15 -1/6

S -2/5 - 1/15 - -1/6
01-1 _ ) 3/10 -2/15 - 1/3

Wigtm = 1//6 3/10 1/5 - 0

000 _ o 3/10 1/30 1/6

Wigtm = V2/3 3/10 1/30 1/6
b.) P > p quadrupole transition: j = jp, ji' = j'p
_ . ji':s 3/2 3/2 3/2 1/2 1/2°3/2

w211 2 1/6 1/3 0
ji'm . 1/6 0 1/3
10-1 _ 0 -1/3 ~1/6
ij'm 1/v2 -1/3 .0 -1/6
1-10 _ - -1/3 -1/6 0

Wijm = 1/v2 0 -1/6 -1/3
01-1 _ ., = . ~1/6 1/3 1/3
ii'm 1//6 1/2 0 0
000 _ 7y . 1/6 - 1/6 1/6 ¢

Wijm = 2/3 1/6 - 1/6 1/6

% . .
’Top (bottom) value of pair is for m = + 1/2(-1/2). Values not given may

be derived using W¥?§ = W—gtgfs-
jjm J]l —m
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1/2

P3/2

“P1/2

TABLE II. ZEEMAN SPLITTING FACTORS z@iﬁ
ds/o d3/9 P3/y P1/2
6 4 4 6 4 2 2 4
SsM-gm | g M-gm 38-3m 3B-3m
A 2
3 M 3(M -m - B)
2 2
— 3(2M + m + B) 3 M

(m is the spin variable of the ground s state, and takes the

value irl/2.)
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APPENDIX B: SPHERICAL TENSORS

The following definitions follow those given by Tinkham51 in Group

Theory and Quantum Mechanics. The summation convention is assumed.

A

The sphericai.basis Qectors Gl; uo, and ﬁ—l defined:

e+ ie
4. =F| X2 7Y
+
*1 /7
(B1)
Yo T %
These have the scalar product .
i - a .= -1)%s ’ B | (B2)
a uB . \ a’-B. : .
An.arbitrary vector can be expanded:
- q A .
V=(1)"Vv u. (B3)
_ -9 9 .
oo ~ ->
V 1is defined by V. = u " * V so that
q -9 q
> > q
VW=V W (-1)". * B4)
-9 q (

1f we have a set of unit vectors that are rigidly fastened to the
thsical syétem ﬁe are discussing - an atdm for instance -'énd these‘ﬁec—,
tors are initially coincident with the ''lab" baéis>vectoré,vfhen if we
rotate the.object (with its unit vectors attached), the rotated system

basis can be expressed in the fixed lab basis:
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'If we use . the spheriCal_basiS-defined by (Bl), the matrix R is just the
standard quantum mechanical rotation matrix for a spin one'partiéle:

Ry, = DU (@s857) (56)

where (a,B,y) are the Euler angles of the rotation.
Q) _ —ig'e (1) -igy
Dy (asByy) = e dovy(B) e N - (7D

We are concerned now with higher order tensors. We can write an ex-
pression for an ordinary Cartesian tensor (for example a fourth rank ten-
sor) :

Xijke €1 ©5 %k G- (88)

R -
X =
Again the unit vectors initially coincide with the lab vectors, but ro-

tate with the physical system. We may now form a spherical basis tensor

4 u, 4 4 : B9

2 85 0 | (89)
{

where the G vectors are composed of the lab Cartesian basis according to

(B1), and use it to project out a spherical component of the tensor:

XoBys E'Xijkz(ei . ua)(ej . UB)(ek . uY)Qe2 . ud) (810)
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so the tensor is now represented

>

XaByd U_o Y-8 q-y -§° (Bll)
The quantity (éi "ﬁa) can be regarded as an element of a matrix which
transforms a vector from spherical to Cartesian components, and is expli-

~citly given by

v v -1 0 1
X +1 1 , -1 +
v i=T|v T=—=|-i 0 -i T =T. (B12)
y 0 J3 '
v, A 0 Y2 0

By a simple device we can define combinations of spherical components
of a tensor y which relate tensors of higher rank, and have very simple

form. Using the orthogonality of the Clebsch-Gordan coefficients:

25 3137 3y 3,9

J,M , m, m, M m

s _ (B13)
|
172 _ 1 '

we write the product of the tensor XaB and two vectors, for example,

1.2 a+ B 113 a+ Bfl 1 J\1 2
— = B
XOLBE—OLE—B( 1) A X(XB( )( 1) (0.' B! M)E—Q'E-B'. (B14)
T 113
Now we define Xy = XaB(a 8 M)
- : (B15)
1.2, J 1 1 3\ 1 .2
and » (E'E ) (a' g M)E—a'E—B"
R3d
Then the product of the tensor y with the two vectors is simply
1
CREE? = J(ElEz) J MEC n. (B16)

Following (B5) and (B6) the aB componént of the tensor corresponding to the
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B
rotated system is:

1

O 5
(Rx)‘mB Xys Day g3 * (B17)
If we consider the effect of the rotation on x;, we have
J _ (1 @) {113
(RX)M T AYS Day DBG o B M/ (B18)
But
(1) (1) Z (1 1 K)(l 1 K) K
D D = D B19
ory BS e \e B N'/\y 6§ N/ 'N'N | ( )
and
11J}/11KY\ _ :
(a B M)((x B N') = Ok Cmye (B20)
SC
J _ 11KR\(111J 11K\K
Ry = & (u 8 N') (a B M)Xys(y s N)DN'N
(B21)

_ 113\ 3 _ JJ
Xys\y 6§ N/'My ~ XN "mn°

But this is the usual transformation law for a spherical temsor of rank

J. Generalizing to a tensor with four indices, we can form

JJ' 11J\/11J '
X' T Xasycs(a B M)(Y 8 M’) (B22)
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with rotational transformation properties

' JJ' . J ' ' . )
= Xyt D . .. (B23)

JJ
(RX) MN' M'N'

If we have a spherlcally symmetrlc system, ﬁf = ;, independent of ro-
tation angle. We exp101t thlS fact by averaging both sides of (323) over

~all angles:

jro_ 33 d(cos 8) f _af _Y I :

Since the D functions have the orthogonality'condition

| f d cos B f "da / dy o __.YGJJ' St S '(szs)_
- J . 4 4 MN M'N' 27 +1 T
and
J' -2J' + M' + N'_*J
DM'N' (-1) -M'-N"' (B26)
we find
T ' ' vy 8., 8 v 8 ' .
33T I3T 497230 M 4N 00t MM ON, N (B27)
' JJ -
1) :
33 Z_XN—N( Mo, -2]" '
which means fof integer J
! J M
=y s s zx (-1 § $ (B29)

M T XM-m 033t OM,-M" JI' oM, -M'.
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‘For thé quédrupole susceptibility, J is necessarily 2, and a single num-
bef;'xQ; relétes the input fields to the induced quadrupole moment:
. M, 1.2.2 <M 1.2.2
0 = Xy DI EEDS = M D™ EE,
(B30)

XQ(ElEz)Z

The geometric structure of the quadrupole is given directly by the input
fields.
Finally, using the orthogonality relation (B13) for the Clebsch-

Gordan coefficients, (B22) can be inverted to give

DY) Xgni:(i 1 J)(l 1 J').l @

XaBys = g My 6 M
ml
For the quadfupole case where only J = 2 enters and M' = ;M:

) QZ_ M(llZ)(ll 2) |

Xagys ~ X & D ey 5 ()
_Q, ; o+ 5(1 12 )(1 12 ) :
=y (-1 . B33

xEDT g @)l ly s (ep)) (B3P

This shows, for example, that X] 1-1-1 = XQ,

As final topic, we note that rather than breaking the four indices‘of
‘a fourth rank tensor ipto pairs, as is convenient for the quadrupole “sus-
ceptibility, it may be more useful to treat three vectors as "inputs' and
consider tﬁe vector combinations of the three, and the associated suscep-
‘tibilities. This is the‘caée both for the usual third order processes

(3)

using x and also for second order dipole moments driven by a quadru-
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pole transition plus a dipole transition (§ - d + p >+ s for example).
The product of the tensor and the three vectors is successively decom-

posed into the form:

| B+ v+ 35§ _ T u J. J'
6('1) : A,B_ C= z Xau (3) (-1) "[A(BC) ]_u.(B.34)

P, =X _
* g Y J,J",u

aBy

The orthogonality of the Clebsch-Gordan coefficients has been used, as be-

. fore, and the definitions of the quantities in (B34) are:

J' J/3 g
= B
Yow D = Xagirls 1) (535)
J_ 113
XagM anYG(Y 8 M) (£36)

and similarly,

L2 LT 4
aeo”1? = 4 ey, (

Y
merly =5, o (L L L. 339)

For isotropic media,
Xy () - Dy S 339

so if 3=¥E L8 8, we have

o
]

Tlmeoll. (840)
J
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J,1
The vectors [A(§E) 1”7 are explicitly:

J=0: -1/ E - B
J=1: A x (B x 0)/2 4 ' (B41)
.

2: A5 4EE - O3 -3¢ - D2 -ER& - B)/2).

In a calculation of a susceptibility, J would be the & value for the
second intermediate state reached by two dipole transitions.

In the case of a quadrupole pumped process, B - ii C ~» El’ and only
> > > > ‘ ->
J = 2 is involved, since (Kl . El) = 0 and (Kl x El) -+ B, corresponding

6
to a magnetic dipole transition (Pershan).

1

A more general and more formal discussion of the use of spherical
tensors to describe dipole allowed susceptibilities of arbitrary order

has been given by Yuratich and Hanna.52
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APPENDIX C. NOTE ON THE EFFECTS OF SATURATION AND INDUCED REFRACTIVE IN-

DEX CHANGES ON THE MAXIMUM SUM FREQUENCY POWER

Suppose we have a.pdhrization ?(?) which has a dominant ﬁ vector k=

K.+ k Il .z, and frequency w = + w

1 2

al to

().)l 2°

_ nw .
z c

re k

ikr, | Ly N
L - ) / SR IO TEeS

. S v N
Letting the Fourier transform of P(?) be ﬁk(ﬁ)’ we see that

'eikr(—iw) 3

> > nw 3
Aiz(r) = re k(kx’ky’ C) (2'") .

The power distributiqh is

é_w:’_g4£_+*.+' nw, 6
- @ 7k Pk(kx’ky’(:) (2m) "
dk dk
or with dQ = - X2
k

c C2

k k

_owyh (2m)7c [ 3F 3
ﬁiAkz) = () -—————:/FP Pk(kx,ky,kz + Akz)dkxdky

where Ak (-
z c

packed that |k|2 ~ constant.

Integrating over Akz gives

. ’ 5 > > >
~/lP(Akz)dAkz = (%)A-EZE%—S‘/-ﬁ*(k) -3 @adk.

The radiated field is proportion-

(1)

(c2)

(c3)

- (C4)

kz) and it is assumed that the integrand is so sharply
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But Parseval's Theorem shows

| / B® - 3 Mk = [ @ - Bdat. (c6)
(2m)
So )
/f’(Akz)dAkz - @4 Ln) C/ I xS (c7)

The maximum output power is f(Akz = 0). Dividing this out and calling

the normalized phase matching curve &(Ak ) we finally obtain

[P(r)

]—g(Akz)dAkZ

(C8)

This formula is interesting because the local effect of saturation is iso-

lated in the numerator, while effects of a nonlocal nature (eg. breaking

~of phase matching by induced refractive index changes) are isolated in the
denominator, and exert their influence by altering the §hgﬁg of the phase
matching curve. The phase matching curve area can be measured experimen-
tally, and we observed broadening from ~ 2 mrad to as much as 14 mrad when

defocusing was present.
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FIGURE CAPTIONS

Radiation pattern for quadrupole 6d3§ with only Qyz =-sz #* 0.
Partial level diagram of the sodium atom. Quadrupole sum-fre-

3 = Wy, + w; is showm schematically.

Experimental set up. PD1, PD2, PD3 - monitor photodetectors,

Ll’ L, — 40 cm and 50 cm lenses; L, - lQ cm quarté lens; PR -

2 3

polétization rotator; F - Corning 7-54 filter and pyrex attenu-
ators; S - 1/4 m. spectrometer; PM - RCA 4837; G.I. - gated in-
tegrator; CR - chart recorder.

Sum-frequency output P(w3) as a function of w, showing the

2
., = 3 -1 - o
sharp resonance gt Wy + Wy = Wyg = 34548.8 ecm . P1 = 2W;
v'Pz = 25W; 6 = 47.9 mrad; N = 1.6 x 1016 cm—3.
Phase-matching curve P(w3) versus 6. P1-= 2W; P2 = 25W; Awl =
T e 216 -3
(w3pl/2 - Ql) =+ 25.6 cm " w + Wy = W43 N=1.6 x 100" cm ~.

The dashed curve is a theoretical curve calculated from Eq.

(33), with o, = 0, = 0.1 mm used to derive d.

Phase matching angle ep versus the sodium density N at w1_+
_ -1 : _ -1,

Wy = w4 and (a) Awl,— + 14.9 cm ~; (b) Awl =+ 40.8 em " :

: (c) Aw, = + 80.4 cm—l. The dots are the data points and the

1

curves are calculated from Eq. (35).

Normalized output powerlﬁ(wB)/waz) versus Q(wl) and f%m3)/f(w1)

versus fsz). p = 1.0 torr, Awl = 21.2 cm_l.

Phase-matched sum-frequency output P(m3) as a function of so-

dium density N at b, = + 40. 8 cm ! and + 80.4 cm L. The

= 2W, P, = 20W,

other parémeters fixed in the experiment are P 9

1

and wl + wz = w4d'
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Fig. 9

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

1 after heat pipe. PDl1 and PD2 are photodetectors. Pinhole

68

(a) Sum frequency power 5¥w3) and (b) resonance linewidth sz

as functions of the product of the input intensities IlIZ'

The solid curves are both derived from Eq. (48) for the effects

of two—phdton saturation with 82 = (4.6 x 10-25)1112 esu.

Experimental set-up for measuring divergehce angle GB of beam

diameter is 0.5 mm.
(a) Solid circles — measured increase of divergence of pump

= (

beam 1 after heat pipe as a function of detuning Aw w
1 3pl/2

wl). Curve is derived from Eq. (50) with overall normalization

adjusted for best fit to data points.
(b) Measured divergence of beam 1 (solid circles) and sum fre-

quency powerzﬁ(w3 = wy + mz) (open circles) as functions of the

pump intensity I The dashed curve is the prédiction of Eq.

1
(48) for the output power with two-photon saturation taken into
account. Additional reduction of power is attributed to in-

duced index of refraction change'and self-defocusing (see text).

Experimental geometry for sum-frequency generation. The dc

field ¥, and the laser field E, are both along §.

0 1

Ix(w3)/Iy(w3) as a function of the applied dc field EO for li-

near polarized input beams. Ix(w3) and Iy(w3) are Phase—matched
sum-frequency signals polarized along x and y respectively.

The solid curve is a theoretical curve obtained from Eq. (64) *
to fit the data points.

IX(mB)/IQ(w3) as a function of the applied dec field EO for E(wl)

linearly polarized along y and E(mz) left circularly polarized.
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