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Abstract

Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result 
in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species 
is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization 
of flying mosquitoes using a continuous-wave infrared optical remote sensing system. The system is setup in a controlled 
environment to mimic long-range lidars, mosquitoes are free flying at a distance of ~ 4 m from the collecting optics. The 
wing beat frequency is retrieved from the backscattered light from mosquitoes transiting through the laser beam. A total 
of 427 transit signals have been recorded from three mosquito species, males and females. Since the mosquito species and 
gender are known a priori, we investigate the use of wing beat frequency as the sole predictor variable for two Bayesian 
classifications: gender alone (two classes) and species/gender (six classes). The gender of each mosquito is retrieved with a 
96.5% accuracy while the species/gender of mosquitoes is retrieved with a 62.3% accuracy. Known to be an efficient mean 
to identify insect family, we discuss the limitations of using wing beat frequency alone to identify insect species.

1 Introduction

Mosquito-borne diseases are a major challenge for human 
health as they affect nearly 700 million people every year 
and result in over 1 million deaths [1–4]. Vector control 
strategies, such as environmental, chemical and biological 
controls, remain the most effective ways to tackle this issue 
for multiple reasons: (1) many diseases such as dengue fever, 
West Nile virus, or Zika virus still have no effective cure; (2) 
when vaccines or effective treatments exist, they may remain 
unavailable or unaffordable to large population groups; (3) 
even in developed countries where populations have access 
to high quality healthcare, the disease and/or treatments may 
still cause major nuisances and discomfort.

To be efficient, vector control strategies require accurate 
data on the fine-scale spatial distribution of each mosquito 
species. Over the past decade, advances in geographic 
information system technology have facilitated the devel-
opment of predictive spatial models for risk of exposure 
to key vectors [5–8]. However, as stressed by Eisen et al. 
[9], lack of reliable data on the spatial distribution of key 
vectors has become a major limitation in the development 
of spatial epidemiologic and eco-epidemiologic models. 
The National Health Security Strategy and Implementation 
Plan 2015–2018 [10] underlined that, with global warming, 
tropical and sub-tropical species can potentially reach new 
habitats and severely change the distribution of disease vec-
tors. Similarly, the World Health Organization in its Global 
Strategy for Dengue Prevention [11] states that “surveillance 
is a critical component of any dengue prevention and control 
program because it provides the information necessary for 
risk assessment and program guidance, including epidemic 
response and program evaluation”.

Current methods to monitor mosquito populations are 
very limited. They rely mostly on physical traps using light, 
pheromones, food, or  CO2 as bait [12, 13]. Traps allow for a 
very extensive study of the captured specimens with almost 
100% identification accuracy and have been successfully 
used in a great number of studies. However, they can be 
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tedious to set up (in trees, wetland, difficult topographies), 
require long laboratory analysis by qualified personnel 
where each insect has to be counted and identified [14, 15], 
and have many biases regarding species, age, and sex groups 
[16–18]. Furthermore, current traps provide a very poor esti-
mate of actual population size because the attractive range 
of the traps is generally unknown. Without an accurate esti-
mate of population density, it is difficult to determine action 
thresholds, evaluate insecticide performance, or calculate 
disease risk [19]. Another approach to monitor mosquitoes 
is based on hyperspectral imagery, from satellites such as 
Landsat or NOAA’s polar-orbiting satellites [20–25], or from 
aircrafts [26], where breeding sites or potential habitats are 
derived from measuring green vegetation or water normal-
ized index. This methodology offers valuable data on a much 
larger scale, but provides only indirect data; it cannot evalu-
ate the actual mosquito population, nor confirm the presence 
of specific mosquito species in a sensitive area. Interesting 
research using radars has been conducted to study insects 
and birds [27–30], however most insects are smaller than 
radio waves, and therefore the use of large wavelengths often 
limits the size of observable insects. Alternatively, labora-
tory studies using acoustic or optical instruments demon-
strated that the wing beat frequency can be used to identify 
insects [31, 32, 59, 61]. However, acoustic measurements 
are limited to very short range due to the low intensity of 
the acoustic signal. On the other hand, optical measurements 
are generally performed in a light transmission configura-
tion, where the insect is placed between a light source and 
a light detector. This configuration is well-suited for labora-
tory measurements, but limited for field measurements: the 
light source and detector need to be placed at both ends of 
the optical path, which makes the instrument stationary.

Thus, developing a reliable technique of remote sens-
ing capable of characterizing insects over large distance is 
called for. We argue that a viable alternative to the exist-
ing methods lies in optical remote sensing technologies 
such as lidars (light detection and ranging [33, 34]). This 
remote sensing methodology is widely used for studying 
atmospheric processes, such as aerosols concentration and 
formation [35–40], measurements of spatio-temporal dis-
tributions of trace gases such as, among others,  CO2 [41], 
 CH4 [42, 43],  O3 [44],  H2O [45, 46], and also of volatile 
organic compounds [47]. Recently, studies have made use 
of lidar to study entomology [48–56] where large insects 
(moths, dragonflies, honey bees) are observed and differ-
entiated using the wing beat frequency. While the actual 
genus and species remain unknown, these measurements 
provide valuable data on the population dynamics. These 
methodologies also offer a much higher time resolution, 
where insect’s activity can be monitored in real-time, ena-
bling behavioral studies during short-time events such 
as rain, dusk and dawn [56]. Fluorescent measurements 

[50] allows for a spatially and temporarily resolved meas-
urements, although insects need first to be captured and 
covered with fluorescent dust prior to being released. As 
insects transit through the laser beam, the orientation of the 
wings rapidly changes, producing amplitude modulations 
in the backscattered signal. Thus, the wing beat frequency 
can be retrieved by applying a Fourier transform on the 
recorded signal. The wing beat frequency is known to be 
an efficient and reliable mean to identify insect family, and 
to a lesser extent, the insect genus [57–59]. Wing beat fre-
quencies tend to vary significantly between insect families, 
from a few Hz (such as butterflies) to 1 kHz (such as mos-
quitoes or biting midges), with little difference between 
individuals from a same family. In the case of mosquitoes, 
the flight tone is characteristic of gender, where males pre-
sent a higher wing beat frequency than females [59, 60].

In this contribution, we present a laboratory study where 
an infrared optical remote sensing system is used to remotely 
characterize mosquitoes transiting through the laser beam. 
The optical system is based on a continuous-wave (CW) 
laser operating at 1320 nm wavelength with an average 
power of approximately 3.6 W and a co-axial parabolic mir-
ror to collect the backscattered light. In comparison with 
the aforementioned lidar publication [48–56], the present 
work focuses on laboratory measurements to collect data on 
insects prior to field measurements. As such, we expect the 
identification accuracy to be improved without the need to 
capture insects during field measurement campaigns.

Mosquitoes are flying freely in a Plexiglas tube at a range 
between 3 and 4.25 m from the laser source and collecting 
optics. The system is designed so that field measurements 
at a larger range could be achieved by simply increasing the 
size of the collecting optics, using a Newtonian telescope for 
example. Both genders of three mosquito species have been 
considered in this work: Aedes albopictus, Aedes aegypti, 
and an unknown species of the Culex genus. For the first 
time to our knowledge, backscattered signals from flying 
mosquitoes are measured, from which the wing beat fre-
quency is retrieved. This contribution focuses on assessing 
wing beat frequency as a predictor variable to differentiate 
and identify mosquito species and gender.

For mosquitoes, the wing beat frequency ranges from 
100 to 1000 Hz [48, 59–61]. The wing beat frequency is 
known to be an efficient and reliable means to differentiate 
insects [57–59]. In addition, male and female mosquitoes are 
known to have different wing beat frequencies [59, 60]. For 
example, from our experimental results on Ae. albopictus, 
males have an average wing beat frequency of 681 Hz while 
females have one of 456 Hz. Mosquitoes sometimes modu-
late their flight tone to communicate, for some species, male 
and female flight harmonics converge toward a common fre-
quency while mating [59, 62]. However, these events are 
rather rare making wing beat frequency a reliable mean to 
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differentiate male from female mosquitoes. In addition, the 
wing beat frequency is a function of the atmospheric condi-
tions, mainly the temperature [61]. While all measurements 
presented here have been achieved at a constant temperature 
(18 ± 1 °C), corrections could be applied in the case of a 
change in temperature using previous contributions [61].

From transit signals, each insect is characterized using a 
Naïve Bayes classifier [63, 64]. This classifier was chosen 
for its implementation simplicity and good performance with 
independent variables [65]. Two different scenarios were con-
sidered: first, a gender classification is presented where male 
and female of all considered species are discriminated using 
the sole wing beat frequency as a predictor variable. Then, a 
similar methodology using 6 classes is applied to identify the 
species and gender of the transiting insect. As it is a laboratory 
study, mosquitoes’ gender and species are known a priori in 
a controlled environment. Therefore, we evaluate the overall 
accuracy of both scenarios and discuss our results.

The paper is organized as follows. First the methodology to 
retrieve the optical signals and wing beat frequency is described 
together with the classification methodology used in this work. 
Then, experimental results are presented where one typical 
transit signal is shown and statistics over 427 transit signals 
are displayed. Finally, we discuss, based on our experimental 
results, the relevance of the wing beat frequency as a predictor 
variable for mosquito gender and species identification.

2  Methodology

2.1  Experimental method

In this section, the method to measure the optical signal 
and retrieve the wing beat frequency is explained. Figure 1 

presents the optical layout of the system. A CW infrared laser 
diode source emitting at 1320 nm wavelength and 3.6 W 
power is collimated so that the Gaussian beam reaches 2 cm 
FWHM. The laser source is a CW source as it allows to con-
tinuously monitor insects, thus avoiding dead times that would 
cause a pulsed laser. The 1320 nm wavelength of the laser has 
been adequately chosen to ensure a measurable backscatter-
ing power while remaining outside of the visual perception 
of the mosquitoes as different wavelength are known to influ-
ence the Culex Quinquefasciatus mosquito [66]. The electro-
retinogram of the female Aedes aegypti mosquito showed no 
response for wavelength above 700 nm [67]. However, a later 
study demonstrates an influence on flight pattern for lights in 
the near infrared for the Anopheles gambiae mosquitoes [68]. 
Nonetheless the same study also showed no significant light 
sensitivity for wavelength above 900 nm. The wavelength 
dependency for the absorbance of Anopheles gambiae and 
Anopheles arabiensis was measured in Mayagaya et al. [69]. 
This study allows for an educated guess on the range of wave-
length at which a non-negligible backscattering of the laser 
beam by the mosquitoes can be expected.

The beam is transmitted through a Plexiglas tube (1.25 m 
long, 12.5 cm diameter) located 3 m away from the output 
mirror. The beam enters the tube through a borosilicate glass 
tilted 5° downward at one end of the tube, and is stopped by 
an IR beam-stop at the other end. Mosquitoes are introduced 
in the tube through small apertures. A 7 cm diameter off-axis 
parabolic gold mirror focuses the light through the 9.8 mm 
aperture and on the 3.14  mm2 active area of an InGaAs 
amplified photodetector with a 67 kHz DC bandwidth to col-
lect the backscattered light from the mosquitoes. The laser 
beam and parabolic gold mirror are set to be coaxial. Signals 
are recorded using a 16 bit 250 MS/s 125 MHz bandwidth 
digitizer.

Fig. 1  Optical layout of the 
infrared optical sensor
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The Eq. 1 below presents the general expression for the 
backscattered intensity from an insect at a distance d.

where β is the backscattering coefficient of the mosquito 
expressed in  sr−1, describing the incident light backscattered 
by the insect. K is a constant taking into account the size 
of the off-axis parabolic mirror, quantum efficiency of the 
detector, and optical transmission or reflection coefficients of 
the transmitting and collecting optics. I

0
 is the initial inten-

sity of the laser beam while I
B
 is the light intensity received 

by the detector from either scattering on the borosilicate 
glass, backscattering from gas molecules or particles in the 
probed volume of air, or scattering from the beam stopper 
terminating the optical path. The optical transmission of the 
air is considered to be negligible over such distance. The 
contribution of I

B
 to the recorded signal I can be treated as 

constant, especially over such short period of time since the 
average transit time of a mosquito through the laser beam is 
127 ms. Therefore, this contribution can then be compen-
sated by subtracting the average value of the background 
to the raw data. The optical signal is proportional to the 
backscattered power by the mosquito PM within the field 
of view of the telescope. The backscattered power from the 
wings Pw and body Pb of the insect are additive since the 
optical power measured by a detector can, within reason-
able range of power, be considered additive. Therefore, PM 
is equal to the sum of the backscattered power within the 
field of view of the telescope from the wings and body, i.e., 
PM = Pb + Pw. Both Pb and Pw are proportional to the back-
scattering cross-section of the mosquito which is a function 
of the projected-area of the body and wings of the insect, 
respectively (area projected on the telescope plan), as well as 

(1)I =
K

d2
⋅ I0 ⋅ � + IB,

the body or wings scattering efficiency. The body projected-
area is rather constant during the insect transit. Thus, as the 
mosquito crosses the beam, the contribution of the body to 
the optical signal follows a Gaussian shape due to the Gauss-
ian spatial profile of the laser beam. The wing backscattered 
power Pw varies with the wing’s position, going from a max-
imum when the wing plan is normal to the laser optical axis 
(maximum projected-area), and a minimum when the wing 
plan is parallel to the laser optical axis (minimum projected-
area). Therefore, the body and wing contributions can easily 
be separated. Figure 2 displays a schematic representation of 
the backscattered power PM corresponding to an insect trans-
iting through a Gaussian laser beam. Local minimums of PM 
correspond to the time at which the wings have a negligible 
contribution to the backscattered light, i.e., Pw = 0, PM = Pb. 
Then, local minimums are interpolated to provide the body 
backscattered power Pb over the whole transit, allowing the 
retrieval of the wing backscattered power Pw = PM − Pb over 
the whole transit.

The wing beat frequency of mosquitoes ranges from 
100 to 1000 Hz [48, 59–61]. Therefore, each transit, last-
ing generally around 100 ms, allows for the recording of 
multiple wing beat cycles. A Fourier transform on Pw(t) 
provides the fundamental wing beat frequency fw and 
harmonics.

Three mosquito species, males and females, were stud-
ied in this work:

• Aedes albopictus, also known as the Asian tiger mos-
quito, is an important epidemiological vector for infec-
tious diseases such as yellow fever, dengue fever and 
Chikungunya fever. It is originally found in tropical and 
sub-tropical areas of Southeast Asia, though this species 
has recently spread in Western countries.

Fig. 2  Representation of the 
total backscattered power (top) 
and body and wing backscat-
tered power (resp. bottom left 
and bottom right)
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• Aedes aegypti, largely known to be one of the main vectors 
of yellow fever, but also dengue fever, and Zika virus. This 
species originated in Africa, but can now be found in tropi-
cal and sub-tropical regions. Ae. aegypti is responsible for 
the Zika virus outbreak in 2015–2016 in Brazil, and several 
regions of South and North America.

• Culex Genus (unknown species) from which several species 
are vectors of disease such as West Nile virus and multi-
ple forms of encephalitis. Culex are widely geographically 
spread and one of the most encountered mosquito genera 
in North America.

The Aedes mosquitoes were reared by the Department of 
Entomology of Rutgers University, New Jersey. The Culex 
mosquitoes were collected in the field in Hudson County, 
New Jersey. All the specimens were studied shortly after 
they hatched, less than 7 days old. To increase the likeliness 
of observing a mosquito transiting through the laser beam, 
they were introduced into the enclosure by batch of ten speci-
mens of the same gender and species. Measurements were 
performed over the following days until mosquitoes would 
naturally die, generally around 15–20 days after hatching. The 
mosquitoes of those three different species measure between 3 
and 6 mm and display a sexual dimorphism with female larger 
than male. Despite their small size the backscattered signals 
from mosquitoes were sufficiently high to be unequivocally 
discriminate from the background noise.

2.2  Event classification

For each mosquito event recorded, a wing beat frequency fw 
can be determined. From all these frequency measurements, 
both a mean (µ) and standard deviation (σSD) are calculated 
using Eqs. 2 and 3, respectively. For each class, a probability 
density function is derived from the measurements where mos-
quito species and gender are known. Those functions are then 
used as predictor variables to retrieve the likeliness that each 
measured wing beat frequency will originate from a specific 
class. Two classifications are discussed in the paper: the first 
one where only two classes corresponding to the mosquito 
gender are considered. The second where male and female 
of the three mosquito species are differentiated resulting in 
6 classes.

(2)� =

∑N
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2
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i
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√
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where N is the number of events in the evaluated class, 
fwi and σi the wing beat frequency and uncertainty respec-
tively. The uncertainty is defined as half the FWHM of the 
fundamental frequency of the Fourier transform on P

w
(t) . 

The wing beat frequency mean value µ is a weighted mean, 
which will give a greater strength to the more accurate val-
ues while reducing the influence of the more uncertain ones. 
This was done in regards of experimental uncertainty that 
fluctuate from around ± 2 Hz up to ± 50 Hz. This uncertainty 
is most likely due to a change of wing beat frequency during 
the time of transit as mosquitoes can slightly modulate their 
wing beat frequency [59, 62]. For each wing beat frequency 
fwi, the most likely class Cj will be determined through a 
Bayesian classifier. The experiment was done in a way that 
the actual class of each measured event is known. This will 
allow for the evaluation of the accuracy of the Bayesian clas-
sifier with regards to species and/or gender. The probability 
that a measurement fwi belong to the class Cj, P(Cj|fwi), is 
described as follows [63].

where P(Cj) is the prior probability of the class Cj, P(fwi|Cj) 
is the probability of obtaining the value fwi in the class Cj and 
P(fwi) is the prior probability of the observed frequency fwi. 
The prior probability, P(Cj), will be chosen as equal for all 
classes, like it is often the case for field measurements where 
it is difficult to know how likely one class is in comparison 
to another without influencing the obtained results toward 
the same results as the assumption.

The wing beat frequency of mosquitoes from the same 
species and gender follows a Gaussian distribution [14, 48, 
70]. Therefore, P(fwi|Cj) can be evaluated using a Gaussian 
probability function also called probability density function, 
Eq. 5.

where σCj and µCj are, respectively, the standard deviation 
and mean value of the class Cj. For every class a score, 
Scj(fwi), defined by Eq. 6 is attributed. This score can be 
considered as a normalized probability that  fwi belong to 
the class Cj.

The score is defined in a way that for each frequency fwi 
the sum of the scores for all possible classes is equal to 1. In 
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this regard, the score can be seen as the relative probability 
of the class Cj in comparison with all other possible classes. 
Likewise, the ratio of two scores allows for the evaluation of 
the relative likeliness of one class in comparison to the other.

The attributed class of any measurement fwi: ACj(fwi) will be 
the class Cj for which Scj(fwi) is the greatest, since it is statisti-
cally the most likely, but it is not necessarily the correct one.

Once the Bayesian classification has been applied, the accu-
racy for each predicted class can be calculated. Data presented 
in this paper are obtained in a controlled environment, thus the 
actual class of every measurement is known and the veracity 
of every class prediction can be easily evaluated. Hence, the 
class accuracy,  CAj, of the class j can be defined using Eq. 8.

where Nj is the number of correctly predicted events as class 
j and Ni≠j the number of events wrongfully predicted as class 
j. The accuracy of every predicted class can be determined 
and therefore the overall accuracy of the entire classification 
(OAC) can be evaluated using Eq. 9.

(7)ACj

(

f
wi

)

= arg maxcj ∈ C

(

Scj

(

f
wi

))

.

(8)CAj =

Nj

Nj + Ni≠j

,

(9)OAC =

∑

Nj
∑

Nj +
∑

Ni≠j

,

where ∑Nj is the sum of all the correct predictions and 
∑Ni≠j the sum of all the wrong ones.

3  Experimental results and discussion

3.1  Data analysis and results

First, this section presents an example of an optical signal 
showing the transit of a mosquito through the laser beam, 
the retrieval of its body and wing backscattering coefficients 
and the Fourier transform leading to the wing beat frequency 
and harmonics. Then, statistics over 427 transit signals are 
presented showing the frequency distribution for each gen-
der and species. Figure 3 displays the raw signal measured 
when a mosquito transits through the laser beam (top left). 
Raw signals are characterized by their Gaussian shape due 
to the spatial profile of the beam and sharp intensity peaks 
due to the wings’ orientation rapidly changing. As a result of 
the insect sometimes changing directions or hovering while 
crossing the beam, transit times varied from a few ms up to 
1300 ms with an average of 127 ms. The body and wings 
contributions to the raw signal (resp. bottom left and bottom 
right) are differentiated using the methodology described in 
Sect. 2.1. Finally, the Fourier transform of the wings con-
tribution (top right) enables the measurement of the funda-
mental mosquito wing beat frequency and harmonics. The 
relative strength of the odds and evens harmonics is related 

Fig. 3  Raw signal of the mosquito transiting through the laser beam 
(top left) together with the body and wings contribution (resp. bottom 
left and bottom right). The Fourier transform of the wing contribution 

provides with the fundamental wing beat frequency and harmonics of 
the insect (top right)
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to the orientation of the insects at the time of the measure-
ment [54]. The ratio between the intensity of the second over 
the first harmonic may allow the differentiation between an 
observation from the front or back of the mosquito and one 
from the side. This is furthermore supported by the diptera 
insect model presented in Brydegaard [53]. This model pre-
dicts that the intensity of the second harmonic will be higher 
than the intensity of the first if the insect is observed from 
the side as the apparent surface of the wings will appear 
large twice during one wing beat cycle. Still, we found this 
model unsuited to the specific wing pattern of the mosquito 
as they display unusual wing movement in comparison with 
most other flying insects [71].

This analysis of raw signals was applied to all recorded 
transit signals. In the end, 427 mosquito transit events, 
spread between the 3 species for both genders were recorded. 
All the retrieved wing beat frequencies are between 200 and 
900 Hz as expected for mosquitoes [48, 59–61]. As several 

mosquitos are simultaneously present into the enclosure, 
there is a possibility that two or more specimens would cross 
the laser beam at the same time. Although this particular 
issue did not occur in any of the 427 measurements, the 
possibility to flag such event must be addressed. This phe-
nomenon has not been extensively studied, but in such case, 
the Fourier Transform is expected to display two or more 
fundamental frequency peaks which should be enough to 
flag the event. Sill this question remain open and further 
investigation will be conducted. Figure 4 displays the 427 
events on two histograms, top graph with all female and 
male and middle graph when separated into 6 classes, corre-
sponding to both genders of the 3 species. The bottom graph 
displays the probability density functions for the six classes. 
These results are discussed in Sect. 3.2 and 3.3.

From all these measurements, an average wing beat fre-
quency and standard deviation is determined for each class 
and presented in Table 1. To evaluate the uncertainty, for 

Fig. 4  Histogram of the measured wing beat frequencies for all 
females and males (top), all species and both genders (middle) and 
their respective probability density function (bottom). Every bar has a 

width of 5 Hz and its value is the number of events measured within 
this frequency window

Table 1  Average wing beat frequency and uncertainty for both gender of the Ae. albopictus, Ae. aegypti and Culex mosquitoes

Male Female

Average wing beat frequency (Hz) 617 ± 3 408 ± 5

Standard deviation (Hz) 52 64

Ae. albopictus Culex Ae. aegypti Ae. albopictus Culex Ae. aegypti

Average wing beat frequency (Hz) 681 ± 5 541 ± 7 628 ± 6 456 ± 6 344 ± 3 425 ± 2

Standard deviation (Hz) 59 34 54 41 20 24
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the 68% confidence interval (1 σ), on the average wing beat 
frequency of the different classes, Eq. 10 can be used to 
determine the standard error σSE.

where σSD is the standard deviation and N the number of 
measurements in the class.

3.2  Classification results

In this section, we discuss the accuracy when distinguish-
ing male from female mosquitoes using data from the infra-
red optical system with a Naïve Bayes classifier. Then, a 
similar approach is presented to evaluate species/gender 
classification.

The only feature used as predictor variable in this clas-
sification is the wing beat frequency. Every class has a dis-
tinctive average wing beat frequency, which supports that 
the wing beat frequency can be used as a discriminatory fac-
tor between classes. Considering the standard deviation of 
the laboratory gathered data, some overlap between classes 

(10)�SE =

�SD
√

N

,

is unavoidable and will be the restricting factor of the dis-
crimination attempt. As previously described in Sect. 2.2, a 
Bayesian classifier, solely based on the wing beat frequency, 
was applied using the data regrouped in Table 1. When 
applied to the gender classification, the score for the male 
class is equal to a third of the sum of the score for male Ae. 

albopictus, male Culex and male Ae. aegypti classes and 
similarly for the female class. The confusion matrix for the 
two classifications are presented in Tables 2 and 3. For both 
classifications, the class accuracy gives an insight into the 
efficiency of the wing beat frequency alone as a discrimina-
tory factor between gender and species/gender of studied 
mosquitoes.

For the gender classification, the wing beat frequency 
alone allows for an accuracy of 95.8 and 97.6% for the male 
and female class respectively and an overall accuracy of 
96.5%. The same Bayesian classifier as for the gender classes 
is then applied to a more complex classification, for both 
species and gender. This new classification now contains six 
different classes. For this classification, the class accuracy 
displays disparate values ranging from 36.2 to 88.6%. The 
overall accuracy of this classification is 62.3% which results 
from larger overlaps between the probability density func-
tions due to the increasing number of classes.

3.3  Discussion

Wing beat frequency is known as an efficient mean to dif-
ferentiate gender from previous studies using either micro-
phones or optical instruments. The results obtained in this 
study confirmed that this approach remains appropriate 
when using an infrared CW optical remote sensing system 
based on backscattered light. Considering the relative sim-
plicity of the classifier and the unicity of the discriminatory 
factor, this result demonstrates the effectiveness of the wing 

Table 2  This table display the actual class of every event versus their 
predicted class by the Bayesian classifier, also known as confusion 
matrix, data separated by gender

Predicted

Actual Male Female

 Male 248 4

 Female 11 164

Class accuracy (%) 95.8 97.6

Table 3  Confusion matrix and 
class accuracy for the Bayesian 
classifier, data separated by 
gender and species

Predicted

Ae. albopictus Ae. aegypti Culex

Actual Male Female Male Female Male Female

 Ae. albopictus

  Male 61 0 60 0 11 0

  Female 0 14 0 21 6 0

 Ae. aegypti

  Male 21 3 50 0 20 0

  Female 0 9 0 81 0 5

 Culex

  Male 0 5 0 0 21 0

  Female 0 0 0 0 0 39

Class accuracy (%) 74.4 45.2 45.5 79.4 36.2 88.6
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beat frequency for gender discrimination of mosquitoes. 
This is a promising result since the gender differentiation is 
paramount to the efficiency of the sterile insect technique, 
which is a cost effective mitigation technique employed to 
reduce insect populations such as mosquitoes [72–74].

For the gender/species classification, the overall accuracy 
of the classification drops down to 62.3%. While three of 
the six classes still have an accuracy above 74% (female 
Culex, female Ae. aegypti and male Ae. albopictus), oth-
ers drop to a rather low accuracy, down to 36.2%. The less 
accurate class still has more than twice the accuracy of a 
random prediction, which proves that wing beat frequency is 
a valuable predictive variable for classification methods for 
species identification. However, we believe that wing beat 
frequency alone is insufficient to properly classify mosquito 
species. Some of the class accuracy retrieved for species/
gender identification in the work presented here are below 
40%, despite considering only three species. When used for 
field experiments, more potential mosquito species need to 
be considered, leading to more classes and larger overlaps 
between each wing beat frequency distribution, resulting in 
lower class accuracies. As for example, New Jersey counts 
a total of 63 potential mosquito species, Florida up to 80. 
Therefore, the sole wing beat frequency may be used as pre-
dictor variable only in the case where only a few species 
might be encountered or in the case where only the insect 
family is retrieved (such as discriminating butterflies, flies 
or moths from mosquitoes). However, in the case of field 
measurements where dozens of mosquito genera and spe-
cies may be present, wing beat frequency alone will not be 
sufficient to identify them with good accuracy.

A common way to improve the class accuracy would be 
to add other predictive variables. By recording the time and 
place where field measurements are performed, data on the 
circadian rhythm of flight activity together with the spatial 
distribution of the mosquito species can potentially lead to 
better class accuracy [70]. While we acknowledge that dif-
ferent species of mosquitoes have different activity times 
(dawn, dusk, day or night) and can be found on different 
parts of the globe and habitats, we argue that these additional 
predictive variables may be counterproductive and that, at 
the very least, should be handled with care. For instance, 
the circadian rhythm cannot be used without at least a rough 
estimate of the population of each considered species. If a 
species A with a small population has an activity peak while 
another species B with a much larger population has a low 
activity, their probability to interact with the instrument may 
be equal, although in this case, the classification will con-
sider species A to be much more likely, which will induce a 
strong bias in the results.

In addition, with the accuracy decreasing with the number 
of considered classes, the weight of the wing beat frequency 
as predictive variable in the classification methodology is 

reduced when compared to other predictive variables: 
assumptions made on the circadian rhythm and spatial dis-
tribution become predominant in the classification process, 
especially if the wing beat frequency is weighted based 
on its uncertainty. This would lead to an inherent problem 
for entomological instruments specifically developed to 
study the spatial distribution and activity of insects. Actual 
changes in the behavior of mosquitoes could go unnoticed. 
For entomological lidars or optical remote sensing system 
using a classification methodology to retrieve information, 
this specific information cannot be used as a predictive vari-
able or it would otherwise skew the results towards the cur-
rent state of knowledge. For instance, using available data 
on the spatial distribution of mosquito species as a predic-
tive variable to monitor the migration of a mosquito, such 
as the spread of tropical species over larger latitudes with 
climate change would be biased. Similarly, using circadian 
rhythm as a predictive variable to study the impact of pes-
ticide would lead to biased results as it may affect species 
differently.

4  Conclusion and outlooks

In this contribution, we present an infrared continuous-
wave optical sensing system to remotely study flying 
mosquitoes in real-time. The wing beat frequency of 
each insect transiting through the infrared laser beam is 
retrieved with 1.9% error using a Fourier Transform of 
the amplitude modulation of the backscattered light. The 
system is used in laboratory conditions, where male and 
female mosquitoes of three different species, Ae. albop-

ictus, Ae. aegypti, and an unknown species of the Culex 
genus, are known a priori and studied from a distance 
between 3 and 4.25 m. A total of 427 transit signals have 
been recorded, providing enough data to evaluate the per-
formance of a Bayesian classification method to identify, 
at first, only the mosquito gender, and then, the gender and 
species. In the case of gender identification, results show 
that male and female are discriminated with an overall 
accuracy of 96.5% despite the broad range of possible fre-
quency of male and female mosquitoes of different species. 
When attempting to discriminate both gender and species, 
the overall accuracy of the classification drops to 62.3%, 
with class accuracy ranging from 36.2% for male Culex 
to 88.6% for female Culex. While the overall accuracy of 
62.3% could be seen as acceptable, the experiment here 
only considered both genders of 3 species. In the case of 
field measurements, the number of species at one loca-
tion is generally in the order of a dozen or more. It is 
likely that the overall accuracy will decrease significantly 
if more species are considered. These results demonstrate 
that wing beat frequency is a sufficient predictive variable 
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to identify the gender of a mosquito, though the sole use 
of wing beat frequency to identify mosquito species is 
insufficient. Hence, when applied for species identifica-
tion, wing beat frequency needs to be used with other inde-
pendent predictive variables, such as optical properties 
of the observed insect, to provide accurate and un-biased 
mosquito species identification. Examples of such opti-
cal properties are given by Gebru et al. [54] where the 
ratio of the optical cross-section of honey bees in the near 
and shortwave infrared is measured. Similarly, Shaw et al. 
[75] measured the depolarization ratio of honey bees using 
a Lidar. Additionally, other predictor variables could be 
investigated, such as the shape of the periodic function 
of the wing contribution, the ratio of intensities between 
body and wing contribution, or transit times. Classification 
using deep machine learning technics may be well-suited 
to take these numerous variables into consideration.
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tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
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Creative Commons license, and indicate if changes were made.
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