Optical residue arithmetic: a correlation approach

Demetri Psaltis and David Casasent

A numerical optical processor is described that performs operations in residue arithmetic. The position
coding used to represent decimal and residue numbers allows one to describe the various conversions and
operations in a correlation formulation. This description of residue arithmetic leads directly to novel resi-
due adder and decimal/residue/decimal converter designs, which are described and experimentally demon-
strated. The accuracy, dynamic range, and space bandwidth of an optical residue arithmetic processor are

also discussed.

I. Introduction

Residue arithmetic has been of interest because it
is one of the fastest computing methods available.l-3
Huang* was the first to suggest that the parallel arith-
metic computational properties of residue arithmetic
made the realization of such optical numerical proces-
sors attractive. Since then considerable advances-7
have occurred in optical residue arithmetic, including
a recent conference at Ohio State University. In this
recent work, at least three distinguishable ways have
been suggested for representing numbers in an optical
residue system.” These include phase or polarization
coding and pulse-position coding. Collins® has chosen
the former method and Huang et al.” the latter ap-
proach.

An extensive review of many of the possible techno-
logical and architectural realizations of optical residue
arithmetic processors has recently been published.”8
Many of the more advanced and promising approaches
suggested for this new type of optical arithmetic system
utilize integrated optical switches and planar wave-
guides,” and the cyclic control and system operations
are described by maps.

Residue arithmetic has not yet been described in the
conventional terminology of signal processing and
pattern recognition researchers. In this paper we at-
tempt to close this gap by formulating optical residue
arithmetic processors in linear systems, Fourier trans-
form, and correlation terms. This approach allows one
to realize more easily a residue arithmetic system in
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terms of the many technologies that use correlators
(CCD, SAW, I2L, integrated optics, etc.). We consider
only coherent optical techniques in the specific system
designs to be described, thereby utilizing the space
bandwidth, parallel processing, and real time
throughput of such systems. However, the correlation
formulation presented is general enough to allow residue
systems to be realized using other technologies. The
specific optical system architectures presented and
experimentally demonstrated are included to better
convey the operations required and as examples of
transitions from theory to system architecture to ex-
perimental verification.

A correlation-based formulation of residue arithmetic
is most readily achieved if we use pulse-position coding
as suggested by Huang et al.57 to represent decimal and
residue numbers rather than the phase or polarization
of light.6 The decimal/residue/decimal converters we
discuss can thus be directly interfaced to integrated
optical” and other residue systems that also use pulse-
position coding.

Although many optical processing researchers*-8 and
others!-3 reviewed the advantages of residue arithmetic,
a brief summary of its features follows, both for moti-
vation and for completeness. _

Residue arithmetic is especially attractive for optical
implementation because it allows arithmetic operations
to be performed in parallel since no carries occur. Also
in residue arithmetic, a given computation is divided
into subcomputations of reduced complexity. This
allows these suboperations to be performed in parallel
with reduced dynamic range requirements. Finally, the
accuracy of the resultant operations is high because the
system’s dynamic range is proportional to the product
of the residue moduli used. Thus, residue arithmetic
directly allows the use of multichannel parallel com-
putations that are the forte of optical computing with-
out the dynamic range and accuracy limitations®10
normally associated with optical processors. -
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In Sec. I1, we briefly review residue arithmetic. In
Secs. III and IV we describe decimal/residue/decimal
converter designs to convey the pulse-position coding,
carrier modulation, and aperture control operations
needed in our suggested optical implementations of a
residue arithmetic processor and for insight into the
required processing. In Sec. V we then present a gen-
eral formulation of these conversion operations in cor-
relation terminology rather than by use of polynomials
and maps as provided in Ref. 7. An optical residue
arithmetic adder is then described in Sec. VI in corre-
lation terminology. In Secs. VII and VIII experimental
demonstrations of coherent optical residue arithmetic
are included, and the accuracy and space bandwidth
features of such systems are discussed.

II. Residue Arithmetic

A brief review of residue arithmetic follows. It is
included for completeness and to provide a brief in-
troduction to this subject to those not familiar with it.
This also allows us to define the notation to be used and
to demonstrate clearly why the optical realization of a
numerical processor using residue arithmetic is at-
tractive.

An integer is represented in the residue number
system by the N-tuple set of residues (Rp;, Rp, - -
R, ) with respect to the N different relatively prime
integer moduli my, ..., my. The residue R, is the
least positive integer remainder of the quotient of X and
mi. The maximum integer value that can be repre-
sented by N moduli is M — 1, where

N
M= H m;.
i=1

An example will easily clarify this. Torepresent 13
in the residue system with moduli (5,7,9,2), we divide
13 by the first modulus 5 and obtain 2 and a remainder
of 3. Dividing 13 by the second modulus 7, we obtain
1 and a remainder of 6. Dividing 13 by mg = 9, the re-
mainder is 4. For m4 = 2, the remainder is 1. These
four remainders are the representation of 13 in the
residue number system with moduli (5,7,9,2), i.e., 13 =
(3,6,4,1).

To see the advantages of residue arithmetic, we
consider how to realize the sum of 13 and 59 in residue
with moduli (5,7,9,2). Proceeding as before, we find 59
= (4,3,5,1). To sum two numbers in residue notation,
we find 59 = (4,3,5,1). To sum two numbers in residue
notation, we sum each separate pair of residue numbers
in the same modulus m; and retain only the residue,
ie.,

m; = (5,7,9,2)

13 = (3,6,4,1)
+59 = (4,3,5,1)

72 =(2,2,0,0) »

where 3 + 4 modulo 5 has a remainder 2, 1 + 1 modulo
21is 0, etc. Checking, we find that the decimal sum 72
is (2,2,0,0) in moduli (5,7,9,2).
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To subtract two numbers in residue, e.g., 72-13, we
invert 13 in residue (by simply complementing each bit
i modulo m; in the residue representation), i.e.,

m; = (5,7,9,2)
13 = (3,6,4,1)
-13=(2,1,5,1) -

The bits i of the residue numbers 72 and —13 are then
added as before:

72 = (2,2,0,0)
-13=(2,1,5,1)
59 = (4,3,5,1) -

To multiply two numbers in residue, we convert each
number to its residue representation, multiply each bit
pair, and retain the residue of each product modulo m;.
Consider forming the product of 19 and 12 in the same
moduli:

m; = (5,7,9,2)
19 = (4,5,1,1)
12 = (2,5,3,0)

19 X 12 = (3,4,3,0) = 228,

where 1 times 0 is 0 in any modulo, 3 times 1 is 3 modulo
9, 5 times 5 is 25, but modulo 7 the remainder or residue
is 4, and 4 times 2 is 8, which yields a residue of 3 in
modulo 5. The product of 19 and 12 in decimal is 228.
But 228/5 equals 45 and a residue of 3 etc. from which
2928 = (3,4,3,0) with respective moduli (5,7,9,2). From
the above examples, the attractive features of residue
arithmetic noted earlier are apparent.

lll. Decimal-to-Residue Conversion

For the reasons indicated in Sec. II, considerable in-
terest exists in residue arithmetic, especially optical
residue arithmetic systems. In this section and the next
one, we describe two specific coherent optical correlator
architectures that perform decimal/residue/decimal
conversion. These specific system architectures are
presented to clarify the pulse-position coding, carrier
modulation, and aperture control operations involved.
The discussion applies directly to a general correlator.
However, we defer presentation of this more general
analysis to Sec. V after the above operations have been
described for these specific system architectures in Secs.
IIl and IV.

We consider the conversion of a decimal number into
the residue number R,,; modulo m; and the specific
correlator topology in Fig. 1. As noted earlier, we rep-
resent the input decimal number X in pulse position
code as the location of a spot of light in the input plane
Py. We define a unit decimal distance Ax and thus
represent the decimal number x by a delta function at
xo = XAx in Py. The amplitude transmittance of Pg
is thus

g(xg) = d(xg — X Ax). (1)
Lenses L; in Fig. 1 form the 1-D Fourier transform
(FT) of g horizontally, while imaging vertically (i.e., a

multichannel 1-D FT). We consider only one y channel
for simplicity. The FT of g incident on Py is
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Fig. 1. Schematic diagram of a decimal-to-residue optical con-
verter.

G(u) = exp(j2ruXAx). ' 2)

Spatial distance x in P; is related to input spatial fre-
quency u by

X1 = Mpu, (3)

where X is the wavelength of the laser light used, and f;,
= fLs11s the focal length of lens Ly, in Fig. 1. Equation
(2) describes a planewave incident on P; at an angle that
depends on X Ax (the position of the input delta func-
tion or hence the value of the decimal input number
X).

For simplicity we consider only one vertical channel
of the multichannel system and the conversion of X to
Ry, modulom;. At P;in Fig. 1, we place a square wave
grating with transmittance

H;(u) = i exp(j2runm;Ax), (4)
where the fundamental frequency u,; of the grating
present on this channel i is chosen such that the sepa-
ration between the dc and + first order terms in the FT
of Eq. (4) is

m;Ax = ug N, (5)

For simplicity, the same unit distance Ax is assumed
for decimal units in Py and for residue units in P,.
(This is equivalent to assuming a 1:1 imaging system for
L1 and LQ.)

In one version of a decimal/residue converter, the
input Py datum is a vertical slit (one decimal number),
and the desired outputs at P, are the residue numbers
Ry, for N moduli m; as shown in Fig. 1. As we discuss
in Secs. VII and VIII, this is not the only or optimum
formulation of decimal/residue conversion when over-all
system integration is considered. However, for our
present purposes the above scenario of converting X to
the N residue R, where there are N moduli m; is ad-
equate to convey the important system features. In
such a case, the system will have N channels, and at P;
there will be N different square waves recorded on these
N channels. The frequency u, of the grating on
channel i will correspond to the modulus m; of that
channel as in Eq. (5). Again, for simplicity, we restrict
attention at present to one channel i.

The light amplitude distribution leaving channel i of
plane P; is the product of Egs. (2) and (4) or

GH;= ¥ exp[j2ru(X — nm;)Ax). ®)

Lenses Ly in Fig. 1 form the 1-D horizontal FT of Eq.
(6), and at P5 we find

falxo) = i 8[xe = (X = nm;)Ax], V)]

where x5 is the spatial coordinate of P,. This Ps pat-
tern consists of delta functions with center-to-center
spacings m;Ax proportional to the modulus m; and
replicated at distances that are multiples of this mod-
ulus. These delta function outputs occur at

x2 = (X — nm;)Ax. (8)

The pulse position coding of X in Py and the carrier
modulation [multiplication of Eq. (2) by Eq. (4) and
Fourier transforming the result] operations involved
have now been explained. Before describing the last
required operation (aperture control), we digress for the
moment to a general description of decimal/residue
conversion. Any decimal number X can be written
as

X =nm; + Ry, )

where n is the number of times X is divisible by m; and
where the remainder or residue R,,; must satisfy

O0<Rp, <m;—1. (10a)
Solving Eq. (9) for R, we find
Rpi=X —nm,. (11a)

From Eq. (11a), we see that R is the remainder after m;
has been subtracted » times from X. Multiplying Egs.
(10a) and (11a) by Ax, we obtain

0 < Rp;Ax < (m; — 1)Ax, (10b)

Ry Ax = (X — nm;)Ax. (11b)

Now, returning to Eq. (7), we see that the locations
of the n output delta functions in P, of Fig. 1 satisfy Eq.
(8), which agrees with Eq. (11b). To insure that the
subtraction of m; from X has been performed the
proper number of times n so that Egs. (10a) and (10b)
are satisfied, we examine only the P, region satisfy-
ing

0<x9=<(m;— 1)Ax. (12)

This is obviously equivalent to satisfying Egs. (10a) and
(10b). Only one delta function output in Eq. (8) satis-
fies (12).

If we place a rectangular aperture at Ps of Fig. 1 of
width m; Ax in x, centered at P5 as defined by Eq. (12),
there will be m; possible locations of the output spot of
light within this aperture. The location of the output
peak of light within this aperture denotes the residue
R,,, modulo m; of the decimal input X in terms of a unit
residue distance Ax (i.e., pulse-position coded). By
aperture control we simply mean placing an aperture
at Py to select the remainder or residue in the proper
range. An experimental demonstration of decimal-
to-residue conversion is provided in Sec. VIL
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The above analysis considered only one channel of the
system of Fig. 1. If this system is to be used to convert
the decimal number X into the N residues R,;; for the
N moduli m;, the input P, pattern is a slit as shown in
Fig. 1. Its xlocation X Ax denotes the decimal input
number X. At P;, we now place N gratings of spatial
frequencies u; (corresponding to the N moduli m; to
be used to represent X) on N separate lines or channels
at P;. Within the aperture placed at P there will be
N channels with an output spot of light at a different
horizontal location on each channel. The horizontal
location of the output on each channel i denotes the
residue number R, for X in the modulus m; for the
particular channel. As implied earlier, this particular
arrangement of a decimal-to-residue converter may not
be optimum from a systems standpoint. This issue and
another decimal-to-residue converter scenario are de-
scribed in Secs. VII and VIIL

IV. Residue/Decimal Conversion

All operations within a residue arithmetic computer
are of course performed in residue number notation.
However, the input and output data for such a processor
should be in conventional decimal (or binary etc.) form.
The decimal-to-residue optical converter described in
Sec. III addressed the input conversion required and
introduced the pulse-position coding, carrier modula-
tion, and aperture control concepts employed. In this
section, we consider the conversion from residue-to-
decimal performed at the processor’s output.

The schematic of a residue-to-decimal optical con-
verter is shown in Fig. 2. The system is topologically
the same as that of Fig. 1. However, the inputs at Py are
now N residue numbers in the N moduli m; chosen.
These N input residue numbers R, are represented by
a pulse of light whose horizontal distance RAx along
channel n represents the residue number by pulse-
position coding as before.

" At P; of Fig. 2, N gratings are placed on the N dif-
ferent channels with the spatial frequency of each
grating chosen to correspond to the modulus m; for that
channel. The output along a given channel n at Ps of
Fig. 2 will be a set of delta functions as before. The
horizontal positions of these delta functions now cor-
respond to all possible decimal numbers to which the
input residue number could correspond (for the par-
ticular modulus of that channel). The horizontal po-
sition X Ax in Py at which the delta functions on all N
channels are aligned denotes the proper decimal output
X corresponding to the N input residue numbers R,
in the N moduli m;. To detect the output, a set of ho-
rizontally oriented linear photodiode or CCD self-
scanned detector arrays can be placed at Po. The out-
put from an N input NOR or AND gate (depending on
the polarity outputs desired) in synchronization with
a Ax counter will denote the decimal output value X (or
equivalently the horizontal X Ax position in P; at which
all delta functions on all channels are present).

The optical realization suggested in Fig. 2 is a spa-
tially multiplexed on-line version of a scheme suggested
earlier by Huang.5 In the version in Ref. 5 (Fig. 6),
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Fig. 2. Schematic diagram of a residue-to-decimal optical con-
verter.

input light was passed sequentially through gratings
(corresponding to each m;). However, the lateral po-
sitions of the gratings had to be adjusted to correspond
to the R,,; inputs to achieve the proper superposition
at the output. In our scheme suggested in Fig. 2, me-
chanical motion of the gratings is not required.

V. Correlation Formulation

The residue arithmetic systems described in Secs. I1I
and IV are linear and space invariant and can thus be
described in correlation terminology. The following
general correlation formulation of residue operations
will be more clear now that detailed descriptions of the
two converters in Secs. III and IV have been provided.
How the designs in Figs. 1 and 2 originated is clear from
the following formulation. In fact, an attractive feature
of this correlation-based description is that the system
architecture follows directly from the analytical for-
mulation. As stated at the onset (Sec. I), a correlation
formulation is most general since it allows realization
of residue operations using other technologies. We
have selected a coherent optical realization because it
is one of the easiest to demonstrate and because of the
real-time and parallel-processing advantages of such
Processors.

We consider the decimal-to-residue conversion of X
to R,,; modulo m;. Now that the pulse-position coding,
carrier modulation, and aperture control concepts have
been described in Sec. III, the general description of the
system as a correlator is straightforward. The input is
a decimal number X represented by g(xo) = 6(xg —
XAx). The desired residue output R, is f(x2) = 8[x2
— (X — nm;)Ax]. The required system impulse re-
sponse needed to convert g into f is

h(xo) = X 8(xo — nm;Ax), (13)

where h described by Eq. (13) is simply the FT of the
grating at P; of Fig. 1 described by Eq. (4).

Since the system’s impulse response is real and
symmetric, the convolution and correlation operations
are equivalent, and the system’s output at P is the
correlation of g and h:

g@h =3 J'é(xo — X Ax)d(xg — nm; Ax + x2)dxo
n

T f8(xo + x2)8[x0 — (X — nm;)Ax]dxo

=3 §[xg — (X — nm;)Ax]. (14)
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As seen, Eq. (14) is the desired output. The minimum
positive location x5 of the output delta function in the
Py interval 0 < x5 < (m; — 1)Ax (where x5 is now the
shift parameter in the correlation or equivalently the
output coordinate) is the desired residue output R,
Residue-to-decimal conversion can be formulated
similarly.

The general system block diagram for a residue con-
verter is shown in Fig. 3. The input is pulse-position
coded by a deflector or other component, the correlator
can be realized using many technologies, the output
window function is equivalent to looking only in the
proper region of output correlation space.

VL. Residue Arithmetic Optical Adder

To demonstrate the utility of the correlation formu-
lation of residue arithmetic, we describe the addition
of the two residue numbers R, and R, modulo m; asa
correlation. We then sketch the design of a residue
arithmetic adder based on this formulation.

The two numbers to be added are represented in
pulse-position coding by

a = §(xg— RyAx) (15a)
b= 6(xg — RpAx). (15b)

The desired sum is '
[Ra + Rp|m; (16)

where the subscript m; denotes that the output of the
sum is the residue modulo m;. To produce the desired
result, we form the correlation of a and the mirror image
of b,

a@®b= f'” 3(x — RaAx)8(x + RpAx + x7)dx

= Jw 8[x — (Rq + Rp)Ax]8(x + x")dx

= 5[x’ — (Ry + Ry)Ax]. an

From Eq. (17), we see that the output of the above
correlation is a delta function located in correlation
space at x’ = (R, + R)Ax, where x’ is the correlation
shift parameter. This corresponds to the desired sum
of the two residue numbers pulse-position coded. To
convert this sum to the residue modulo m;, we use a
grating and output aperture as in Fig. 1 to produce the
desired result in Eq. (16).

The schematic of an optical system to realize these
operations is shown in Fig. 4. The two pulse-position
coded input residue numbers to be added are placed
side by side in the input plane P of a joint transform
correlator. We describe the transmittance of Py in
more conventional optical notation (in 1-D for the case
of one modulus only for simplicity) by

to(xo) = d(xo — x4) + 6(xo + xp), (18)

where x, = R, Ax and x; = R, Ax denote the locations
of the two delta functions (for R, and R,) in Py. Lens
L, forms the 1-D Fourier transform at P; of to in the x
direction while imaging in the y direction.

The light distribution in 1-D incident on P is thus

f1(u) = exp(j2wux,) + exp(—j2nuxy). (19)
An optically addressed spatial light modulator® (SLM)
is placed at P;. The transmittance of P; after exposure
is |f1|? or
t1 = |exp(j2ruxy) + exp(—j2xuxp)|?
=2 + 2 cos[2wu(x, + xp)]. (20)

This SLM is read in reflection from the beam splitter
BSinFig. 4. Lens L, in Fig. 4 images P; onto Ps. At
Py, we place a grating whose transmittance in 1-D for
the y channel of concern we represent by

ts = 3 exp(—j2runm;Ax). (21)
The light distribution leaving P, is now
tite = ¥ explj2au(x, + x5 — nm;Ax)]. (22)

Lens L3 in Fig. 4 forms the FT of Eq. (22) at P3. This
P3 pattern is a set of delta functions, as in Sec. III,

f3 =2 8lx3 = (xa + xp — nm; Ax)]

=3 6[x3— (Rg + Ry — nm;)Ax]. (23)

The location of the delta function at Pj of Fig. 4 in
the range 0 < x3 < (m; — 1)Ax provides the desired
residue of the sum of the two residue numbers modulo
m;.
In practice a and b are represented by N residue
numbers (for the case of N moduli m;). One way in
which the contents of Py in Fig. 4 can be arranged to add
two residue numbers with N moduli is to allot N chan-
nels in each half of plane Py. The N pairs of residue

o 2FL _ _,  2FL
3 [

X

| ks |
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Fig. 4. Schematic diagram of a residue arithmetic optical adder.
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numbers Rgm; and Rpm; for the N moduli can be re-
corded on these N separate channels in pulse-position
code. For this input data arrangement, we would use
N gratings at N different spatial frequencies (corre-
sponding to the N moduli) on N lines at Py of Fig. 4. At
Pj of Fig. 4, there will also be N channels with the po-
sition of the delta function on each vertical channel
proportional to the residue of the sum of the corre-
sponding residue numbers in the corresponding mod-
ulus of that channel. The adder element shown in Fig.
4 is one basic elemental building block of a residue
arithmetic system. (A multiplier can be realized by
successive additions.)

VIl. Experimental Demonstration

The system of Fig. 1 was assembled to demonstrate
and verify the decimal/residue conversion method de-
scribed in Secs. IIT and V. To keep the unit decimal
distance Axq in P and the unit residue distance Axs in
P, equal to Ax, a 1:1 imaging system was used. The
focal lengths of both cylindrical lenses were fr. =
300-mm with fr, = 762-mm focal lengths for both
spherical lenses.

As noted several times earlier, the optimum deci-
mal/residue converter need not always convert a deci-
mal input number into its N residue numbers. To
demonstrate an alternate scenario and to still demon-
strate the basic principle of decimal/residue conversion
as a correlation, the 21 decimal numbers 0 to 20 were
used as the inputs on 21 channels in Py of Fig. 1. We
consider the conversion of these 21 decimal inputs to 21
residue numbers all in the same modulus. The input
used [Fig. 5(a)] consists of an impulse on each of the 21
vertical channels in Pg. The horizontal position of each
of these impulses denotes a different decimal input
number. Since the spacings between impulses on
successive channels are equal to Ax = 0.7 mm (the unit
input decimal distance), the decimal input on the bot-
tom channel 0 is 0, the number on channel 1is 1, etc., up
to the top channel, which represents the decimal num-
ber 20 in pulse-position code.

This input pattern was produced by superimposing
a tilted slit over a 1.4-cycle/mm grating. The input
pulses are then separated by 1/1.4 ~ 0.7 mm = Ax.
Since the duty cycle of the 10-cycle/mm grating was only
6%, both odd and even harmonics of the fundamental
grating frequency are present. The width of the input
pulse is only 0.06 (0.7) mm =~ 40 um or far less than the
0.7-mm decimal limit used. The capacity of the system
is thus not even approached by the example shown.

At P; of Fig. 1, we place a grating of spatial frequency
uy = 10 cycles/mm. From Eq. (5), we see that Ax and
u, must satisfy

Ax = 0.7 mm = ughfr/m; (24)

from which the modulus corresponding to the grating
frequency used is found to be m; = 7. Thus the system
of Fig. 1, as designed above, will convert the 21 pulse-
position coded decimal numbers [Fig. 5(a)] into residue
numbers modulo m; = 7.
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The next step is to position properly the output plane
P, aperture. To do this, we must calibrate the system.
Since the residues modulo 7 of the decimal numbers 0,
7, and 14 are all 0, we chose input channel 7 for cali-
bration purposes. With only the input impulse on
channel 7 present, the Py pattern in Fig. 1 consists of a
de, +1 order, etc. spots of light. We position a rectan-
gular aperture of width 7Ax in Py such that the dc spot
appears just inside the left edge of the aperture (when
viewed from the detector plane). The —1 order spot is
cut off and lies just outside the edge of this aperture.
The system is now aligned.

With the full input plane Py pattern [Fig. 5(a)] illu-
minated, the output plane Py pattern of Fig. 5(b) re-
sults. It contains 21 vertical channels (corresponding
to the decimal numbers 0 to 20 on the 21 input chan-
nels). On each vertical channel, the horizontal position
of the output spot (within the rectangular aperture at
Ps) lies in one of seven possible locations. These loca-
tions correspond to the seven possible residue numbers
0to6.

The residues modulo 7 of the decimal numbers 0 to
6 are just 0 to 6, respectively. Inthese casesthe dcspot
simply shifts across the P; aperture from left to right.
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Fig. 5. Experimental demonstration of the conversion of the 21

decimal input numbers 0 to 20 into residue numbers modulo 7 using

the optical system in Fig. 1: (a) input Py pattern; (b) output Ps
pattern.



For the decimal input 7, the dc spot now shifts out the
right-hand side of the P, aperture, and the first-order
spot enters the left-hand side of the P; aperture. Thus
the correct residue number 0 results. Use of a high
threshold SLM (or a thresholded TV monitor) at Py can
restore the intensity of all spots of light to the same
level.

To demonstrate residue-to-decimal conversion, the
system of Fig. 2 was assembled with the same lenses
used in the above experiment. The conversion per-
formed was of the residue number (1,1,3) with moduli
(3,4,5) into its decimal equivalent 13. Only three input
channels are required for this case. The unit distance
Ax for Py and Ps of Fig. 2 was now 0.48 mm. The three
gratings used on the three channels at P; were at 3, 4,
and 5 cycles/mm (corresponding to the three moduli m;
=3, me =4,and mg = 5).

The three input residue numbers were pulse-position
coded on three channels at Py of Fig. 2 with Ax = 0.48
mm as shown in Fig. 6(a). The resultant output plane
P pattern in Fig. 2 is shown in Fig. 6(b). The hori-
zontal locations of the impulses on each output channel
correspond to all the possible decimal numbers that
could be represented by the corresponding residue input
in the specific modulus chosen. As seen in Fig. 6(b),
impulses from all three channels occur only at the hor-
izontal location 13. Thus the decimal equivalent of the
residue input (1,1,3) is found to be 13, and residue-to-
decimal conversion has been demonstrated.

VIIl. Discussion

The dynamic range of an optical residue arithmetic
processor is the product of the moduli used, this is also
the largest number M that can be represented in resi-
due. As the number of moduli increases, each required
subcalculation (recall that all calculations in all moduli
are performed in parallel) needs only a dynamic range
equal to the modulus chosen. In the pulse-position
coding scheme used, M resolution elements are needed
in the input plane Py of Fig. 1 and the output plane Py
of Fig. 2 to represent the full range of decimal numbers
possible. Thus the system’s most severe bandwidth and
dynamic range requirements occur during the input and
output conversions, since the full dynamic range of the
decimal number must be realized in these stages.

The resolution Ax possible and needed in Py of Fig.
1 is related to M and the input aperture A by

M = A/Ax. (25)

To increase M, we must increase A and decrease Ax.
The upper limit on A is set by the lens system following
Py. The lower limit for Ax is determined by the mini-
mum resolvable spot size and geometrical accuracy with
which the input can be recorded. The lens sets L, and
Ly in Fig. 1 must be capable of producing Fourier spots
whose position is linearly related to spatial frequencies
in the input plane of the lens. We investigated the
positional accuracy of an FT lens!? and found it to be
better than 0.06%. In general the accuracy and fidelity
with which input data can be recorded limit the per-
formance of an optical processor. Thus, we expect Ax

CHANNEL NUMBER

and positional inaccuracies in recording the input data
to limit the dynamic range of an optical residue arith-
metic system.

The motivation for considering an optical imple-
mentation of a residue arithmetic processor was to in-
crease the dynamic range and accuracy obtainable in an
optical system. However, the approximately 1000-
point linear SBWP presently obtainable with scanners
and spatial light modulators!! still does not permit more
than a 10-bit dynamic range (if the pulse-position
coding scheme and optical systems described earlier are
used). Two approaches by which increased input
space-bandwidth and hence system dynamic range can
be obtained are now discussed.

The first is the use of input numbers in binary rather
than decimal notation. For an input dynamic range of
64,000 we require 16 bits to represent the input data in
binary notation (compared with a linear input SBWP
of 64,000 for the pulse-position coded decimal repre-
sentation of the largest input number). However, a
binary/residue converter is now required. Such an
optical system can be realized using the joint transform
correlator adder of Fig. 4 for B (equal to the number of

CHANNEL 1
R=3 ) M'=5

CHANNEL 2
R=1, M;=4

CHANNEL 3
R=1, M;=3
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01 35 10

RESIDUE NUMBER

=Y

R

N

NERREN R

w

NRERRERN ARNAE Y

'lvvgilvllll'
0 0 3

DECIMAL OUTPUTS '

Fig. 6. Experimental demonstration of the conversion of the residue

number (1,1,3) with moduli (3,4,5) into the decimal number 13 using

the optical system of Fig. 2: (a) input Py pattern; (b) output Py
pattern.
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Fig.7. Schematic diagram of a high dynamic range decimal to res-
idue converter using raster recorded input data.

bits) cycles. To visualize such a system, recall that N
in decimal notation is related to its binary representa-
tion (ag, @1, @2 . ..ag) by :

B
N= Y ap2b,
n=0
where each ap, is 0 or 1. In residue notation N modulo
m; is
lNlm,» = (ao|20|mi + a1|21|m; + a2|22|,,,i +... )Mi' (26)

From Eq. (26), we realize that N can be represented
modulo m; as the residue sum of B numbers 2% in resi-
due, and that these 22 modulo m; values are known in
advance. In essence, we can realize Eq. (26) by adding
0 or 2% to a running residue sum depending on whether
the corresponding binary bit of Nis 0 or 1. The resul-
tant output after the addition of the most significant bit
is then | N |, in residue modulo m;. Realization of this
conversion by the cyclic operation of one adder of the
type shown in Fig. 4 is preferable to a cascade of B-1
such adders.

However, an alternate method exists whereby the
dynamic range of N can be increased, without exceeding
the assumed input linear SBWP of 1000. This ap-
proach involves raster recording the input data with
zero retrace time and use of the folded spectrum optical
spectrum analyzer.2 In the optical residue arithmetic
version of such a high dynamic range raster recorded
decimal/residue converter, the pulse position coding of
N is still employed. However, K lines at Py of Fig. 1 are
used to represent N as

Nxo— KNpxo= (N — KNy)xo. 27

In other words, for a maximum N = 10,000 and a linear
positional or resolutional N;, = 1000, we use K = 10
lines at Py to represent N. If 0 < N < 1000, a delta
function of light appearsonline K = 1. If1000 < N <
2000, the delta function appears on line K = 2 at Py etc.
If we use N = nm; + R,; and assume KN, = rm; +
Rmi’
N —KNp = (n—r)m; + Rp; = Ry, (28)
which reduces to
Ry;=(N—=KNL) = (n—r)m; (29)

when N, is a multiple of m;, since then R,,; = 0.
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As a numerical example, consider the conversion of
N = 168 to residue modulo 5 assuming a maximum Ny,
= 50. In our raster recorded version of the input Py
pattern in Fig. 1, the delta function corresponding to N
= 168 occurs 18 spaces (18Ax) from the left edge of the
kE =4 line in Py. Since N, = 50 is an integer multiple
of m; = 5, N = 0-49 appear on line k = 1, N = 49-99
appear on line 2, etc. Then,

185 = (168-150)5 = 1685-1505 = 168s. (30)

The schematic diagram for such a system is shown
in Fig. 7. With K lines required at Py to represent N,
the m; grating at Py is also replicated for K lines (as-
suming 1:1 imaging optics for Ly). A second grating at
a spatial frequency corresponding to the second m; is
recorded on the next K lines at P; (or alternatively a
grating at one u,; is present at P; depending upon the
system scenario). In all cases only one spot appears
within the first K lines of the P5 aperture etc., and thus
as before the horizontal locations of the peaks of light
at P, correspond to the desired R,,;. The vertical Py
axis is now partitioned into sets of K lines with each set
corresponding to one R,,;. Since the 2-D SBWP of
available spatial light modulators!! is so large, this
utilization of available real estate at Py is warranted if
the desired system dynamic range is to be realized. One
shortcoming of the system of Fig. 7 is the low usable
input light level. :

This can be improved if the decimal input number is
used to control an oscillator to raster record the input
as a signal at frequency fy proportional to N on K lines.
The 2-D Fourier transform of such a raster-recorded
input pattern contains coarse and fine frequency axes.
The location of the output peak along the fine frequency
axis is the desired residue modulo, the input horizontal
line scan rate.!2 The modulus is thus set by the input
line scan rate, and a set of gratings is not required.!?

At the output plane Ps of Figs. 1 or 7, another accu-
racy issue arises. Positional accuracy represents no
major problem since only m; resolution points per
channel are needed. Rather, the diffraction efficiency
of the grating used at P; must be sufficient to produce
enough detectable light in the m/m;th order of the
grating. The problem can be relieved by use of larger
m; values, by use of blazed or bleached gratings, etc.
The accuracy of the spatial frequency of this grating will
also affect performance, but this is not expected to be
a major error source since the grating need be produced
only once.

Since the aperture of the grating at P; determines the
spot size in the output plane Pj, we must insure that this
aperture remains above some minimum value for all
beams emerging from different locations in Py that
strike P; at different angles.

For simplicity in the analyses used, we assumed equal
unit distances Axg = Axg = Ax in Pyand P;. InFig. 1,
the Pg resolution must be superb. However, there is no
reason to retain fine resolution in Py since only m;
points per line are needed in Ps. Thus, in practice
choosing m; large and Axg > Axg should improve per-



formance. However, utilization of the available space
bandwidth (SBW) and a full system design will deter-
mine the optimum values.

We demonstrate by example this latter point and why
the particular input format for the converters of Figs.
1 and 2 and the adder of Fig. 4 may not be as indicated
in the examples in Secs. III, IV, and VI. Consider the
input SBW requirements for a residue adder to add in
parallel 100 pairs of numbers, each of which is described
in residue by N = 11 moduli (with the largest modulus
equal to 31). Since max(m;) = 31 and N = 11, we re-
quire a SBW = 343 to represent fully one number in
residue. To represent 100 numbers, we require a SBW
= 34,300. Thus to add two such pairs of 100 decimal
numbers, we require an input SBW = 68,600. )

This value may seem quite formidable, and in fact it
is for many systems. However, the input SBW
achievable in real time on a spatial light modulator!! in
a coherent optical processor easily exceeds 103 X 103 =
108. Thus the input SBW required for the above ex-
ample leaves 931,400 of the 106 possible input pixels
unused. As this numerical example rather vividly
demonstrates, the increased SBW requirements of a
residue arithmetic system represent no problem in an
optical residue arithmetic system. Thus, utilization of
the large available input SBW of an optical processor
will definitely require far more elaborate input formats
than those described in the examples in Secs. II-VII.
Detailed formulation of these aspects is a system inte-
gration problem that is best addressed for a specific
signal or image processing problem. For now, we simply
note that for these reasons a general formulation of
residue arithmetic operations in correlation terminology
is preferable since available technologies can then be
used to realize the required system without reliance on
special purpose components such as cascades of inte-
grated optical switches that are not yet available.

In the numerical example presented in which N = 11
moduli with max(m;) = 31, the largest input number
that can be represented is about 242, Thus, this system
with eleven moduli has the equivalent accuracy and
dynamic range of a 42-bit digital computer.

A final note on system accuracy is merited. There
are at least three distinguishable methods by which
residue numbers can be represented in an optical pro-
cessor. These are: the state of polarization or phase
of the light at a single point and by the position of a spot
of light. We have chosen to use the latter pulse-position
coding representation. This allows direct formulation
of the required processing in correlation terms, which
in turn allows us to obtain a quantitative measure of the
system’s accuracy. If polarization or phase coding were
used, analysis of system errors is far more complex, and
SLMs are needed with higher uniformity and optical
quality than are presently available. Analysis of the
effect produced by errors in such space-variant com-
ponents poses a complex statistical problem. In pulse
position coding, the geometrical registration accuracy
of the components are the dominant factors affecting
system performance. Modeling and analysis of such
geometrical effects are far more conducive to producing

a quantitative error budget for the over-all system.
Since an error of one unit in a residue number can cause
large overall errors in the system, the error source
analysis of such systems is vital. At present pulse po-
sition coding appears to be the most promising coding
scheme to use. :

IX. Summary

Residue arithmetic has been shown to possess many
features that make an optical numerical processor using
residue arithmetic attractive. With no carries present,
all operations can be performed in parallel thus using
the parallel processing features of an optical system.
Since a given computation is divided into a number of
subcalculations (in different moduli), the dynamic range
and hence the accuracy required for each subcalculation
are far less than those required for the over-all calcu-
lation. Thus, the accuracy and dynamic range limita-
tions often associated with optical systems are greatly
reduced by the use of optical residue arithmetic.

A new decimal/residue/decimal optical conversion
scheme has been described and experimentally dem-
onstrated. Pulse-position coding, carrier modulation,
and aperture control are used to achieve conversions.
These operations and residue addition have been for-
mulated in linear system theory and correlation terms.
This approach allows one to implement directly the
resultant system using many different technologies.
The analysis and design of a residue adder has demon-
strated the ability of this correlation-based formula-
tion.
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