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Accurate simulation from digital, submicron, optical elements is obtained by 
nite di�erence time domain (FDTD) results that
are phase analyzed as sources for Huygens wavelets on 
ne scales much shorter than the wavelength used. Results, from the MIT
electromagnetic evaluation program, are renormalized by a method here called “refractive impulse.” 	is is valid for polarized
responses from digital di�ractive and focusing optics. 	e method is employed with plane wave incidence at any angle or with
diverging or converging beams. It is more systematic, more versatile, and more accurate than commercial substitutes.

1. Introduction

Modern optical components train submicron wavelengths
through yet smaller optical di�ractive and imaging elements
[1]. Meanwhile, digitized optics enables novel applications
with asymmetric di�ractive and focusing components and
with holographic systems. Classical wave theory can indicate
only coarse descriptions of the response, though several
techniques have been described that address the problem. For
example, attempts at coupled-wave approaches [2–4] are typi-
cally limited in con
guration and approximate in application.
Generally, the solution requires integrations or summations
in three dimensions, including the pro
le of an optical
component.

Commercial so�ware, typically, attempts simulation
of the optics of microelements by adapting dynamical
di�raction [2–4]. 	is adaptation involves treating a two-
dimensional grating as if it were a three-dimensional crystal.
However the method is inappropriate for many reasons and
the predictions for di�racted intensities cannot be better than
50% accurate. 	e law of di�raction of light, having wave-
length �, from a plane grating, of spacing �, is given by [5]

�� = � sin (�) , (1)

where � is the order and � is the scattering angle. Di�raction
from three-dimensional crystals is quite di�erent. Bragg’s law
gives

�� = 2�ℎ�� sin (��) , (2)

which approximates to �� ≈ 2�ℎ���� ≈ �ℎ��� when � ≪ �
as in transmission electron microscopy. However, the inter-
planar spacing �ℎ�� in Bragg di�raction becomes multivalued
and is peculiar for each di�racted beam following themethod
of indexation, ℎ, �, � [4]. Moreover, the scattering angle is
approximately twice the Bragg angle. Unlike di�raction from
gratings, Bragg di�raction requires the angle of incidence
to change when high orders are measured. 	ere are yet
further fundamental di�erences that are overlooked in the
commercial so�ware. Bragg di�raction is not refracted since
there is only one zero order beam and it lies in the direction
of incidence; all Bragg di�raction is specular, while each
di�racted beam has its own peculiar interplanar spacing,
so that analysis that uses a single spacing for all beams
is inaccurate, whereas, in crystals, the Bragg condition is
satis
ed by the Ewald sphere construction and this condition
does not apply in di�raction from two-dimensional (2D)
gratings. 	e Ewald sphere applies weakly in thin specimens
in transmission electron microscopy of crystals by appli-
cation of the deviation parameter [6]. Conjoining the two
methods described by (1) and (2) is misleading, because
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Figure 1: Near 
eld electromagnetic propagation of a vertically
polarized planewave through a section of a simple transmissive glass
grating.	e wavelength is 850 nm and the element width is 500 nm.
	e voxel is cubic with edge length 25 nm and Maxwell’s equations
are continuous at all voxel boundaries. Amplitudes are selected on
a plane with zero mean (dashed line). 	ey are converted to a
phase shi� distribution that advances Huygens wavelets interfering
at length in far 
eld.

di�raction from a 2D grating is di�erent from 3D crystal
di�raction.

For these and further reasons, we revert to grating optics
in order to simulate di�raction and focusing that are due to
microopticswith pro
led elements.	e response tomicroop-
tical elements, where � > �, is represented by 
nite di�erence
time domain (FDTD) computation. Consistent calculations
on a very 
ne grid are taken to average individual amplitudes
from correspondingly small cells arranged on a plane behind
the optical microsystem. Such a plane is represented in
Figure 1 by the dashed line. 	e impulsive amplitudes at vox-
els are added together in the near or far 
eld a�er accounting
the phase changes due to ray paths.	ismethod has been jus-
ti
ed by studies on proximity e�ects aboutmultiple elements.
It provides both accuracy in computed response and calcu-
lated di�erentials in polarization dependence. When optical
components are large, computational economy is gained by
combining stitching [7, 8] of local 
nite di�erence time
domain (FDTD) results to Huygens wavelet analysis on a 
ne
scale. 	e method is versatile and able to describe parallel
wavefronts as well as divergent ones, before and a�er digital
focusing and di�ractive beam splitting.	ough FDTD is gen-
erally used for understanding relative changes, renormalized
results are stabilized by a method that we call “refractive
impulse.” Detailed obliquity e�ects are included in the calcu-
lation. 	e method also provides internal consistency, since
scattering angles and di�ractive interference are calculated
internally and are not given as parameters for the calculations.
O�en, the calculations can be speeded up by perceptive
use of symmetries. 	e method has been applied to systems
containing transmissive optical elements.

	e method can be used in either transmission or
re�ection. In either case it provides a versatile solution not
only in classical optics with pro
led grating structures [9–11]
or in combined digital focusing and di�ractive elements
or in holographic patterning [12] but also in other diverse
applications.

	ere are further practical reasons for adopting this
combination of FDTD phase shi�s on a plane with wavelet
propagation. 	e combination is equally adapted to diver-
gent, convergent, or parallel beams, whether for analysis
on symmetric or asymmetric gratings, analysis on digitized
Fresnel lenses or conventional optics, or polarized or nonpo-
larized beams, and so forth. “Refractive impulse” refers to the
method used for interfacing the FDTD and digitized Fresnel
microoptics, including normalization of consistently iterated
beams.

2. Finite Difference Time Domain Simulations

On a scale of 1/40m cubic “voxel” elements, Maxwell’s
equations were solved using the MIT electromagnetic eval-
uation program (MEEP) [13]. Radiation from a laser source,
∼800 nm wavelength, was represented as a collimated plane
wave or as a divergent wave from a point source [14].
Responses from submicron optical elements were simulated
downstream for various polarization conditions. One exam-
ple is illustrated in Figure 1. Notice the change in wavelength
due to the refractive index of the glass to the right side of the
optical elements. A plane is selected with mean amplitude
zero and the amplitudes � are normalized, max(�) = 1 =
−min(�) on nearby planes, before conversion to phase
shi�s �:

� (�) = arc sin (� (�)) . (3)

	is is valid where the shi� −�/2 < � < �/2. 	is formula
depends on the fact that �(�) is modulo 2� in �, since this
condition has the result that sin(� − �) = sin(�). 	e phase
is used to advance or retard the Huygens wavelets to be
described in Section 3.

Calculations are done in 2 or 3 dimensions (2D or 3D)
as required. Greater resolution and speed of calculation are
obtained at the lower dimension owing to reduced comput-
ing power required. Snapshots are recorded over series of
moments. 	e example shows normal incidence, but a wide
range of con
gurations have been simulated, including colli-
mation and focusing by Fresnel type lenses.

Normal methods of 
nite element analysis (FEA) are
applied. Instead of a strict boundary condition, the boundary
layer is applied with exponentially increasing absorption
towards the edge. Optimization is obtained a�er multiple
trials. Transients are avoided by self-consistent iteration.
Boundary absorption causes the amplitude of the wave to
decrease in the direction of propagation. 	e typical con-
sequence is that the simulations are relative and require
renormalization, described in Section 4.
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Figure 2: Far 
eld Fresnel image intensity (center) and di�racted
image intensities due to the response of a plane wave on an
asymmetric grating.

3. Huygens Wavelet Interference in Far Field

On a far 
eld plane illustrated in Figure 1, each voxel near
the microelement is the origin of a Huygens wavelet with
phase change applied as just described. Illumination is plane
polarized. 	ough the 
gure shows uniform illumination,
variations in intensity over the 
eld, due, for example, to a
weakly divergent laser beam, are easily applied. Typically the
wavelet phases are summed at a distant plane (as in Figure 2)
a�er accounting for the wave oscillations over the path
towards the plane. 	e 1D section shown is suitable for inci-
dent plane waves and regular gratings, but when the intensity
varies or when focusing elements are used, 2D intensity plots
are calculated.

Several details must be computed. Consider obliquity
requirements, 
rst at the optical elements and secondly at
the far 
eld plane. In conventional optics for an absorptive
grating, the obliquity factor is “a function proportional to
the amplitudes of secondary waves propagating in various
directions according to Huygens’ principle. It is 1 + cos(�)
where � is the angle between the normal to the original
wave-front and the normal to the secondary wave-front” [3].
Since the FDTD wavefront has a varying normal, the local
normal at each voxel is calculated and used in the obliquity
calculation. We 
nd that typical intensity outcomes due
to the correct obliquity vary by only about ∼1% from the
approximate value due to applying the normal of the incident
beam. 	e small di�erence is a consequence of cancellations
of positive and negative components on either side of the
normal. In some calculations, Huygens wavelet obliquity can
be neglected by approximation. A second obliquity at the
plane recorded at far 
eld is represented by a cosine term
when intensity is spread over longer space. 	is term can
be completely neglected when refracted intensity is sub-
sequently focused, for example, by conventional optics.
Other features of FDTD calculations require more systematic
treatment in accurate simulations including re�ection and
normalization.

4. Normalization for Reflected Rays

	e simulated optical response of the system, whether repre-
sented in 1D as in Figure 2 or in alternative 2D, depends 
rstly
on stitching phases derived from FDTD wave amplitudes
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Figure 3: Schematic diagram used to calculate intensities of trans-
mitted beams relative to the incident intensity (with optical con
g-
uration as in Figure 1). In each dashed box, intensities are summed
over an integral number � of wavelengths. Global absorption � is
calculated by simulation with refractive index � = 1 and re�ection
� = 0. Given the four measurements with four unknowns, the
corrected ratio of transmitted/incident intensities �/� is found.

to wavelet propagation at the near 
eld and secondly on
summing the amplitudes at far 
eld. Prima facie, the FDTD
amplitudes, provide valuable comparative information, as for
polarization dependence, but limited accuracy in absolute
calculation. We correct for the latter limitation by means of
the method here called “refractive impulse” (RI) as a cor-
rected average for the two types of simulation.	e correction
is applied to the wavelet response described in Section 3.

MEEP is iterative. A principal bene
t is that, as a wave-
front advances, re�ected beams are incorporated into self-
consistent conditions at elemental boundaries. Meanwhile,
graduated absorbing layers at global boundaries serve tomin-
imize unwanted re�ections.	e absorption results in a loss of
current in the simulation. Without correction, resulting sim-
ulations will be relative. However, it is possible to derive accu-
rate, quantitative results by applying corrections for re�ected
rays. Consider an arrangement illustrated in Figure 1, where a
beam is incident on a glass block containing digital microele-
ments. Suppose the simulation is required for a feedback
loop to be used in stabilization of an optical light source
and coupling optics. Accurate calculations require absolute
comparison of the transmitted beam with the incident
beam.

	e current inside the block is reduced by two principal
e�ects: 
rstly due to re�ected wavefronts from the face of
the glass block and secondly due to absorption at the global
boundaries. Here, the theoretical graduation in refractive
index at the boundaries is designed to minimize computed
re�ections. Typically, the matching of the incident beam at
the global boundary is achieved by logarithmically graded
refractive indices. 	e e�ect of absorption at the global
boundaries can be computed by switching the refractive
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index to � = 1 and summing intensities within boxes that are
set up to measure the glass block re�ection and transmission
(Figure 3).	is computes the absorption,�.	ewidths of the
blocks (dashed lines) are an integral number of wavelengths,
�� in air or ��/� in glass of refractive index �. From the
four intensity summations, the corrected ratio of transmitted
to incident beam intensities �/� is calculated and used in
the stabilization of instrumentation through refractive beam
splitting.

5. Conclusion

	emethoddescribed for simulating responses due to submi-
cron optical components is versatile. Its accuracy is increased
systematically by normalization. FDTD methods are then
applied to simulate accurate simulations of response. For typ-
ical 1D solutions, the results can be obtained in a fewminutes
plus some editing in selection and formatting of optimum
amplitude pro
les. For 2D calculations, involving polarized
diverging beams and focusing optics, the calculations are
longer. However the time can o�en be reduced by perceptive
use of symmetries and by approximations made to employ
individual stitches multiple times (e.g., by joining horizontal
stitches locally to cylindrical 
elds).
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