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ABSTRACT : We studied the optical signature of bipolaron and its effects on the bandgap 

modulation in the single-layer Transition Metal Dichalcogenides (TMDs) under magnetic field. 

Using the Huybrecht method, we derived the ground state energies in  the modified zero Landau 

levels for all Fröhlich coupling constants. We take into account both intrinsic longitudinal 

optical phonon modes and surface optical phonon modes induced by the polar substrate. We 

observed that the higher the coupling strength, the stronger is the magnetic field effect. The 

highest amplitude of the bandgap modulation is obtained for the MoS2 monolayer and the 

lowest with the WSe2 monolayer. We also found that the bipolaron is stable in TMDs. It is seen 

that the optical absorption presents the threshold values and respectively increases for  WSe2, 

MoSe2, WS2 and MoS2.  
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1. Introduction 

Transition metal dichalcogenides belong to the family of lamellar materials of formula MX2. 

M is a transition metal of group IV, V or VI of the periodic classification table and X is a 

chalcogen. Electronically, it covers a wide range of properties from insulator to semiconductor 

and to the metal [1]. Two-dimensional (2D) TMDs is a new generation of thin atomic material 

with special physical properties. Today, these materials are the focus of much scientific research 

[2,3]. Compared to graphene, the direct bandgap of TMDs has been reduced, with potential 



applications for high electron mobility transistors and light-emitting diodes [4]. Due to the 

ability to control the size of the 2D TMDs bandgap, the TMDs bandgap has become one of the 

most important studies in semiconductor physics [5,6]. 

Polaron is an entity discovered in 1933 by Landau [7], it is use to describe interaction between 

free charges carriers and induced polarization coming from electron (hole)-atome coupling in 

solid material. This quasiparticle is characterized by some properties as effective mass, energy 

mobility and absorption coefficient, etc. These properties strongly depend on the interaction 

between charges carriers, crystal lattice and the frequence of charges carriers [8,9].  Depending 

on the way the size of lattice distorsion is, comparing to lattice constant, they are two types of 

polaron: large polaron and small polaron [10-12]. The bipolaron arrives when two identical 

polaron interact in the crystal lattice. Bipolaron formation is influenced by the difference 

between the coulombic repulsion of chages carriers and theirs attraction with lattice. 

Many theoretical works investigated the polaron in 2D structure through the chemical 

composition [13], the geometrical shapes of the material [14] and the lattice constant [15,16]. 

Other theoretical works exhibit high bandgap renormalization [17,18]. Experimental work 

shows that polar substrates are important in the study of the physical properties of TMDs 

[19,20] and also highlights the importance of the Van der Waals interaction [18,21,22] in 

TMDs. Based on these results, it appears that the environment may affect the TMD band gap.   

In a recent paper [23], the study of the modulated bandgap in 2D single-layer TMDs derived 

from carrier-optic phonon coupling in the Fröhlich model showed that the bandgap magnitude 

can be modulated in the range of 100-500meV by changing different polar substrates and by 

varying the internal distance between the TMDs and the polar substrates. These studies only 

considered the weak coupling regime. Nevertheless, it is necessary to explore all coupling 

regimes while study bipolaron in order to better understand the modulation bandwidth and the 

stability in TMDs. Optical conductivity and infrared absorption characterized by the optical 

absorption coefficient of the Fröhlich polaron have been studied in polar semiconductors and 

ion crystals [24-26]. Experimental and theoretical works  have been used to derive the optical 

absorption [27-29]. Recently, Li and Wang studied the optical absorption coefficient of the 

Fröhlich polaron in single-layer TMDs taking in account both LO and SO phonons [30]. They 

derived the optical absorptions using the Devreese-Huybrechts-Lemmens model in the low 

temperature limit for the weak coupling between the electron and the phonon. However, the 

optical absorption of bipolaron in TMD, to our awareness, has not been sufficiently studied. 



 

FIG. 1. Sketch of the optical absorption of the bipolaron in the monolayer TMDS 

 

In this work, we first present the effect of the bipolaron for all coupling regime on the 

modulated bandgap in a two-dimensional TMD quantum dot supported by a polar substrate in 

the presence of an external magnetic field in the third direction. We study the optical absorption 

of bipolaron in TMDs for all coupling regime. The optical phononic modes are strongly coupled 

with the carriers in 2D TMDs [31], which leads to the formation of the polar state [32]. We 

have taken into account the intrinsic longitudinal optical phononic modes (LO) and the surface 

optical phononic modes (SO) induced by the polar substrate.  

We organized the article as follows: in section 2, we present the conceptual model and the 

calculations. The results are given and discussed in section 3, and in section 4, we conclude. 

2. Model and calculations 

A. Ground state ennergies 

Let us consider a monolayer of TMDs situates on a polar substrate in presence of uniform 

magnetic field applied on the third dimensions in a quantum dot (fig. 1.). The total Hamiltonian 

of bipolaron can be written in this form 

 21)( rrUruHHHH phephebp           (1) 

where eH  describes the energy of the electron defined as: 
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with 321 ,,  the Pauli matrices, 
FV the Fermi velocity, G2 the bandgap,  1 for 

electrons and holes respectively and A is the potential.  

The second term phH  stands for the phonon energies including SO and LO modes defined 

as: 
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where kk aa , are respectively creation and annihilation operators for the phonon with k  being 

wave vector where 
 is the frequency of the phonons.  

The third term pheH   is the Hamiltonian of interaction between electron and phonon  
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where ,kM  is the coupling element of Fröhlich [23]. 

The term )(ru is the confinement potential [33] in the quantum dot  
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whereas R  and V  are respectively the length and the depth of the quantum dot and L  is 

the smoothness of quantum dot. C is a constant. The last term of Eq. (1). is the coulomb 

interaction potential between the two electrons. Since the bipolaron is a composite particle, it 

is convenient to introduce the center of mass and relative coordinate and momenta, 
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Hamiltonian in Eq. (1). can be rewritten after averaging over a relative wavefunction )(r  as : 
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The Huybrecht method is applied by using the two following unitary transformations : 
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Where  is parameter, kf and 
*

kf are the variationnal parameter. Performing the two 

Huybrechts unitary tranformation to the bipolaron’s Hamiltonian, one gets :  

21

1

1

1

2

' uuHuuH bpbp

  

then  

     

     































1exp

)(

1

*

,

,

,

*

,

3

*'

ikRfafaB

fafaruEGfafakaVH

kkkk

k

k

k

kkkkr

ik

kkkkiiiiFbp 
  

(8) 

In order to investigate the ground state energy, we will replace into Eq. (8). 
iP  and ir   by the 

expression given by  jji bb
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the magnetic confinement length, 
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jb  the creation and jb  the annihilation operators are 

introduced for momentum and positon of electron, subscript i  denote zyx ,, . 
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Where 0bpE is the modified zero Landau level due to the bipolaron effect for the electron. 

Following the same rules, 0bpE  is for the case of the hole and can also be obtained in the top 

of the valence band. Finally, the eigenvalues of the energies in the zero Landau Levels can be 

written as : 



 
 

 

 

 

 

 







































































































 































,

2
222

2

2
222

,

221

2

2

2

2
222

;

2

0

2
exp

2
1exp

8

exp1exp

4

2
4

exp1exp

4

,,

,

k FFk

Fk

FFbp

kV

b

k
k

m
M

kV

b

k
k

m
M

b

eb
U

kV

b

k
k

m
M

kVGVE

kk

k


















    (13) 

Surface optical phonons strongly coupling with carriers in monolayer TMDs are described 

by the third term in Eq. (1). with the coupling element [35-36]: 
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  is the polarizability of the substrate, 0 is low frequency dielectric constant, 0z is the internal 

distance between the TMDs and substrate.  ,SO is the energy of SO phonon with two 

branches 2,1 . Carriers coupled with intrinsic longitudinal optical phonon coupling in 

monolayer TMDs have been studied extensively [38-40]. The coupling element in Fröhlich 

model is given by 
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Where mL  is the atomic thickness of the monolayer, 0  is the intrinsic polarizability of 

material, LO represents the energy of LO phonon and erfc  is the complementary error 

function.  denotes the effective width of the electronic Bloch states reflecting the confinement 

effect between LO phonons and carriers in 2D materials [38,40]. Replacing Eqs. (14a). or (14b). 

we obtain the following results for different coupling regime and for SO and LO phonons : 

The energies of SO and LO in the weak coupling  1  are respectively : 
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And  
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The energies of SO and LO bipolaron in the intermediate coupling  10   are 

respectively : 
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and 
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The energies of SO and LO bipolaron in the strong coupling  0  are respectively : 
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The binding energy (BE) given as in [34] 

bpp EEBE  2  

characterises the stability criteria. Here, pE  is the single polaron ground state energy in the same 

approximation. In this  case the BE is given by : 

                                                 002 bpp EEBE      (18) 

B. Magnitude of the bangap modulaton 

As the energy difference   00 bpbp EE denotes the modulated bandgap, it is important to 

derive it in order to analysise qualitatively the bipolaron effects on the bandgap. The magnitude 

of the bandgap modulation is defined as [23]: 

    
LOSObpLOSObp EEGG

,0,022           (19) 

Using Eq. (19) we obtained the magnitude of the bandgap modulation for all coupling regimes 

and both for LO and SO phonon. From Eq. (15). we observe that 0bpE and 0bpE are 

independant of the magnetic field which is differents from other Landau levels energies and 

others coupling (Eqs. (16) and (17)). So the magnitude of bandgap modulation in weak coupling 

regime can not be altered by an external magnetic field. This result is similar to the case of 

polaron [23,41]. In others coupling regime (intermediaite and strong), the magnitude of the 

bandgap is a function of magnetic field. 

C. Absorption coefficient 

The absorption coefficient     of the incident light with the energy  of a free polaron, 

according to Fermi's golden rule, is [25,26,35]: 

   f

f

f EEV
Fcn

  


 0

2

02





                              (20) 

where n  is the refractive index of the medium, c  equals the speed of light,   stands for the 

permittivity of free space, and F represents the intensity of the electric field vector of the 

incident photon. eFrV   indicates the time-dependent perturbation, 0  denotes the ground 



state of a free polaron and 0E  represents the energy of the ground state. f  represents the wave 

functions of all possible end states with the corresponding energies fE . To prevent complicated 

summation on the final states, a simple model in which the wave functions f  of the excited 

states have been suppressed by the Lee Löw Pines unit transformations have developed [35]. It 

was noted that Eq. (20). concerns the weak and intermediate coupling regime. Thus, in the weak 

coupling regime using the same formula we obtain, the absorption coefficient for SO and LO 

bipolaron as 
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In the intermediate coupling, the absorption coefficient of SO and LO coefficient is given by: 
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3. Results and Discussions 

This section presents the numerical results, we used some constants outlined in Table 1 in 

our calculations. We assume the Fermi velocity to be equal for all TMDs selected in this paper 

since it varies slightly for different TMDs [37]. The values of the band gap are adopted in Table 

2. For LO phonons, the evaluation of the amounts of band-gap modulation and the relative ratio 

for the different TMDs are shown in Table 3 and  fixed values of nmLm 5.0 , nm6.0  

are taken in all TMDs monolayer [42]. 

 

Table 1: Parameters of different polar substrates and surfaces optical phonon modes [41,43].. 

Quantity (unit) BNh   SiC  AiN  2SiO  
2HfO  

2ZrO  
32OAl  

 00 k  5.1 9.7 9.1 3.9 22.0 24.0 12.5 

  k  4.1 6.5 4.8 2.5 5.0 4.0 3.2 

 meVSO 1,  167 146 84 25 101 94 53 



 meVSO 2,  116 60 105 71 196 55 19 

  0.032 0.040 0.074 0.082 0.122 0.160 0.164 

 

Table 2 The magnitude of bandgap modulation for the different TMDs. The values of 

intrinsic bandgap are same as from [38,39]. 

 

Quantity (unit) 2MoS  
2MoSe  

2WS  
2WSe  

 meVG2  1870 1560 2100 1650 

 

Table 3 The energies of LO phonons of different TMDs are taken from[25,38]. 

Quantity (unit) 2MoS  
2MoSe  

2WS  
2WSe  

 meVLO  48 34 43 30 

 0mm  0.51 0.64 0.31 0.39 

  

In Fig.2(a). we present the dependences of MBM on the magnetic field for bipolaron in different 

monolayer TMDs at intermediate coupling regime. It can be seen that the MBM increases with 

magnetic field. For various TMDs, the MBM are also shown, one can observe that it varies with 

TMDs monolayer. The most important MBM is obtained with WS2 and the less with MoSe2, 

thus among the selected TMDs the latter strongly enhances the conductivity. A significant 

change of MBM relates to each TMDs highlights the impact of the magnetic field on the 

bandgap modulation in TMDs monolayer. 

 

 

FIG. 2. (a) Magnitude of bandgap modulation versus magnetic field  in intermediate coupling 

regime for different TMDs monolayer on 2 3Al O  polar substrates. (b) Magnitude of bandgap 
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modulation versus magnetic field  in strong coupling regime for differents TMDs monolayer 

on 2 3Al O  polar substrates. (c)  Magnitude of bandgap modulation Versus 0  for  different 

monolayer in weak coupling regime.   

Fig.2(b). presents the dependence of MBM on the magnetic field in different monolayer at 

strong coupling regime. As in the intermediate regime we can see that MBM increases with 

magnetic field. We also observe that the MBM varies with TMDs monolayer, then the most 

important is obtained with MoS2 and the less with WSe2 which is not the case in intermediate 

coupling regime. Thus the electron phonon coupling affect the MBM for different TMDs 

monolayer in the presence of bipolaron. Fig. 2(c). presents the MBM versus 0  for  different 

monolayers in weak coupling regime. One can observed that MBM increases with increasing 

the coupling parameter 0 . Same result was obtained by [23]. These results show that the 

bipolaron strongly affects the bandgap of TMDs. Since the coupling parameter characterizes 

the material, strong coupling  favor the modulation of the bandgap. The WSe2 presents the 

highest MBM. In the investigation of carriers LO phonon coupling in monolayer TMDs, 

defined a new parameter fg  defined by sohier [40] as the coupling strength, which is analogous 

to the parameter 0 and pointed out that the 2D Fröhlich coupling is much stronger in TMDs. 

Moreover, we noticed that the values obtained for the bandgap modulation due to carrier-LO 

phonon coupling are very close to experimental results [44,45]. Then, the LO phonons increase 

the modulated bandgap then consequently decrease conductivity in TMDs. Among the selected 

TMDs, the one with highest performance in conductivity is the MoS2.  

 



FIG. 3. Binding energy of the bipolaron versus magnetic field B in MoS2 for different polar 

substrate (intermediate coupling regime) 

 

FIG. 4. Binding energy of the bipolaron with parameter 0  in weak coupling regime for 

different TMDs monolayer 

In Fig.3. the binding energy with magnetic is presented for intermediate coupling regime. 

One can observed that the binding energy decrease with increasing of magnetic field. The 

increase of magnetic field enhances the average of coulomb repulsion between the electrons, 

this result is in accordance with  the work of Brosens and Devreese [46]. Thus, despite the 

enhances of coulomb repulsion, the phonon mediated attractive electron-electron attraction still 

dominated. That is the reason that the binding energy remain positive and indicated that in all 

selected TMDs monolayer, the bipolaron is stable. From Fig. 4, the binding energy decreases 

as 0 increases, then the bipolaron is stable in the different monolayer TMDs as the binding 

energy remain positif.  



 

FIG. 5. Optical absorption coefficient versus photon energy in LO phonon in different 

monolayer TMDS materials for bipolaron in weak coupling regime  

  



FIG. 6. Optical absorption coefficient (case of SO phonon) versus magnetic field B in MoS2 

intermediate coupling regime 

 

FIG. 7. Optical absorption coefficient  (case of SO phonon)  versus magnetic field B in MoS2 

intermediate coupling regime for different polar substrate  

Fig. 5. illustrates the optical absorption of the bipolaron versus the incident photon energy 

for LO phonons in different layers of TMDs with an weak coupling regime. It can be noted that 

there is no absorption for LO . The threshold value of absorption is at LO  . 

At this value the optical absorption increases and arrives at a maximum and decreases slowly 

with increasing of photon energy. In fact, these optical absorption behaviours are consistent 

with previous work on monolayer TMDs and others [26,30,47].  Optical absorption is similar 

for different TMDs  but the  strength are not the same for each TMD. This behaviour may be 

attribuated to the fact that the optical absorption is proportional to the phononic energy of the 

bipolaron in the different TMDs. This suggests that the lower the phononic energy of the 

bipolaron in the TMDs, the lower the optical absorption of a bipolaron. A number of past works 

have been carried out to study the coupling force in such monolayers [40,42,48]  Then in MoS2, 

bipolaron has enough energy to absorb photon than WSe2, this can be due to the dominance of 

electron-phonon and photon-phonon interations. Comparing the optical absorption in 

intermediate coupling regime (not shown) with the one in weak coupling regime we observe a 



similar behavior. This can explain why both couplings can be considered identically in some 

cases.  

Fig.6. displays the dependences of optical absorption with magnetic field for the monolayer 

MoS2 on SiO2 substrate at various values of internal distance between TMDs monolayer and 

polar substrate. One can observe that the optical absorption is the same for different internal 

distance when 0B , increase slowly and become constant with magnetic field. We also 

observe that optical absorption increase with internal distance separating the monolayer from 

polar substrates, proving that the strength of the electron-SO coupling directly depends on the 

internal distance between the TMDs and the polar substrates. This result is in agreement with 

that of Li and Wang [30]. In fact, in some studies [49,50], carrier phonon coupling between 2D 

materials and the polar substrate has also been recognized, where the trends are comparable for 

the coupling strength with the internal distance. The optical absorption of SO bipolaron at 

intermediate coupling regime in monolayer MoS2 for different polar substrates is shown in Fig. 

7. One can observe the variation of optical absorption with the polar substrates. For 0.6B  , no 

absorption is observes in MoS2 then for 6.0B a significant change of absorption relates to 

each substracts highlights the impact of the magnetic field on the optical absorption in MoS2 

monolayer. The greatest optical absorption is observed in SiO2 polar substrate this result is in 

agreement with those of Hein et al. [51] and lowest for h-BN.  

4. Conclusion 

    We theoretically studied optical absorption of bipolaron and it effects on the bandgap 

modulation in quantum dot of single layer transition metal dichalcogenides under magnetic 

field for all coupling regime, where both LO and SO phonon are taken into account. Hubrechts 

method and simple unitary transformation are using. We shown that the MBM of TMDs are 

flexible. We also found that magnetic field strongly affects the MBM in intermediate and strong 

coupling regime, thus enhances the conductivity of TMDs monolayer and that in weak coupling 

regime, the magnetic field cannot be used to tune the MBM. Investigating the optical absorption 

we found that both the magnetic field and the internal distance separating the monolayer and 

polar substrates affects the optical absorption in the TMDs. We show that in  MoS2, bipolaron 

has enough energy to absorb than in WSe2. Due to the flexibility of the MBM and the stability 

of bipolaron in TMD is important to investigate the decoherence of bipolaron in future work.  
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