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We report systematic optical studies of WS2 and WSe2 monolayers and multilayers. The efficiency of
second harmonic generation shows a dramatic even-odd oscillation with the number of layers, consistent
with the presence (absence) of inversion symmetry in even-layer (odd-layer). Photoluminescence (PL)
measurements show the crossover from an indirect band gap semiconductor at multilayers to a direct-gap
one at monolayers. A hot luminescence peak (B) is observed at ,0.4 eV above the prominent band edge
peak (A) in all samples. Themagnitude of A-B splitting is independent of the number of layers and coincides
with the spin-valley coupling strength in monolayers. Ab initio calculations show that this thickness
independent splitting pattern is a direct consequence of the giant spin-valley couplingwhich fully suppresses
interlayer hopping at valence band edge near K points because of the sign change of the spin-valley coupling
from layer to layer in the 2H stacking order.

M
otivated by the triumph and limitation of graphene for electronic applications1, atomically thin layers of
group VI transition metal dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductorswith a desirable band-gap in the visible frequency range2–8. This family of dichalcogenides

MX2 (M5Mo,W; X5 S,Se) has a structure of X-M-X covalently bonded hexagonal quasi-2D network stacked by
weak Van der Waals forces. MX2 thin films exhibit 2H stacking order: the neighboring layers are 180 degree in
plane rotation of each other with the metal atom of a given layer sitting exactly on top of the chalcogenide atom of
the adjacent layer. There is an even-odd variation in the structural symmetry of ultrathin films: inversion symmetry
is absent (present) in films with odd (even) number of layers with space group of D1

3h (D
4
6h). Ab initio calculations

predict thatMX2 exhibits a transition from an indirect-gapped semiconductor inmultilayer form to a direct band-
gap one at visible range in monolayer, which has been experimentally verified in MoS2

7,8.
MX2 monolayer, the elementary unit to form ultrathin films by weak stacking, features a novel spin-valley

coupled band structure9. At the corners of the 1st Brillouin zone, the valence (conduction) band has two
inequivalent valleys described by massive Dirac fermions. Owing to the broken inversion symmetry in mono-
layers, the strong spin-orbit coupling from the d-orbitals ofmetal atom results in a valence band spin splitting at K
points, with amagnitude as large as,0.4 eV in tungsten dichalcogenides9,10. The spin-splitting has opposite signs
at the K and K9 valleys as they are time reversal of each other. This spin-valley coupling forms the basis for
manipulation of spin and valley degrees of freedom in these novel 2D semiconductors when combinedwith valley
contrasted electric, magnetic and optical properties arising from inversion symmetry breaking9,11–16.

Here we report our experimental study on optical properties of ultrathin WS2 and WSe2 mono-, bi-, tri- and
quad-layer samples by means of Raman scattering, second harmonic generation (SHG) and photoluminescence
(PL). The efficiency of SHG at normal incidence on WS2 and WSe2 ultrathin films shows a dramatic even-odd
oscillation with the number of layers: negligible at even-layer and nonzero at odd-layer, with maximum strength
at monolayers. PL measurements demonstrate that WS2 and WSe2 exhibit a transition from an indirect-gap
semiconductor at multi-layers to a direct-gap one at monolayers with an enhancement of the PL quantum
efficiency (QE) at a factor of more than 103 compared to bulk samples. Remarkably, a weak emission peak (B)
is observed at an energy,0.4 eV higher than the prominent direct bandgap transition peak (A) in all monolayer

SUBJECT AREAS:

CONDENSED MATTER
PHYSICS

ELECTRONIC PROPERTIES AND
MATERIALS

SEMICONDUCTORS

SPINTRONICS

Received
15 January 2013

Accepted
18 March 2013

Published
11 April 2013

Correspondence and

requests for materials

should be addressed to

W.Y. (wangyao@hku.

hk) or X.D.C. (xdcui@

hku.hk)

SCIENTIFIC REPORTS | 3 : 1608 | DOI: 10.1038/srep01608 1



andmultilayer samples. Unlike the case inMoS2 (B exicton absent in
MoS2monolayer PL though)7, themagnitude of A-B splitting in both
WS2 andWSe2 is independent of the number of layers and coincides
with the spin-valley coupling strength in monolayers. Ab initio cal-
culations show that this thickness independent splitting pattern is a
direct consequence of the giant spin-valley coupling which fully
suppresses interlayer hopping at valence band edge at K points
because of the sign change of the spin-valley coupling from layer
to layer in the 2H stacking order.

Results
For MX2 layered compounds, there are generally four Raman-active
modes, namely A1g, E1g, E

1
2g and E2

2g modes17,18. E1g mode and low
energy E2

2gmode are absent in our measurements due to the forbid-
den selection rule in the back-scattering geometry and the limited
rejection against Rayleigh scattering respectively. The presented
study focuses on the in-plane vibrational E1

2g mode and the out-
of-plane vibrational A1g mode. As these two modes are both polar-
ization sensitive, the exciting laser line was tuned to an unpolarized
state. Figure 2.a–d present the representative Raman spectra of WS2
andWSe2 slabs with layer number N5 1 to 4 and bulk. In the case of
WS2, we observe the E

1
2g mode at ,350 cm21 and the A1g mode at

,420 cm21 (Fig. 2.a)19. The E1
2g mode shows little dependence on

the film thickness, while the A1g mode undergoes a blue shift with
increasing layer number, showing a lattice stiffening effect as
expected when additional layers are added. By examining the fre-
quency differences (Dv) between the E1

2g mode and A1g mode, the
sample thickness could be identified accordingly. As indicated in
Fig. 2.b showing the frequency difference as a function of layer
number N, we label Dv 5 65.5 cm21, 68.3 cm21 and 69.2 cm21

to monolayer, bilayer and trilayer respectively. For slabs composed
of four and more layers, Dv converges to the bulk value at around
70 cm21. Notably, from monolayer to trilayer the A1g peak is rou-
ghly 0.5, 1 and 1.8 times the height of the E1

2g peak (Fig. 2.b),
demonstrating that the ratio of the intensity of A1g mode to that of
E1

2g mode could also be used as an indicator of sample thickness.
For WSe2, two dominant peaks are observed around 250 cm21 in
various samples from monolayer to bulk (Fig. 2.c). However, little
systematic trend could be observed on both the two modes as
shown in Fig. 2.d.

An experimental method to examine the inversion symmetry in
ultrathin film is to study the nonlinear optical effect such as SHG
determined by the second order susceptibility x(2) 20. In the presence
of inversion symmetry, x(2) is zero. A dramatic even-odd oscillation
pattern is indeed observed on the SHG intensity consistent with the
presence (absence) of inversion symmetry in even-layer (odd-layer)
as shown in Fig. 1.c and 1.g. WS2 and WSe2 ultrathin slabs are
scanned by a 150 fs pulsed laser beam with a wavelength of
800 nm at normal incidence and the signal at the double frequency
(400 nm) is collected. As expected, in bothWS2 andWSe2 slabs with
even layer number or bulk samples, negligible SHG are observed as
same in the case of the bare substrate (SiO2 on Si), and strong second
harmonic emission arises frommultilayer slabs with odd layer num-
ber. Notably, the brightest second harmonic emission is observed in
monolayers of both WS2 and WSe2. The intensity of the second
harmonic emission decays gradually with the increasing layer num-
ber, as indicated in Fig. 1.d and 1.h.
The Photoluminescence study shows thatWS2 andWSe2 exhibit a

transition from indirect band-gap semiconductor in the form of bulk
and multilayers to direct band-gap one in monolayers, similar to
MoS2

7,8,21,22. Figure 3 illustrates the PL spectra of WS2 and WSe2
samples with various thicknesses measured under the same con-
dition with an excitation at 2.41 eV. Fig. 3.a and 3.d show the PL
peak intensity as a function of thickness. The PL intensity is found to
be extremely weak on bulk samples, consistent with an indirect band-
gap semiconductor in bulk form. As WS2 and WSe2 thin to a few
atomic layers, the intensity of PL from direct interband transition
dramatically increases and reaches maximum at monolayers, more
than 3 orders of magnitude stronger than that from bulk. Both WS2
and WSe2 monolayers show much brighter PL with intensity at one
order of magnitude higher than bilayers. The peak originating from
the indirect band-gap transition (labeled as ‘‘I’’ in Fig. 3.b and 3.e)
gradually shifts toward higher energy and fades to null at mono-
layers. These behaviors are fully consistent with the calculated band
structures (see Fig. 4 and supplementary information).
Besides the peaks from indirect transition and the prominent

direct transition peak (A), weak PL peak (B) is observed at higher
energy inWS2 andWSe2 at all thickness. Note that the similar peak B
appearing in MoS2 multilayers is absent in monolayers7. The line-
width of peak A and B implies their excitonic origin as the case in

Figure 1 | (a) and (e): optical images ofWS2 (a) andWSe2 (e) slabs on Si substrates with 300 nm SiO2 cap-layer; (b) and (f): photoluminescence images at

direct gap transition energy of the corresponding WS2 (b) and WSe2 (f) slabs excited at 2.41 eV. Only monolayers are visible at the present

contrast; (c) and (g): the corresponding SHGunder a 800 nm excitation at normal incidence (150 fs, 80 MHZ) onWS2 (c) andWSe2 (g) respectively. The

highest intensity labeled in red arises from monolayers. The SHG signal from the silicon/silicon oxide surface is negligible compared with those

from multilayers; (d) and (h): The relative intensity of SHG as a function of the film thickness in WS2 (d) and WSe2 (h). The SHG shows an even-odd

oscillation dependence on the layer number.
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MoS2
7,23. Strikingly, the splitting between A and B peaks are almost

identical, around 0.4 eV for mono-, bi-, tri- and quad-layer samples
(see Fig 3.c and 3.f). Inmonolayers, it is nowwell understood that the
valence band edges at K points have a spin splitting purely arising
from the strong spin-orbit coupling in the d-orbitals of the W atom,
and we can attribute A and B to the direct-gap transitions between

the spin split valence bands and the conduction band at the K points7.
However, in multilayers, both the spin-orbit coupling and the inter-
layer hopping contribute to the valence band splitting at K points.
Besides, even layer samples are inversion symmetric while odd layer
samples are asymmetric. These in general would result in complex
and layer-number dependent splitting patterns in multilayers, which

Figure 3 | (a) and (d): The relative PL intensity ofWS2 (a) andWSe2 (d)multilayers respectively as a function of film thickness under the same conditions

(normalized by the PL intensity ofmonolayer at 1). Insets present PL spectra fromWS2 (a) andWSe2 (d)monolayers and bilayers respectively. The spectra

were taken at the same conditions (excitation power, exposure time, etc.); (b) and (e): The normalized PL spectra (with respect to the peak A) ofWS2 (b)

and WSe2 (e) ultrathin films. I labels the luminescence from indirect gap interband transition, A and B label the direct-gap transitions from the split

valence band edge to the conduction band edge at K points (see text). Spectra (dash line) in the zoom windows have been multiplied by a factor as

indicated for clarity; (c) and (f): The peak positions of I, A and B transitions as a function of the film thickness inWS2 (c) andWSe2 (f). Both cases show a

nearly constant energy difference of ,0.4 eV which corresponds to the splitting of the valence band edge. The universal A-B splitting implies a

suppression of interlayer hopping in tungsten dichalcogenides ultrathin thin films.

Figure 2 | (a) and (c): Raman spectra of WS2 (a) and WSe2 (c) ultrathin layers; (b) and (d): The frequency difference (red) and the peak intensity ratio

(blue) between E1
2g and A1g modes as a function of film thickness in WS2 (b) and WSe2 (d) respectively.
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is obviously different from the universal A-B splitting in the PL
spectra observed. It implies a novel cause in tungsten dichalcogenides
ultrathin thin films.

Discussion
To understand the A-B splitting pattern in WS2 and WSe2 ultrathin
films, we perform ab initio calculations of the band structures using
the projector augmented wave method24 and generalized gradient
approximation25 implemented in the ABINIT code26,27. The structure
parameters are taken from Ref. 10. Figure 4.a–d show the band
structures of mono-, bi-, tri-, and quad-layer WS2 in the absence of
SOC. As expected, the valence band edge at K point splits into two,
three, and four bands respectively for bi-, tri-, and quad-layer WS2
due to the interlayer hopping. A hopping matrix element t,0.1 eV
can be extracted from the splitting pattern. However, when spin-
orbit coupling (SOC) is included, the splitting pattern is completely
changed as shown in Fig. 4.e–h. The valence band edges split into two
degenerate manifolds with a splitting magnitude independent of the
film thickness for both WS2 andWSe2. The band structures of WSe2
ultrathin films could be found in supplementary information. This is
in perfect agreement with the A-B splitting patterns observed in the
photoluminescence of mono-, bi-, tri-, and quad-layer WS2 and
WSe2. The calculated valence band edge splittings of 0.43 eV in
WS2 and 0.47 eV inWSe2 also agree with the measured A-B splitting
of 0.4 eV as shown in Fig. 3 and the supplementary information.
In fact, the unexpected splitting patterns in multilayer WS2 and

WSe2 are manifestations of the giant spin-valley coupling in valence
band9. In monolayers, the Kramer’s doublet K:j i and K 0;j i are sepa-
rated from the other doublet K 0:j i and K;j i by the spin-valley coup-
ling energy of lsvc, 0.4 eV9. In the 2H stacked multilayers, any two
neighboring layers are 180 degree in plane rotation of each other.
This rotation switches K and K9 valleys but leaves the spin
unchanged, which results in a sign change for the spin-valley coup-
ling from layer to layer. Thus, the spin-conserving interlayer hopping
can only couple states in neighboring layers with a detuning lsvc.
Interlayer hopping is therefore strongly suppressed by the giant
spin-valley coupling. A direct consequence is that the splitting pat-
terns remain the same as that of monolayers, and the valence band
Bloch states near K points are largely localized in individual layers, as
if the interlayer hopping is absent. This is indeed confirmed by ab
initio calculations of electron density distributions of these Bloch

states (see Fig. 4.i and table S2 in supplementary information). The
full suppression of interlayer hopping at K points by the spin-valley
coupling is unique to tungsten dichalcogenides where lsvc? t. For
molybdenum dichalcogenides where lsvc, t, interlayer hopping will
manifest in both the splitting pattern and Bloch function28.
The above picture also explains why the hot luminescence peak B

can be observable frommonolayers tomultilayers at an energymuch
higher than the prominent direct bandgap transition peak A. In
monolayers, near K points, the spin-valley coupling gives rise to
two non-degenerate valence bands with opposite spin separated by
an energy of lsvc, 0.4 eV. The relaxation of hot carriers between the
spin-split valence bands requires a spin flip and is much slower than
intra-band relaxation. Hot carriers can thus have a finite lifetime at
the higher energy band edge, giving rise to hot luminescence, i.e. the
direct bandgap transition peak B8. In multilayers, we have the same
picture for hot carrier relaxation and hot luminescence at the valence
band edges near K points where interlayer hopping is fully sup-
pressed by the spin-valley coupling. The giant spin-valley coupling
offers a new strategy tomanipulate electron spin andmakes tungsten
dichalcogenides ultrathin films promising materials for semicon-
ductor based spintronics and conceptual valley-based electronics.

Methods
WS2 and WSe2 flakes were mechanically exfoliated from synthesized single crystal
bulk samples onto silicon wafers capped with a 300 nm thick SiO2 by a method
analogous to the way of producing graphene1. WS2 andWSe2 slabs were first visually
screened with interference color through optical microscope. Typical optical images
ofWS2 andWSe2 ultrathin slabs are presented in Fig. 1.a and 1.e. The film thickness is
confirmed by atomic force microscope. PL spectra are also used as an indicator of
monolayer samples (Fig. 1.b and 1.f). Raman scattering was carried out with a
confocal setup.
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22. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from

ab initio theory. Physical Review B 79, 115409 (2009).
23. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schuller, C. Low-temperature

photocarrier dynamics in monolayer MoS2. Applied Physics Letters 99, 102109
(2011).

24. Torrent, M., Jollet, F., Bottin, F., Zérah, G. & Gonze, X. Implementation of the
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