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We investigate the effect of nonlinearity on beam dynamics in parity-time (PT ) symmetric potentials.

We show that a novel class of one- and two-dimensional nonlinear self-trapped modes can exist in optical

PT synthetic lattices. These solitons are shown to be stable over a wide range of potential parameters.

The transverse power flow within these complex solitons is also examined.
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Quantum mechanics demands that every physical ob-

servable is associated with a real spectrum and thus must

be Hermitian. In the case of the Hamiltonian operator, this

physical axiom not only implies real eigenenergies but also

guarantees conservation of probability [1]. Yet in recent

years, a series of studies by Bender and co-orkers has

demonstrated that even non-Hermitian Hamiltonians can

exhibit entirely real spectra provided they respect parity-

time (PT ) symmetry [2]. By definition, a Hamiltonian

belongs to this latter class as long as it shares a common set

of eigenfunctions with the P̂ T̂ operator. In general the

action of the parity operator P̂ is defined by the relations

p̂! �p̂, x̂! �x̂ (p̂, x̂ stand for momentum and position

operators, respectively) whereas that of the time operator T̂
by p̂! �p̂, x̂! x̂, i! �i. Given the fact that the action

of T̂ leads to a time reversal, i.e.,T̂ Ĥ � p̂2=2� V��x�, one

finds that P̂ T̂ Ĥ � Ĥ P̂ T̂ � p̂2=2� V���x� � Ĥ. From

here we conclude that a Hamiltonian is PT symmetric

when the following condition is satisfied V�x� � V���x�.
Therefore the real part of a PT complex potential must be

an even function of position whereas the imaginary com-

ponent should be odd. Among the most intriguing charac-

teristics of such a pseudo-Hermitian Hamiltonian, is the

existence of a critical threshold above which the system

undergoes a sudden phase transition because of spontane-

ous PT symmetry breaking. In this regime the spectrum is

no longer real but instead it becomes complex. The rele-

vance of these recent mathematical developments in quan-

tum field theories and other areas of physics, has also been

addressed in a number of studies [2–7].

Optics can provide a fertile ground where PT related

concepts can be realized and experimentally tested. In fact,

this can be achieved through a judicious inclusion of gain

or loss regions in guided wave geometries [8]. Given that

the complex refractive index distribution in a structure is

n�x� � n0�x� � nR�x� � inI�x�, one can deduce that n�x�
plays the role of the optical potential (where x represents

the normalized transverse coordinate). The parity-time

condition implies that the index waveguiding profile

nR�x� should be even in the transverse direction while the

loss or gain term nI�x� must be odd. In fact, gain or loss

levels of approximately �40 cm�1 at wavelengths of

�1 �m, that are typically encountered in standard quan-

tum well semiconductor lasers or semiconductor optical

amplifiers [8], will be sufficient to observe PT behavior.

The imaginary part of the PT potential in such SOA

arrangements can alternate between gain and loss in a

diatomic waveguide lattice configuration depending on

whether the input current is used above or below lasing

threshold. Of interest will be to synthesize periodic sys-

tems [9] that can exhibit novel features stemming from

parity-time symmetry. Even more importantly, the involve-

ment of optical nonlinearities (quadratic, cubic, photore-

fractive nonlinearities, etc.[10]), may allow the study of

such configurations under nonlinear conditions.

In this Letter we show that PT symmetric nonlinear lat-

tices can support soliton solutions. These self-trapped

states can be stable over a wide range of parameters in spite

of the fact that gain or loss regions are present in this sys-

tem. We first consider the propagation dynamics of non-

linear beams in a single PT waveguide cell and then we

examine their behavior in a PT symmetric optical lattice.

Both 1D and 2D soliton solutions are presented along with

their associated transverse power-flow density. Our analy-

sis sheds light for the first time on the interplay between

nonlinearity and parity-time symmetry. Interestingly

enough, even in the presence of relatively strong gain or

loss effects, stationary self-trapped states (single cell and

lattice) can exist with real propagation eigenvalues. This is

a direct outcome of the PT symmetric nature of the

potentials involved. It is important to stress that our results

are fundamentally different from those previously obtained

within the context of complex Ginzburg-Landau (GL)

systems [11].

We begin our analysis by considering optical wave

propagation in a self-focusing Kerr nonlinear PT sym-

metric potential. In this case, the beam evolution is gov-

erned by the following normalized nonlinear Schrödinger-
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like equation,

 i
@ 

@z
�
@2 

@x2
� 	V�x� � iW�x�
 � j j2 � 0; (1)

where  is proportional to the electric field envelope and z
is a scaled propagation distance. Based on the previous

discussion, the real and the imaginary components of the

PT symmetric potential satisfy the following relations

V��x� � V�x�, W��x� � �W�x�, respectively. Physi-

cally, V�x� is associated with index guiding while W�x�
represents the gain or loss distribution of the optical po-

tential. Note that in the linear regime, Eq. (1) conserves the

‘‘quasipower’’ Q�z� �
R

�1
�1  �x; z� 

���x; z�dx as op-

posed to the actual electromagnetic power, P�z� �
R

�1
�1 j �x; z�j2dx [12]. In the nonlinear domain how-

ever, these quantities evolve according to i dQ
dz

�
R

�1
�1  �x; z� 

���x; z�	j �x; z�j2 � j ��x; z�j2
dx � 0 and
dP
dz
� 2

R

�1
�1W�x�j �x; z�j2dx � 0.

Stationary soliton solutions to Eq. (1) are sought in the

form  �x; z� � ��x� exp�i�z� where ��x� is the nonlinear

eigenmode and � is the corresponding real propagation

constant. In this case � satisfies

 

d2�

dx2
� 	V�x� � i W�x�
 � � j�j2� � ��: (2)

In order to determine the linear stability properties of such

self-trapped localized modes, we consider small perturba-

tions on the solutions of Eq. (1) of the form [13],

  �x; z� � ��x�ei�z � "	F�x�ei�z �G��x�e�i�
�z
ei�z; (3)

where "� 1. Here, F and G are the perturbation eigen-

functions and � indicates the growth rate of the perturba-

tion. By linearizing Eq. (1) around the localized solution

��x� we obtain the following linear eigenvalue problem for

the perturbation modes

 

L̂ �2

���2 �L̂�

 !

F
G

� �

� �
F
G

� �

; (4)

where L̂ � d2

dx2
� V�x� � iW�x� � 2j�j2 � �. Evidently,

the PT nonlinear modes are linearly unstable if � has

an imaginary component, while they are stable if � is real.

Before we consider light self-trapping in complex latti-

ces, it is important to first understand nonlinear optical

beam dynamics in a single PT complex potential. For

illustration purposes, we assume a Scarff II potential, e.g.,

 V�x��V0 sech
2�x�; W�x��W0 sech�x� tanh�x�; (5)

with V0 and W0 being the amplitudes of the real and

imaginary part. Notice that the corresponding linear prob-

lem associated with the potential of Eq. (5) exhibits an

entirely real spectrum provided that, W0 � V0 � 1=4 [14].

Thus for a fixed value of V0, there exists a threshold for the

imaginary amplitude W0. Above this so-called PT thresh-

old, a phase transition occurs and the spectrum enters the

complex domain. Interestingly enough, even if the Scarff

potential of Eq. (5) has crossed the phase transition point

(its spectrum is complex), nonlinear states can still be

found with real eigenvalues. In other words, the beam itself

can alter the amplitude of the refractive index distribution

through the optical nonlinearity. Thus for a given W0, this

new effective potential nonlinearly shifts the PT V0

threshold and in turn allows nonlinear eigenmodes with

real eigenvalues to exist. In contrast, at lower power levels

the parity-time symmetry cannot be nonlinearly restored

and hence remains broken. A nonlinear mode of this

potential corresponding to � � 0:98, when V0 � 1, W0 �
0:5 is shown in Fig. 1. Equation (2) admits an exact so-

lution of the form � � �0 sech�x� expfi�tan
�1	sinh�x�
g,

where � � W0=3, � � 1 and �0 �
������������������������������������

2� V0 � �W2
0=9�

q

.

We next examine the stability of these nonlinear modes

by numerically solving the corresponding perturbation

eigenvalue problem of Eq. (4). To support the linear stabil-

ity results we have checked the robustness of each non-

linear state using beam propagation methods and by adding

random noise on both amplitude and phase. The results of

this simulation, shown in Fig. 1 for V0 � 1, W0 � 0:5,

indicate that the beam is nonlinearly stable. To shed

more light on the properties of these nonlinear solutions,

we examine the quantity S � �i=2��� ��
x ��� �x� asso-

ciated with the transverse power-flow density or Poynting

vector across the beam. This energy flow arises from the

nontrivial phase structure of these nonlinear modes. For the

analytical solution mentioned above we find that S �
�W0�

2
0=3� sech

3�x�. Obviously, S is everywhere positive

in this PT cell, thus implying that the power always flows

in one direction, i.e., from the gain toward the loss region.

We next investigate optical solitons and their dynamics

in nonlinear periodic PT potentials. Since the general

idea holds for any such complex potential, we here con-

sider for simplicity the case

 V�x� � cos2�x�; W�x� � W0 sin�2x�: (6)

FIG. 1 (color online). Intensity evolution of a nonlinear mode

in a PT Scarff II potential, when � � 0:98. The inset depicts

the real (solid blue curve) and imaginary (dotted red curve)

component of such an eigenmode.
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The linear properties of such a periodic potential can be

understood by examining the corresponding linear problem

of Eq. (2), i.e., d2�
dx2

� 	V�x� � iW�x�
� � ��, where �

now represents the propagation constant in the periodic

structure. Since the potentials V�x�, W�x� of Eq. (6) are

�-periodic, the Floquet-Bloch theorem dictates that the

eigenfunctions are of the form � � �k�x� exp�ikx�, where

�k�x� �� � �k�x� and k stands for the real Bloch mo-

mentum. We note that in general the band structure of a

complex lattice can be complex. Yet, for periodic PT

symmetric potentials, the band diagram can be entirely

real as long as the system is operated below the phase

transition point (unbroken PT symmetry). For the par-

ticular potential of Eq. (6), we find that purely real bands

are possible in the range 0 � W0 < 1=2. In Fig. 2 we show

the associated band structure for various values of the

potential parameter W0 (below and above the phase tran-

sition point W0 � 1=2). We notice that as W0 is increased

the band gap becomes narrower and closes completely

when crossing the critical transition value W0 � 1=2.

Pseudo-Hermitian periodic potentials having zero PT

threshold were also discussed [15].

Having found the band-gap structure, we next obtain

soliton solutions to Eq. (2) when the complex potential is

given by Eq. (6). For W0 < 1=2, we numerically construct

a family of localized solutions with real eigenvalues lo-

cated within the semi-infinite ‘‘energy’’ gap. A typical field

profile of such a soliton is shown in Fig. 3(a). We next

address the stability of these solutions given that these

complex structures involve strong loss and gain. In general

we found that the instability growth rate tends to increase

withW0. In addition, narrower self-trapped waves are more

stable since the nonlinearity tends to further enhance the

index guiding, thus perturbing the local PT phase tran-

sition point. To further examine the robustness of these

PT lattice self-trapped modes, beam propagation meth-

ods were used. Under linear conditions symmetric diffrac-

tion occurs in this periodic complex system. On the other

hand, as the power is increased the beam becomes confined

and propagates undistorted, thus forming a lattice soliton-

in spite of any symmetry breaking perturbations.

Figure 3(b), shows the propagation dynamics of such a

soliton (for V0 � 1, W0 � 0:45, � � 1:57) as a function of

the propagation distance. The transverse power flow is also

plotted in Fig. 3(c). Unlike the single-cell case considered

before, the power flow in this case is more involved. As

indicated in Fig. 3(c), the direction of the flow from gain to

loss regions varies across the lattice. More specifically, it is

positive (from left to right) in the waveguides and becomes

negative (from right to left) in the space between channels.

This should be physically anticipated since power transport

occurs always from gain to loss domains. We would like to

emphasize that the distribution of the power-flow density in

these self-trapped PT states differs from that encountered

in Ginzburg-Landau dissipative solitons [11]. More spe-

cifically, in GL systems the power flow is an antisymmetric

function of position whereas in PT lattices is even, as

clearly indicated in Fig. 3(c).

Notice that it is also possible to find stationary self-

trapped modes with real propagation eigenvalues even

above the symmetry breaking point W0 � 1=2, as shown

in the inset of Fig. 4. This is due to the fact that part of the

band structure still remains real even above the PT

threshold [Fig. 2]. This family of solitons exists provided

that the Fourier spectrum of these solutions (in Bloch-

momentum space) is primarily contained within the region

where the band is real (� real) located around the k � 0
point. Stability analysis however reveals that this latter

class of lattice solitons is in fact unstable. This instability

is corroborated by numerical simulations, as shown in

Fig. 4.

Finally, we discuss the formation of PT lattice solitons

in two-dimensional periodic geometries. In this case,

Eq. (1) becomes i @ 
@z
�r2 � 	V � iW
 � j j2 � 0,

FIG. 2 (color online). (a) Bandstructure for the PT potential

V�x� � cos2�x� � iW0 sin�2x�, when W0 � 0:45 (dotted line),

and W0 � 0:6 (solid line).

FIG. 3 (color online). (a) PT lattice (W0 � 0:45) soliton field

profile (real part: blue line, imaginary part: red line) for � � 0:7.

(b) Stable propagation of a PT lattice soliton with eigenvalue

� � 1:57. (c) Transverse power flow (solid line) of the soliton in

(a) across the lattice. The dotted line represents the real part of

the potential in both (a) and (c).
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where again the potentials V and W obey the PT sym-

metry requirement, V��x;�y��V�x;y� andW��x;�y��
�W�x;y�. In Fig. 5(a) the band structure corresponding to

the periodic potentials V�x; y� � cos2�x� � cos2�y� and

W�x; y� � W0	sin�2x� � sin�2y�
 is depicted for W0 �
0:3. It is instructive to observe that the symmetry breaking

level for this two-dimensional potential is identical to the

one-dimensional case (W0 � 0:5). Above this phase tran-

sition point the first two bands merge together forming an

oval, a double-valued surface (upon which all the propa-

gation constants are real) attached to a 2D membrane of

complex eigenvalues. A two-dimensional PT symmetric

soliton with eigenvalues within the semi-infinite gap is

shown in Fig. 5(b). At low intensities, the nonlinearity is

not strong enough and hence this beam asymmetri-

cally diffracts in this complex lattice as shown in

Fig. 5(c). At soliton power levels, however, this nonlinear

wave propagates in a stable fashion. To further understand

the internal structure of these self-trapped states, we plot

the transverse power-flow vector (Poynting vector) ~S �
�i=2�	� r�� ���r�
, as shown in Fig. 5(d), which in-

dicates again energy exchange among gain or loss

domains.

In conclusion, a new class of one- and two-dimensional

nonlinear self-trapped modes residing in parity-time sym-

metric wells and lattices is reported. The existence, stabil-

ity, and propagation dynamics of such PT solitons were

examined in detail.
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FIG. 4 (color online). Intensity evolution of an unstable PT

soliton above the phase transition point (W0 � 0:6). The inset

depicts the field profile (real part/blue line, imaginary part/red

line) of an unstable PT soliton.

FIG. 5 (color online). (a) Band structure of a 2D-PT potential

when W0 � 0:3. (b) The intensity profile of a PT soliton when

the propagation eigenvalues is � � 1:3. (c) Linear diffraction

pattern under single channel excitation (soliton input with � �
1:3), and (d) Transverse power flow of this PT soliton solution

within one cell where the dark area of the background represents

the waveguide area. The regions where the gain or loss is

maximum are indicated by the G, L points, respectively.
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