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Abstract

Nonlinear Schrödinger’s equation and its variation structures assume a significant job

in soliton dynamics. The soliton solutions of space-time fractional Fokas–Lenells

equation with a relatively new definition of local M-derivative have been recovered

by utilizing improved tan(φ(η)
2
)-expansion method and generalized projective Riccati

equation method. The obtained solutions are periodic, dark, bright, singular, rational,

along with few forms of combo-soliton solutions. These solutions are given under

constraints conditions which ensure their existence. The impact of local fractional

parameter is featured by its graphical portrayal. 2D and 3D diagrams are drawn to

illustrate the efficacy of the conformable fractional order on the behavior of some of

those solutions. The secured solutions of this model have dynamic and significant

justifications for some real-world physical occurrences. Our study shows that the

suggested schemes are effective, reliable, and simple for solving different types of

nonlinear differential equations.
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1 Introduction

From the past three decades, optical solitons emerge as a fast growing area of research due

to their use in transmission technology, through different forms of wave-guides. Solitons

are utilized to represent the particle-like properties of nonlinear pulses. The importance

of solitons is due to their presence in a variety of nonlinear differential equations portray-

ing many complex nonlinear phenomena, including acoustics, nonlinear optics, telecom-

munication industry, convictive fluids, plasma physics, condensed matter, and solid-state

physics. Nonlinear Schrödinger’s equation and its variant forms are used in dispersive

mediums in different fields of mathematical physics and have been studied mathemati-

cally in recent years [1–15].

Solitons exist due to an accurate balance among nonlinearity and group velocity disper-

sion (GVD) in the area. If the value of GVD is small, this balancemay be at risk. Therefore,

to keep the balance among the two, expression terms with dispersive effects need to be in-
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vestigated. One of the knownmodels which is relevant is the Fokas–Lenells (FL) equation

[16–18]. FL equation is one of the known forms of nonlinear Schrödinger’s equation, in-

troduced about a decade ago. Due to its vast applications in fiber-optics communication,

this sort of equation is crucial in research and thus the search for different forms of wave

solutions is very significant. Many computational methodologies have been developed

for constructing wave solutions for such equations, including the improved tan(φ(η)/2)-

expansion method, the trial equation method, improved Bernoulli subequation function

method, the extended Fan subequation method, extended and the modified simple equa-

tion methods, Riccati–Bernoulli’s sub-ODE method, the Lie group analysis, extended Ja-

cobi’s elliptic function approach, and many others [19–35].

Nowadays, fractional science is a flourishing area of mathematical analysis along with

fractional operators, such as Caputo, Grunwald–Letnikov, and Riemann–Liouville [36–

44]. In 1695, in a letter to Leibniz, l’Hospital asked him about the detection of expanding

the sense of an integer-order derivative dλy

dxλ to the case of a fraction of the order. This

problem started the development of a modern calculus that was named the calculus of

arbitrary order and is now commonly called the calculus of fractions. Many forms of frac-

tional derivatives, including Riemann–Liouville, Caputo, Hadamard, Caputo–Hadamard,

and Riesz [40, 41, 43], have been developed to date. Almost all of these derivatives are

described in the Riemann–Liouville sense based on the corresponding fractional integral.

In 2017, Sousa introduced a new fractional derivative that generalizes the so-called alter-

native fractional derivative [45]. This new differential operator is denoted by D
λ,μ
M , where

λ is the order, such that 0 < λ ≤ 1, μ > 0, andM denotes that the derived function includes

a Mittag-Leffler function along with one parameter. This new type of derivative is known

as a local M-derivative, it fulfills certain characteristics of integer-order calculus, e.g., lin-

earity, quotient rule, product rule, chain rule, and function composition. Furthermore,

the local M-derivative of a constant is zero. Since the Mittag-Leffler function is the gen-

eralization of the exponential function, some of the classical outcomes of calculus of the

integer-order can be extended, namely the mean value theorem, Rolle’s theorem, and its

extensions. Moreover, when the derivative order is λ = 1 and the Mittag-Leffler function

parameter is also unitary, our specification is analogous to that of the ordinary derivative

of order one.

This work aims to build specific fractional spatio-temporal optical solitons of FL equa-

tion by using two versatile integration gadgets, namely improved tan( φ(η)
2
)-expansion

method [46–48] and generalized projective Riccati equation method (GPREM) [49, 50].

2 Governingmodel

Using the definition of the local M-derivative and its properties, the space-time fractional

FL equation is introduced as follows:

iD
α;δ1
M,t � + a1D

2α;δ1
M,x � + a2D

α;δ1
M,t D

α;δ1
M,x� + |�|2

(

β� + iσD
α;δ1
M,x�

)

(1)

– iδD
α;δ1
M,x – iρD

α;δ1
M,x

(

|�|2n�
)

– iγ�D
α;δ1
M,x

(

|�|2n
)

= 0, 0 < α ≤ 1,n > 0,

where i =
√
–1, � = �(x, t) is a complex-valued wave function. The first term of Eq. (1)

gives the fractional temporal evolution of the pulse; a1, a2 are the spatio-temporal disper-

sion (STD), group velocity dispersion (GVD) coefficients, while ρ , δ, and γ represent the
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self-steepening, inter-modal dispersion (IMD), and nonlinear dispersion (ND) coefficients

respectively [16–18].

When α = 1, Eq. (1) is converted to the original FL equation [16–18]. The FL equation

emerges as a model equation that defines the nonlinear pulse propagation in optical fibers

by maintaining terms up to the next leading asymptotic order (the nonlinear Schrödinger

equation (NLSE) results in the leading asymptotic order). In the context of nonlinear op-

tics, this equation sculpts the promulgation of nonlinear light pulses inmonomode optical

fibers as assumed nonlinear higher-order effects are captured in the elaboration [51]. It is

worth noticing that the FL equation is a fully integrable equation in nonlinear PDEs which

has been developed as an integrable generalization of the NLSE using bi-Hamiltonian

techniques [52].

2.1 Local M-derivative

Consider the function f : [0,∞) → R where t > 0. For 0 < μ < 1, let us define the local

M-derivative of order μ for the function f , denoted by D
μ;δ
M [53–56], by

D
μ;δ
M

{

f (t)
}

:= lim
ǫ→0

f (tEδ(ǫt
–μ)) – f (t)

ǫ
, ∀t > 0, (2)

whereEδ(·) is theMittag-Leffler functionwith one parameter.Here f (t) is a p-differentiable

function in some interval (0,p),p > 0, and if limt→0+ D
μ;δ
M exists, then we have

D
μ;δ
M

{

f (0)
}

= lim
t→0+

D
μ;δ
M

{

f (t)
}

. (3)

The local M-derivative possess the following properties:

D
μ;δ
M

{

f (t)
}

=
t1–μ

Ŵ(δ + 1)

df (t)

dt
, (4)

therefore

D
μ;δ
M

(

tμŴ(δ + 1)

α

)

= 1. (5)

This local fractional-order M-derivative also has the following chain rule property:

D
μ;δ
M (f .g)(a) = f ′(g(a)

)

D
μ;δ
M . (6)

Using Eqs. (4)–(6), we obtain the following expression:

D
μ;δ
M F

(

Ŵ(δ + 1)tμ

μ

)

= F ′
(

Ŵ(δ + 1)tμ

μ

)

D
μ;δ
M

(

Ŵ(δ + 1)tμ

μ

)

= F ′
(

Ŵ(δ + 1)tμ

μ

)

, (7)

with

η =
m

μ
Ŵ(δ + 1)tμ, (8)

wherem is a constant. The last property is given as

D
μ;δ
M F(η) =mF ′(η). (9)
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3 Traveling wave hypothesis

Consider the following complex traveling wave transformation:

�(x, t) =U(η)ei�, η = ν

(

Ŵ(δ1 + 1)

(

xα

α
– v

tα

α

))

, (10)

� = Ŵ(δ1 + 1)

(

–k
xα

α
+ω

tα

α

)

+ θ .

Substituting Eq. (10) into Eq. (1) yields

ν2(a1 – a2v)U
′′ +

(

a2kω –ω – a1k
2 – δk

)

U + (β + kσ )U3 – kρU1+2n = 0, (11)

from the real part, and

((

v + δ + 2a1k – a2(vk +ω)
)

– σU2 + (ρ + 2nρ + 2nγ )U2n
)

U ′ = 0, (12)

from the imaginary part.

Considering n = 1, Eqs. (1), (11), and (12) become

iD
α;δ1
M,t � + a1D

2α;δ1
M,x + a2D

α;δ1
M,t D

α;δ1
M,x� + |�|2

(

β� + iσD
α;δ1
M,x�

)

(13)

– iδD
α;δ1
M,x� – iρD

α;δ1
M,x

(

|�|2�
)

– iγ�D
α;δ1
M,x

(

|�|2
)

= 0, 0 ≤ α ≤ 1,

ν2(a1 – a2v)U
′′ +

(

a2kω –ω – a1k
2 – δk

)

U +
(

β – k(ρ – σ )
)

U3 = 0, (14)

and

((

v + δ + 2a1k – a2(vk +ω)
)

+ (3ρ + 2γ – σ )U2
)

U ′ = 0, (15)

respectively.

Setting (3ρ + 2γ – σ ) = 0 into Eq. (15), we get the following relations:

σ = 3ρ + 2γ , v =
δ + 2a1k – a2ω

a2k – 1
, (16)

where v in Eq. (16) represents the velocity of solitons.

4 Soliton solutions

In this section soliton solutions are extracted for Eq. (13) with the help of two different

integration schemes, namely the improved tan( φ(η)
2
)-expansion method and generalized

projective Riccati equation method. In order to obtain these solutions, it is enough to

solve the real part of Eq. (13), which is given in Eq. (14).

4.1 Improved tan(
φ(η)
2
)-expansionmethod

Consider the initial hypothesis in the following form [46–48]:

U(η) = S(�) =

m
∑

l=0

Ak

[

p + tan

(

�(η)

2

)]k

+

m
∑

l=1

Bk

[

p + tan

(

�(η)

2

)]–k

, (17)



Raza et al. Advances in Difference Equations        ( 2020)  2020:517 Page 5 of 15

where Ak(0 ≤ l ≤ m) and Bk(1≤ l ≤ m) are constants to be determined, such that Am �= 0,

Bm �= 0 and � = �(η) satisfies the following ordinary differential equation:

�′(η) = a sin
(

�(η)
)

+ b cos
(

�(η)
)

+ c. (18)

By using the homogeneous balance principle between the terms U ′′ and U3 of Eq. (14)

lead us to the value l = 1. For p = 0, Eq. (17) takes the following form:

U(η) = A0 +A1

[

tan

(

�(η)

2

)]

+ B1

[

tan

(

�(η)

2

)]–1

. (19)

Herein the objective is to find the values of A0, A1, and B1. In order to find these values,

substitute Eq. (19) into Eq. (14), and comparing all the coefficients of (tan(�(η)
2
))n, where

n = –3,–2,–1, 0, 1, 2, 3, with zero provides the following set of algebraic equations:

ω =
1

(a2k – 1)a2
(A2

0(kρ – kσ – β)
(

a2 + b2 – c2
)

+ ka2(δ + a1v),

A0 = A0, A1 = –
A0(b – c)

a
, B1 = 0,

v =
2A2

0k(σ – ρ) + 2βA2
0 + ν2a1a

2

ν2a2a2
.

(20)

Now equating the values of velocities in Eqs. (16) and (20), we will get subsequent value

of a1:

a1 =
ν2a2a

2(a2ω – δ) + 2A2
0(ka2 – 1)(kσ – kρ + β)

ν2a2(a2k + 1)
. (21)

Substituting the above value of a1 in ω, we get

ω =
A2
0(kσ – kρ + β)(ν2(a2 + b2 – c2)(ka2 + 1) + 2k2(1 – ka2))

ν2a2
. (22)

Substituting these values in Eq. (19) and using the relation in Eq. (18) yields the following

soliton solutions for Eq. (13).

When a2 + b2 – c2 < 0, the subsequent periodic soliton solution is obtained as

�1(x, t) =
A0

√
c2 – b2 – a2

a
tan

(

√
c2 – b2 – a2

2
(η +C)

)

ei�. (23)

If a2 + b2 – c2 > 0, then the following dark soliton solution is obtained:

�2(x, t) = –
A0

√
b2 + a2 – c2

a
tanh

(

√
b2 + a2 – c2

2
(η +C)

)

ei�. (24)

If a2 + b2 – c2 > 0, b �= 0, and c = 0, then

�3(x, t) = –
A0

√
b2 + a2

a
tanh

(

√
b2 + a2

2
(η +C)

)

ei�. (25)
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If a2 + b2 – c2 < 0, c �= 0, and b = 0, then

�4(x, t) = –
A0

√
c2 – a2

a
tan

(

√
c2 – a2

2
(η +C)

)

ei�. (26)

If a2 + b2 = c2, then

�5(x, t) = A0

(

1 +
(b2 – c2)(a(η +C) + 2)

a3(η +C)

)

ei�. (27)

If a = c = la and b = –la, then

�6(x, t) = A0

(

1 +
2lela(η+C)

1 – ela(η+C)

)

ei�. (28)

If c = a, then

�7(x, t) = A0

(

1 +
b – a

a

[

(a + b)eb(η+C) – 1

(a – b)eb(η+C) – 1

])

ei�. (29)

If a = c, then

�8(x, t) = A0

(

1 –
b – c

c

[

(b + c)eb(η+C) + 1

(b – c)eb(η+C) – 1

])

ei�. (30)

If c = –a, then

�9(x, t) = A0

(

1 –
b + a

a

[

eb(η+C) + b – a

eb(η+C) – b – a

])

ei�. (31)

If b = –c, then

�10(x, t) = A0

(

1 +
2cea(η+C)

cea(η+C) – 1

)

ei�. (32)

If b = 0 and a = c, then

�11(x, t) = A0

(

1 –

[

c(η +C) + 2

c(η +C)

])

ei�. (33)

In Eqs. (23)–(33), η = ν(Ŵ(δ1 + 1)( x
α

α
– v tα

α
)) and � = Ŵ(δ1 + 1)(–k xα

α
+ω tα

α
) + θ .

4.2 Generalized projective Riccati equation method

Consider the following initial solution in order to solve Eq. (14) to find soliton solution of

Eq. (13) with the aid of generalized projective Riccati equation method [49, 50]:

U(η) = A0 +

N
∑

j=0

(

Aj̺(η) + Bjτ (η)
)

. (34)

In Eq. (14), the homogeneous balance principle gives N = 1. Equation (34) becomes

U(η) = A0 +A1̺(η) + B1τ (η), (35)
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where ̺(η) and τ (η) satisfy the projective Riccati system (PRS)

̺′(η) = ǫ̺(η)τ (η), (36)

τ ′(η) = ǫτ 2(η) –m̺(η) + R, (37)

and PRS first integral is expressed as

τ 2(η) = –ǫ

(

R – 2μ̺(η) +
μ2 – 1

R
̺2(η)

)

. (38)

Substituting Eqs. (35), (36), and (38) into Eq. (14) provides a polynomial in (̺i(η), τ j(η)),

setting whose coefficients to zero yields a set of algebraic equations. When solving this

system of equation with the aid of Maple, we will get

Set 1.

R =
2(–a2kω + a1k

2 +ω + δk)

(a1 – a2v)ν2ǫ
, λ = λ,μ = 1,A0 = 0,A1 = 0, (39)

B1 =

√

–
4a2vǫ2 + 3a1 – 3a2v – 4a1ǫ2

2kρ – 2kσ – 2β
ν.

Set 2.

R =
(–a2kω + a1k

2 +ω + δk)

2(a1 – a2v)ν2ǫ
, λ = λ,μ = 0,A0 = 0,A1 = 0, (40)

B1 =

√

–2a1 + 2a2v

kρ – kσ – β
νǫ.

Case 1.When ǫ = –1 and R �= 0, the PRS system has the following solutions:

σ1(η) =
R sech(

√
Rη)

μ sech(
√
Rη) + 1

, τ1(η) =

√
R tanh(

√
Rη)

μ tanh(
√
Rη) + 1

, (41)

σ2(η) =
R csch(

√
Rη)

μ csch(
√
Rη) + 1

, τ2(η) =

√
R coth(

√
Rη)

μ coth(
√
Rη) + 1

.

Case 2.When ǫ = 1 and R �= 0, the PRS system has the subsequent solutions:

σ3(η) =
R sec(

√
Rη)

μ sec(
√
Rη) + 1

, τ3(η) =

√
R tan(

√
Rη)

μ tan(
√
Rη) + 1

, (42)

σ4(η) =
R csc(

√
Rη)

μ csc(
√
Rη) + 1

, τ4(η) =

√
R cot(

√
Rη)

μ cot(
√
Rη) + 1

.

Case 3. If R = μ = 0, then

σ5(η) =
C

ξ
= Cǫτ5(ξ ), τ5(ξ ) =

1

ǫξ
, (43)

where C is a constant.
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(a)

(b)

Figure 1 Graphical representation of periodic soliton obtained by the tan(
φ(η)
2

)-expansion method

Substituting the values of Set 1 along with equations (35), (41), and (42) into Eq. (10)

provides the following solutions:

�12(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

β – kρ + kσ

(

tanh(
√

2(a2kω–a1k2–ω–δk)

(a1–a2v)ν2
η)

tanh(
√

2(a2kω–a1k2–ω–δk)

(a1–a2v)ν2
η) + 1

)

ei�, (44)

�13(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

β – kρ + kσ

(

coth(
√

2(a2kω–a1k2–ω–δk)

(a1–a2v)ν2
η)

coth(
√

2(a2kω–a1k2–ω–δk)

(a1–a2v)ν2
η) + 1

)

ei�, (45)

�14(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

kρ – kσ – β

(

tan(
√

2(–a2kω+a1k2+ω+δk)

(a1–a2v)ν2
η)

tan(
√

2(–a2kω+a1k2+ω+δk)

(a1–a2v)ν2
η) + 1

)

ei�, (46)
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(a)

(b)

Figure 2 Dark soliton solution profile retrieved by the tan(
φ(η)
2

)-expansion method

�15(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

kρ – kσ – β

(

cot(
√

2(–a2kω+a1k2+ω+δk)

(a1–a2v)ν2
η)

cot(
√

2(–a2kω+a1k2+ω+δk)

(a1–a2v)ν2
η) + 1

)

ei�, (47)

where η = ν(Ŵ(δ1 + 1)( x
α

α
– v tα

α
)) and � = Ŵ(δ1 + 1)(–k xα

α
+ω tα

α
) + θ .

Using the values of Set 2 along with equations (35), (41), and (42) in Eq. (10) yields the

subsequent solutions:

�16(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

kρ – kσ – β

(

tanh

(

√

(a2kω – a1k2 –ω – δk)

2(a1 – a2v)ν2
η

))

ei�, (48)

�17(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

kρ – kσ – β

(

coth

(

√

(a2kω – a1k2 –ω – δk)

2(a1 – a2v)ν2
η

))

ei�, (49)
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(a)

(b)

Figure 3 Graphical depiction of a traveling wave solution obtained by the tan(
φ(η)
2

)-expansion method

�18(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

β – kρ + kσ

(

tan

(

√

(–a2kω + a1k2 +ω + δk)

2(a1 – a2v)ν2
η

))

ei�, (50)

�19(x, t) =

√

k(a1k + δ) +ω(1 – a2k)

β – kρ + kσ

(

cot

(

√

(–a2kω + a1k2 +ω + δk)

2(a1 – a2v)ν2
η

))

ei�, (51)

where η = ν(Ŵ(δ1 + 1)( x
α

α
– v tα

α
)) and � = Ŵ(δ1 + 1)(–k xα

α
+ω tα

α
) + θ .

5 Results and discussion

This section deals with graphical demonstration of the obtained results and provides a

brief discussion on the effect of fractional parameter α. Figure 1(a) depicts the physical

appearance of the periodic soliton solution |�1(x, t)|, and Fig. 1(b) demonstrates the effect

of fractional parameter α = 0.8, 0.9, 1.0, along the time domain with fixed space parame-
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(a)

(b)

Figure 4 Physical appearance of the dark soliton solution retrieved by GPREM

ter. A graphical illustration of the dark soliton solution |�2(x, t)| can be viewed in Fig. 2(a),

and its 2D fractional parameter effects are depicted in Fig. 2(b). Figures 3(a), 4(a), 5(a), and

6(a) highlight the physical appearance of the traveling wave solution |�10(x, t)|, dark soli-
ton solution |�16(x, t)|, singular soliton solution |�17(x, t)|, and periodic soliton solution

|�10(x, t)|, respectively, and their respective 2D fractional parameter effects are given in

Figs. 3(b), 4(b), 5(b), and 6(b).

6 Conclusion

An M-fractional FL equation representing the propagation of short light pulses in the

monomode optical fibers is investigated using the improved tan( φ(η)
2
)-expansion method

and GPREM. The FL model is a higher-order nonlinear Schrödinger shape equation that

gives bright soliton solutions with internal freedom. Furthermore, the dark soliton solu-

tions for the equation with the M-fractional effect, which have no internal freedom and

exist for both focusing and lake of focusing equations, are investigated. The improved
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(a)

(b)

Figure 5 Graphical demonstration of a singular soliton solution obtained by GPREM

tan( φ(η)
2
)-expansionmethod is used to extract dark, singular, and rational soliton solutions,

and GPREM provides dark, singular, periodic, and some forms of combo soliton solu-

tions. These solutions are also demonstrated graphically. The fractional parameter effect

on the dispersion is also highlighted through 2D graphical representation. The reported

outcomes are useful in the empirical application of fiber optics. The essential advantages of

the proposed schemes over all the other methods are that these methods provide new ex-

plicit analytic wave solutions including many real free parameters. The closed-form wave

solutions of the nonlinear PDEs have their significantmeaning to reveal the interior device

of the complex physical phenomena. More problems in applied mathematics, mathemati-

cal physics, and engineeringmight be solved through the presentedmethods. In the future

work, we will find the multisoliton solutions for the FL equation by the aid of the Hirota

method.
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(a)

(b)

Figure 6 Physical illustration of a periodic soliton solution gained by GPREM
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