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Abstract:  14 

There have been substantial advancements in optical spectroscopy-based imaging techniques in recent years. These 15 

developments can potentially herald a transformational change in the diagnostic pathway for diseases such as cancer. 16 

In this paper we review clinical and engineering aspects of novel optical spectroscopy-based imaging tools. We shall 17 

provide a comprehensive analysis of optical and non-optical spectroscopy-based breast cancer diagnosis techniques 18 

vis-à-vis the current standard techniques such as X-Ray mammography, ultrasonography and tissue biopsy.  The recent 19 

advancements in optical spectroscopy-based imaging systems such as Transillumination Imaging (TI) and the various 20 

types of Diffuse Optical Imaging (DOI) systems (parallel-plate, bed-based, and handheld) are examined. The 21 

engineering aspects including mechanical, electronics, optics, automatic interpretation using artificial intelligence 22 

(AI), and ergonomics are discussed. The abilities of these new technologies for measuring several cancer biomarkers 23 

such as hemoglobin, water, lipid, collagen, oxygen saturation (SO2), and tissue oxygenation index (TOI) are 24 

investigated. This article critically assesses the diagnostic ability and practical deployment of these new technologies 25 

to differentiate between the normal and cancerous tissue.  26 

 27 

Keywords: Transillumination imaging, Diffuse optical imaging, Near-infrared spectroscopy, Breast cancer, Rapid 28 

diagnosis, Machine learning. 29 
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Introduction 32 

Breast cancer is the most common cancer affecting women, with 2 million cases diagnosed 33 

annually and over 600,000 fatalities.(1, 2) In developed countries, the incidence is higher 34 

compared to developing countries; however, the case fatality rate in developed countries is lower 35 

than in developing countries.(1, 2) Data from Globocan 2018, IARC  shows that out of 2,088,849 36 

new breast cancer cases reported globally, the incidence rate in high income and low-middle 37 

income countries was 823,638 (39%) and 444,728 (21%) respectively; however, the mortality was 38 

178,554 (8.5%) and 205,691 (9.8%) respectively.(1, 2) A significant reason for this difference is 39 

due to the diagnosis of breast cancer at an early stage in high-income countries; however, high 40 

level of population-based screening facilities for early detection of breast cancer in low-middle 41 

income countries are also materializing.(3, 4) 42 
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Currently, the methods for diagnosis of breast cancer, whether in a symptomatic or a 43 

screening situation are clinical breast examination, imaging with X-ray mammography and 44 

ultrasound as well as tissue diagnosis using a needle biopsy. The most common tool used for 45 

screening for breast cancer is X-ray mammography has been reported to have sensitivity and 46 

specificity of 77% and 97% respectively.(5) However, X-Ray mammography’s sensitivity and 47 

specificity reduce significantly to 67% and 89% respectively for mammographically dense 48 

(relatively radiopaque) breasts.(6, 7) Moreover, X-Ray mammography is expensive, hospital-49 

based, involves small radiation risks, and is less accurate in younger women, under 50 (8–13). 50 

Contrast enhanced Magnetic Resonance Imaging (MRI) is reported to have the highest sensitivity 51 

between 93% and 100% (14, 15); but is costly, the equipment is bulky and expensive, and needs 52 

to be hospital-based. 53 

Ultrasonography (16–18) does not use ionizing radiation, but requires a skilled operator 54 

and is less accurate and less reproducible (19, 20) compared to X-ray mammography. 55 

Thermography is highly sensitive to ambient and temperature fluctuation, resulting in high false-56 

positive rates, (21–23). low accuracy,(24) and is not used in clinical practice.  57 

Diverse optical and non-optical spectroscopy techniques are used to diagnose breast 58 

cancer. The optical spectroscopy techniques involve Transillumination Imaging (TI), Diffuse 59 

Optical Imaging (DOI), Raman spectroscopy, and Fluorescence spectroscopy, while non-optical 60 

spectroscopy comprises of microwave spectroscopy, Nuclear Magnetic Resonance (NMR) 61 

spectroscopy, and molecular mass spectroscopy. The review gives a detailed analysis on optical 62 

spectroscopy techniques such as Transillumination Imaging and Diffuse Optical Imaging, which 63 

have the potential to be translated to rapid diagnostic tools for breast cancer.  64 

Optical properties of tissue, e.g., absorption and scattering coefficients, have been studied 65 

thoroughly (25–28) where the differences in optical properties of breast cancer and normal tissue 66 

could potentially be used to diagnose cancer. Spectroscopy instruments measuring optical 67 

properties use visible to near-infrared (NIR) light (wavelength from 600 nm to 1100 nm) which 68 

propagates through the tissue. As it propagates, there is photon diffusion and scattering and the 69 

difference in local blood supply that accompanies cancer leads to higher absorption as compared 70 

to the adjacent normal tissue, resulting in distinguishable contrast between the tumor to normal 71 

tissue in the acquired image,(26, 29), which forms a basis for tumor detection. Such optical 72 

detection uses spectroscopy techniques such as Transillumination Imaging (TI) and Diffuse 73 
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Optical Imaging (DOI). Transillumination imaging has been studied using a commercial tool such 74 

as Breastlight (30, 31) and has been found to have varying sensitivities between 60% and 93% for 75 

breast cancer detection, primarily due to the dependency on the skill of the clinician to visually 76 

analyze the transillumination images. (29, 31–37) Mehnati et al. (38) and Edge et al. (39) critically 77 

review the transillumination imaging for breast screening and recommended performing more 78 

clinical trials.  79 

Spectroscopy based imaging technique such as Diffuse Optical Imaging (DOI) has several 80 

theoretical advantages over simple transillumination. DOI can map the relative concentration of 81 

different tissue constituents such as oxygenated hemoglobin (HbO), deoxygenated hemoglobin 82 

(HbR), total hemoglobin (HbT), lipid (L), water (H2O), and collagen (C) along with bulk tissue 83 

properties such as absorption coefficient (µa), reduced scattering coefficient (µs), oxygen saturation 84 

(SO2), and tissue oxygenation index (TOI). These parameters can be used as multiple biomarkers 85 

to improve accuracy of delineation between normal and abnormal cases.(40–42) However, DOI 86 

techniques are still lab-based, expensive, and provide lower resolution images as compared to X-87 

Ray mammography due to comparatively higher scattering of infrared photons within the breast 88 

tissue.(43) Tromberg et al. was the first to review the DOI system as a potential diagnostic 89 

technique,(44) followed by Godavarty et al., specifically proposing the handheld optical imaging 90 

systems as a potential tool for quick diagnosis of breast cancer in the field.(45) However, other 91 

configurations such as parallel-plate and bed-based techniques may have a better potential to be 92 

translated as a rapid diagnostic tool and are also discussed in this review.  93 

 The challenges of such an approach include variation of breast volume between patients, 94 

acquisition time, and automatic interpretation of results. In this review, we assess different cancer 95 

biomarkers that could be used to delineate between tumor and normal cases. The TI and DOI 96 

systems are analyzed with an engineering perspective, including its mechanical, electronics, optics, 97 

and ergonomic design. Detailed analysis is performed on different configurations of the lab based 98 

DOI systems giving higher sensitivity, albeit with a comparatively small patient sample size. The 99 

review also discusses the application of machine learning techniques in DOI based system for 100 

automated interpretation of results. Finally, the design of opto-electronics components, which 101 

plays a vital role in the overall development cost of the DOI system is discussed.  102 

Low cost rapid diagnosis of breast cancer  103 

Challenges involved in breast cancer diagnosis at low-resource settings 104 
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Various challenges of application of the diagnostic tool in low-resource settings include 105 

proficiency in imaging breasts with different volume and density, cost, portability, automatic 106 

interpretation of results, and optimization of parameters, e.g., time to examine each patient, 107 

adequate sensitivity, and specificity. 108 

Breast volume and density variation 109 

One of the pressing challenges when manufacturing a device for breast imaging is its adaptability 110 

(46) to accommodate the variation of breast volume between 200 and 1500cc and breast surface 111 

area varying from 100 to 500cm2 (47–49) while maintaining sensitivity. Moreover, variation in 112 

breast texture between patients,(44, 50) or due to the menstrual cycle (51) is also a concern.  113 

Accurate diagnosis of cancer even when the tumor is very small  114 

The diagnostic tool should have high contrast and resolution to be adequately sensitive to detect 115 

cancer at an early stage.(52–55) However, the holy grail is the ability to differentiate between early 116 

cancers that may never grow and those that could potentially spread and be lethal. Additionally, 117 

while detecting these early cancers, the tool should be capable to distinguish between breast 118 

abnormalities due to the patient’s age, physiological factors, hormonal changes and other 119 

abnormalities caused by cancer.(56, 57) Finally, for a tool to be useful, the sensitivity and 120 

specificity need to be high and well quantified.(43, 45, 58–60) 121 

Reducing human input and cost  122 

Highly trained human resource is necessary for the current approaches to breast cancer diagnosis, 123 

including surgeons, radiographers, radiologists, and pathologists. Furthermore, the intimate 124 

examination may lead to hesitancy in women with some socio-cultural backgrounds.(56, 61, 62) 125 

If a diagnostic tool requires much less human input, it may be more cost-effective, less time 126 

consuming as well as more acceptable in certain cultures. Therefore, a machine learning algorithm 127 

with segmentation and classification algorithms could help to differentiate between normal and 128 

abnormal cases automatically.  129 

Portability  130 

A tool that is portable and battery operated will facilitate its use in remote locations in the 131 

developed world as well as in low and middle-income countries.(29, 33–36, 38) 132 
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The complete wish-list of the requirements of a practical tool for the rapid diagnosis of breast 133 

cancer is shown in Table 1. 134 

Spectroscopy based techniques to diagnose breast cancer 135 

The spectroscopy techniques can be classified as optical and non-optical techniques based 136 

on the operating wavelength and the type of source used in the spectroscopy technique.  137 

The optical spectroscopy techniques include Transillumination Imaging (TI) technique, Diffuse 138 

Optical Imaging (DOI), Raman spectroscopy, and Fluorescence spectroscopy. Transillumination 139 

Imaging has been studied extensively for breast cancer screening in Egypt, Iran, Iraq, and Ghana. 140 

(29, 30, 32–36) While DOI is still a lab-based technique and portrayed as a promising technique 141 

to be used for breast cancer screening in the future. (44, 63) The DOI system is classified as parallel 142 

plate geometry, bed-based, and handheld probe techniques, based on the arrangement of the source 143 

and detector. Zhao et al. (64) compare bed-based DOI images (Fig. 1a-e) with MRI T2 images, 144 

while Ghartey et al. (29) visually analyze the transillumination image for breast cancer detection 145 

(Fig. 1f). More advanced optical spectroscopy techniques comprise of Raman spectroscopy and 146 

Fluorescence spectroscopy.  147 

Raman spectroscopy is used to detect the Stokes and anti-Stokes scattered photons to quantify 148 

chemical composition. This technique is highly sensitive to detect breast cancer; however, it is 149 

highly sophisticated and expensive to be deployed at large scale. Fluorescence spectroscopy uses 150 

endogenous and exogenous chromophores to re-emit the absorbed photons with a distinct spectral 151 

response. Fluorescence spectroscopy using exogenous chromophores such as indocyanine green 152 

(ICG) needs to be injected intravenously, (65) which makes the technique invasive, and there are 153 

concerns of an allergic reaction due to the presence of sodium iodide in ICG. (66) Fluorescence 154 

Table 1 List of requirements for breast cancer diagnostic tool. 

SN Description References 

1 Ability to adjust breast volume variation (46) 

2 Ability to adjust breast density variation (50) 

3 High contrast and resolution (52–55) 

4 Reducing human intervention (56, 61, 62) 

5 Low screening fee (44, 112–120) 

6 Screening time (89, 100) 

7 High sensitivity and specificity  (43, 45, 58–60) 

8 Automatic interpretation of results using machine learning (121–127) 

9 Portable system and lightweight  (29, 33–36, 38) 

10 Battery powered  (29, 33–36, 38) 
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spectroscopy using endogenous chromophores such as collagen, elastin, and hemoglobin is non- 155 

invasive; however, this technique uses sophisticated optical tools to measure sensitive fluorescence 156 

signals, which makes it practically difficult to be used at large scale. (67–69) 157 

 The non-optical spectroscopy techniques used to diagnose breast cancer includes 158 

microwave spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, and molecular mass 159 

spectrometry. The microwave spectroscopy uses non-ionizing microwave radiation; however, the 160 

technique suffers from low contrast between healthy and malignant fibroglandular tissues. 161 

Additionally, the shorter wavelength and significant tissue conductivity limits the penetration 162 

depth of the microwave radiation. (69–71) The NMR spectroscopy uses non-ionizing 163 

radiofrequency radiation to quantify the composition of chemical biomarkers within the breast 164 

tissue, such as phosphocholine, which is about ten times more in cancer tissues as compared to 165 

normal tissues. However, the NMR technique suffers from lower sensitivity, and the equipment is 166 

expensive. (72–74) The molecular mass spectrometry with the recent advancement of ambient 167 

ionization technology provides the molecular signature for differentiating between normal and 168 

cancerous regions within the breast; however, the technique is destructive and invasive, and hence 169 

appropriate only for advanced diagnosis of breast cancer, such as intraoperative margin 170 

assessment. (75–77) The complete analysis of different types of spectroscopy techniques are 171 

showcased in Table 2. 172 

 

Fig. 1 (a-e) Zhao et al. (64) comparing the MRI T2 images (a-c) with the DOI (d, e) in the bed based DOI system. 
The tumour pointed in the MRI image (c) was quantified with higher hemoglobin and lower lipid concentration 

in DOI image (d, e), reprinted from Zhao et al. (64) with permission of OSA, Copyright 2017. (f) Transilluminated 

view of the breast observed by the clinician during the screening process as proposed by Ghartey et al. (29), where 

the cancer is represented by dark spots, reprinted from (29) with permission of Hindwai, Copyright 2018. 

 (f) 
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Transillumination Imaging (TI) systems  173 

The transillumination method has been extensively studied for breast cancer diagnosis, as TI based 174 

systems are cost-effective, portable and easy to operate.(29–36) In the transillumination method, 175 

the handheld probe (Fig. 2a) consisting of few LEDs, is placed under the breast (Fig. 2b), while 176 

the skilled clinician analyzes the transilluminated view of the breast (Fig. 1f).(29) The 177 

transilluminated view consists of the light propagating through the breast tissue and the blood 178 

vessels. As the LEDs are operated at about 620 nm, overlapping with the absorption peak of red 179 

blood cells, the blood vessels appear as dark and tissue appears as light pink or red. In addition to 180 

any abnormality of blood vessel diameter, dark patches in the breast tissue due to an abnormality 181 

also become a basis for tumor detection.  182 

Vaidya et al. (31) reported the use of Breastlight from a survey of 1500 women, where 183 

1054 returned with their feedback, out of which 3 had mammogram and 1 was diagnosed with 184 

cancer. They found that the use of Breastlight did not raise the anxiety nor did it detract women 185 

from seeking medical advice. Iwuchukwu et al. (37) screened 300 women and detected 12 out of 186 

18 malignant cases using Breastlight in a screening performed in UK with a sensitivity and 187 

specificity of 67% and 85% respectively. Labib et al. (35) screened 310 women in Egypt, reporting 188 

Table 2 Analysis of various spectroscopy techniques for diagnosis of breast cancer 

Modality Spectroscopy 

Techniques 

Principle Advantages Disadvantages 

Optical 

Transillumination Imaging 

(29, 30, 32–36) 

Absorption and scattering of 

visible light source to 

quantify difference of 

transmittance 

Non-invasive, 

Inexpensive 

Low accuracy, varying 

sensitivity 

Diffuse Optical Imaging 

(44, 63) 

Visible and infrared 

absorption spectroscopy to 

quantify chemical 

composition 

Non-invasive, 

relatively inexpsive 

Low penetration depth, 

lower spatial resolution 

Raman Spectroscopy (65)  Stokes and anti-Stokes 

scattered photons to quantify 

chemical composition 

Non-invasive, highly 

sensitive  

Highly sophisticated, 

expensive and difficult to 

deploy 

Fluorescence Spectroscopy 

(66–68) 

Re-emission of absorbed 

photons to differentiate 

normal and tumor regions 

High sensitivity  Needs i.v. injection 

Exogenous chromophores 

can cause allergic reactions, 

endogenous 

chromophore are expensive 

Non- Optical 

Microwave Spectroscopy 

(69–71) 

Microwave radiation to 

quantify the electric 

properties 

Non-invasive Low contrast between 

healthy and malignant 

fibroglandular tissue, and 

low penetration depth 

Nuclear Magnetic 

Resonance Spectroscopy  

(72–74) 

RF radiation to quantify the 

chemical composition 

Non-invasive Low sensitivity and 

expensive 

Molecular Mass 

Spectrometry (75–77)  

Ionizing tissue to measure 

molecular signature 

Molecular level 

information, high 

sensitivity 

Destructive technique and 

invasive. 
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sensitivity as high as 93% and specificity of 73.7%. Al-Alwan et al. (32) screened 150 women in 189 

Iraq, reported a sensitivity of 80.56%. However, the device reported a low specificity of 53.47% 190 

and high false positives (46.53%). Shiryazdi et al. (34, 36) screened 500 women in Iran, 191 

specifically young women (<30), for whom the use of mammography is inadvisable. The 192 

sensitivity of 60.3% and specificity of 92.5% was reported for the device and domiciliary use of 193 

the device was proposed as an alternative technique to BSE. Aliasghar et al. (33) screened 100 194 

samples in Iraq and suggested that the technique shouldn’t be used exclusively due to high false-195 

positive (46%) and low sensitivity (66.66%), specificity (51.06%) and accuracy (52%). Ghartey et 196 

al. (29) screened 2204 women in Ghana and reported a sensitivity of 92.3% with the device as 197 

compared to 73% with CBE; however, specificity remains unreported (Fig. 5a-c). We agree with 198 

other authors (38, 39) that there is a need for more clinical trials before using the transillumination 199 

method as a rapid diagnostic tool as it does offer a potentially accurate tool that is inexpensive and 200 

very easy to use. The varying sensitivity showcases the need for the rapid diagnostic tool which 201 

can delineate between normal and abnormal breast based on biomarkers such as hemoglobin, 202 

lipids, collagen, water and tissue properties such as absorption coefficient, reduced scattering 203 

coefficient, oxygen saturation, and tissue oxygenation index. The sample size, age group of 204 

subjects, and performance parameters of the studies discussed in this section are tabulated in Table 205 

3.  206 

 207 

 208 

 

Fig. 2 Transilluminated optical screening system. (a) Breast-I and Breastlight handheld based probes, (b) 

Handheld probe placed under the breast in the screening process as proposed by Ghartey et al.(29), reprinted from 

(29) with permission of Hindwai, Copyright 2018. 
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 209 

Diffuse Optical Imaging (DOI) systems  210 

The DOI systems are based on either continuous wave (CW), frequency domain (FD), or time-211 

domain (TD) operation. However, considering the cost-effective requirement of rapid diagnosis, 212 

we only review those CW and FD systems performed on large-scale clinical trials, while averting 213 

the TD systems due to its comparatively higher development cost.(78) The CW system can be 214 

developed with lower instrumentation cost as compared to the FD system, primarily due to the 215 

requirement of network analyzer, advance laser/led driver, and bias network.(79) In this section, 216 

we analyze the parallel plate, bed-based and handheld DOI systems tested on large sample size in-217 

vivo detection of breast cancer with the perspective of rapid diagnosis and summarized in Table 4. 218 

Parallel plate-based DOI system 219 

The parallel plate technique involves an array of source and detectors attached to two adjacent 220 

parallel plates with a distance separating them for the placement of breast, similar to the parallel 221 

plate technique of X-Ray mammography. The patient can sit on a chair or stand upright while 222 

placing the breast within the expanded parallel plate. The parallel plate compresses the breast with 223 

a specific pressure to begin the acquisition process.   224 

Carp et al. (80) assessed a total of 17 patients by performing compression induced 225 

hemodynamic analysis, with the discriminating factor as total hemoglobin (higher in tumor), 226 

oxygenated hemoglobin, and saturated oxygen. The sensitivity and specificity of the system was 227 

Table 3. Sensitivity and specificity of transillumination based optical imaging tool 

Ref N Age group 

(years) 

Sensitivity Specificity  

Vaidya et al. (2009) (31) 1054 543 were less than 50 years and 

511 were pre menopause 

NA NA 

Iwuchukwu et al. (2010) 

(37) 

300 NA 67%  85%  

Labib et al. (2013) (35) 310 18 – 81 (46.3±12.4) 93.0% 73.7%  

Al-Alwan et al. (2015) (32) 150 10 – 69  80.56% 53.47% 

Shiryazdi et al. (2015) (34, 

36) 

500 19 – 49 (37±4.2) 60.3% 92.5%  

Aliasghar et al. (2017) (33) 100 NA 66.66% 51.06% 

Ghartey et al. (2018) (29) 2204 34, 41* 92.3% NA 
* Mean age in two different demographic groups 
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reported to be 88% and 70% respectively. The bottom plate of the system was fixed, while the 228 

upper plate could be moved vertically, with forces ranging from 0 to 55 N, to study compression 229 

dependent hemodynamics (Fig. 3a-b). The compression was measured using strain gauge fixed to 230 

the upper plate. The system used a periodic cycle to perform coupled continuous wave (CW) and 231 

frequency domain (FD) operation, with a total acquisition time of about 7 mins. Mastanduno et al. 232 

(81) dealt explicitly with the variation in breast volume by adjusting to breasts with different cup 233 

sizes. The system involved three parallel plates with 6 degrees of freedom to consider different 234 

breast volume. 235 

Anderson et al. (82) specifically developed a cost-effective CW system, most suitable for 236 

rapid diagnosis of breast cancer. An assessment of 26 patients was reported by optical 237 

characterization of breast and creation of breast maps. As compared to the surrounding tissues, the 238 

tumor regions had a higher concentration of hemoglobin and water, along with lower lipid 239 

concentration and oxygen saturation. Anderson et al. (83) further assessed 80 patients with 240 

oxygenation saturation maps and used the Dice coefficient as a main discriminating factor. 241 

Bed based DOI system 242 

The bed-based systems are adapted from the parallel plate configuration, where the patient lies in 243 

a prone position with breast pendant in a chamber enclosed by parallel plates. The breast is usually 244 

immersed in a scattering fluid, having a similar refractive index that of fatty breast tissue.(84) The 245 

chamber holding the fluid and breast is surrounded by an array of sources and detectors, embedded 246 

within the plates. The fluid mainly consists of intralipid and/or India ink which has a similar 247 

refractive index to that of breast tissue so that the photons getting scattered within the breast do 248 

not refract while propagating away from the breast. Additionally, there are configurations,(85) 249 

 

Fig. 3. Parallel plate based DOI system peforming in-vivo clinical studies: (a) Instrumentation and (b) Imaging 

system of the parallel plate system by Carp et al. (80), reprinted from (80) with permission of OSA, Copyright 

2013. 
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replacing the scattering fluid with an arrangement of optical fibers to get direct contact with the 250 

breast surface. 251 

The system proposed by Choe et al. (41) consisted of a fixed plate and a movable 252 

compression plate. Based on the size of the breast, the compression plate could be moved between 253 

5.5 cm to 7.5 cm (Fig. 4d). The total acquisition time for a single breast took about 12 mins. The 254 

study assessed a total of 51 patients and reported the sensitivity and specificity of 98% and 90% 255 

respectively. The cancer regions were reported higher total hemoglobin, oxygenated hemoglobin, 256 

and scattering coefficient as compared to normal cases. Busch et al. (86) expanded Choe et al. 257 

system (41) and converted the 2D images into 3D DOT (Diffuse Optical Tomography) images 258 

using multiparameter, multivoxel and multisubject statistical analysis to overcome the image 259 

artifacts. The study reported the assessment of 35 patients with a sensitivity and specificity of 89% 260 

and 94%, with HbT contrast ratio (T/N) cutoff of 1.2. 261 

The system proposed by Wang, James et al. (87) reported higher absorption coefficient, 262 

reduced scattering coefficient, and refractive index in tumor regions as compared to the 263 

surrounding regions. The system was based on the work by Iftimia et al.,(88) which took about 4 264 

minutes for the acquisition of an image. The specificity and accuracy of the system developed by 265 

Iftimia et al., (88) was improved by Wang, James et al. (87) by the employment of machine 266 

learning algorithm (support vector machine classification) for automated delineation of normal 267 

and tumor cases. The study (87) assessed a total of 33 patients and reported the sensitivity and 268 

specificity of 81.8% and 91.7% respectively. 269 

Pogue et al. (25) assessed a total of 39 healthy patients and quantified hemoglobin 270 

concentration, oxygen saturation, water, absorption, and scattering coefficient. The system used 271 

optical fibers to deliver the light source directly to the breast surface. Sixteen optical fibers were 272 

arranged circularly to cover the breast surface uniformly. The variation of breast volume was 273 

adjusted by varying the diameter of this circular arrangement. The acquisition time for a single 274 

breast took about 5 mins. Force transducers were placed explicitly for safety as well to measure 275 

optical images based on different applied pressures. Wang, Jia et al. (85) extended this approach 276 

by using a coupled frequency domain (FD) and continuous wave (CW) operation along with a 277 

broadband light source with a reasonable development cost. The study reported more accurate 278 

tissue constituents with this coupled approach as compared to FD data alone. The study assessed 279 

9 patients and reported 1.5 to 2-fold increase in water and hemoglobin concentration in the tumor 280 
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as compared to the surrounding normal region. The study also reported lower lipid concentration 281 

in lipid as compared to the normal region. 282 

Ban et al. (89) introduced real-time camera-based DOT technique to quantify tissue 283 

properties along with 3D image reconstruction of the breast. The camera could detect any error 284 

rising due to motion artifacts. The system was extended by Cochran et al. (90), an assessment of 285 

222 patients was done and the accuracy of 86% was reported. The FD system developed by Zhao 286 

et al. (91) consisted of a movable football-shaped fiber breast interface to facilitate different breast 287 

volume. The system reported an assessment of 11 patients with hemoglobin and water contrast 288 

ratios of 1.4 and 1.2 respectively (Fig. 4a-c). The acquisition time in this system of about 90 sec 289 

was reduced to 55 sec in the updated system (64) by applying a prospective gain setting scheme. 290 

The updated system reported an increase of contrast in total hemoglobin to 1.7 by the inclusion of 291 

the collagen concentration in image reconstruction.  292 

Handheld based DOI system 293 

Unlike X-Ray mammography, the Diffuse Optical Imaging (DOI) system use smaller light sources 294 

and detectors that can be configured within a handheld system. The handheld probe is scanned 295 

point by point to cover the complete breast surface area. This process increases acquisition time 296 

for both breasts, and hence, the handheld device is primarily used in conjunction with 297 

complementary techniques, e.g., Ultrasound (42, 92, 93) and X-Ray.(94) With the help of such 298 

 

Fig. 4 Different configurations of bed-based systems performing in-vivo clinical studies: (a) The NIRST imaging 

system proposed by Zhao et al. (91), (b) The patient lies in a supine position for taking the measurement, and  (c) 

Interface of fiber with the breast surface, reprinted from Zhao et al.(91) with permission of SPIE, Copyright 2016. 

(d) Patient lies in the prone position and places the breast in the breast box consisting of intralipid scattering agent 

and India ink absorption agent in the system by Choe et al. (41), reprinted from Choe et al. (41) with permission 

of SPIE, Copyright 2009. 

 

 (d) 
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complementary techniques, the operator can focus on a specific suspicious breast area for higher 299 

image contrast and resolution. 300 

Zhu et al. (92) assessed a total of 19 patients with an ultrasound-guided diffuse optical 301 

imaging handheld probe. The study reported a 2-fold higher total hemoglobin in the tumor as 302 

compared to the benign region. The system first localizes the lesion using ultrasound and then 303 

scans the suspected region at higher resolution using DOI. Chen et al. (93) expanded the system 304 

proposed by Zhu et al., by reducing the weight and converting it into a portable system weighing 305 

~26.5 lb (12 kg) with an acquisition time of about 5 minutes. Cheng et al. (95) assessed a total of 306 

50 patients with a real-time time continuous-wave handheld DOI probe, and reported the 307 

sensitivity and specificity of 92% and 67% respectively. The study reported a higher total 308 

hemoglobin and oxygen saturation in tumor cases as compared to the normal. 309 

The study by Chance et al. (96) used a multiwavelength LED at the center circularly 310 

surrounded by eight detectors with a radius of 4 cm. This arrangement gave a circular measurement 311 

area with a diameter of about 9 cm over the breast. The integration of a pressure transducer 312 

preserved the accuracy by maintaining the pressure of ~3 mmHg throughout the measurement 313 

process. The study used hemoglobin concentration as a main discriminating factor to identify the 314 

cancerous region. The system assessed a total of 116 patients and reported the sensitivity and 315 

specificity of 96% and 93% respectively. 316 

Cerussi et al. (96) proposed the handheld probe system which consisted of the source 317 

optical fiber attached to a movable plastic attachment along with the casing of the probe consisting 318 

of an Avalanche photodiode (APD) detector. This arrangement helped to measure data at different 319 

source-detector distances. The point by point scan was performed on a line with a spacing of 10 320 

mm, and source-detector separation of 28 mm.  The study assessed a total of 58 patients, and 321 

reported higher water, oxy- and deoxygenated hemoglobin (more than 50% each), and lower lipid 322 

(~ 20%) concentration in the tumor as compared to normal region. The study also reported TOI 323 

with a 2-fold contrast of malignant tissue as compared to the surrounding regions. The system 324 

required prior knowledge of tumor location through X-ray mammography. The system developed 325 

by O'Sullivan et al. (79) extended Cerussi et al. work, by printing the PCB circuit thereby replacing 326 

the network analyzer with equivalent accuracy while proving 5x faster acquisition time and 10x 327 

less cost (Fig 5d-f).  328 
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Kukreti et al. (97) introduced self-referencing differential spectroscopy technique to report 329 

an absence or presence of molecular disposition in spectral fingerprint rather than the molecular 330 

concentration. The study retrospectively assessed a total of 60 patients and used malignancy index 331 

(MI) as a discriminating factor, which was higher in the malignant as compared to benign. The 332 

study reported a sensitivity and specificity of 91% and 94% respectively.  The system required the 333 

location of the tumor beforehand using an ultrasound technique, and the probe was vertically 334 

scanned with a spacing of 10 mm across the tumor. The acquisition time for each spatial location 335 

was ~10 seconds. Zhang et al. (94) compared the DOT with Ultrasound Elastography (UE) and X-336 

Ray Mammography. The study assessed a total of 67 patients and reported a sensitivity and 337 

specificity of DOT as 95.4% and 73.44% respectively, UE as 81.82% and 93.33% respectively, 338 

and Mammography as 68.18% and 57.78% respectively. The DOT and UE were reported to have 339 

higher specificity and accuracy as compared to conventional mammography. The DOT images 340 

were recorded using a scanner (Xinao-MDT, Beijing, China) and used discriminating factors as 341 

total hemoglobin concentration (high in tumor) and oxygen saturation (low in tumor).  342 

Gonzalez et al. (98, 99) introduced a fork design (Gen-2 system) which performed 343 

sequential and simultaneous bilateral reflectance and transmittance measurements. The probe head 344 

(4 x 5 cm2) was flexible to conform to breast tissue surfaces with minimal compression. The probe 345 

head was integrated with 3 source fibers and 96 detector fiber connected to the laser source and 346 

ICCD camera. Erickson et al. (100) compared the Gen-2 system proposed by Gonzalez et al. (98, 347 

99) with an updated Gen-1 system, using a flexible probe head (4 x 9 cm2) with 6 source fibers 348 

and 165 detector fibers. Real-time images with an updated Gen-1 system were gathered with 349 

processing time for each image of about 2 seconds. The study by Erickson et al. (100) assessed a 350 

total of 5 patients using the discriminating factor as total hemoglobin concentration (higher in 351 

tumor).  352 

Zhu et al. (42) assessed a total of 288 patients based on the different stages of breast cancer 353 

(T1, T2, T4, Tis), and reported a sensitivity and specificity of 96.6%–100% and 77.3%–83.3% 354 

respectively. Mostafa et al. (101) proposed a real-time semi-automated process that automatically 355 

identified tumor location and fed to the optical imaging reconstruction process. The study assessed 356 
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a total of 20 patients and reported the discriminating factor as total hemoglobin concentration (high 357 

in tumor).  358 

Challenges of different configurations of DOI systems for routine diagnostic applications. 359 

The parallel plate techniques were the earliest studied configuration, because of its similarity with 360 

mammography. The advantage of using this technique is the availability of the sophisticated 361 

mechanical rail system that can facilitate breast volume variation. However, a significant challenge 362 

faced by the parallel plate is the breast density variation of the compressed breast within the plate 363 

area. When the breast is under compression using parallel plates, the orthogonal density towards 364 

the chest will be relatively high. This gradient in density must be taken into consideration while 365 

performing image reconstruction. Additionally, the compression of the breast causes pain and 366 

inconvenience to the patient. (82) Considering a large-scale clinical trial, the mechanical parts of 367 

the system will be more prone to failure. Moreover, due to the mechanical arrangement of the 368 

vertical railing, subtle vibration due to motion artifacts while taking measurement also induces 369 

errors in the acquired image. (80) 370 

 371 

 

Fig. 5 Different hand-held devices performing in-vivo clinical studies: (a) Broadband DOSI system constituting 

of instrumentation as proposed by O'Sullivan et al. (79) and Cerussi et al. (128), (b) Handheld probe,  

and (c) Patient lying in supine position for the measurement, reprinted from O’Sullivan et al. (79) with 

permission of SPIE, Copyright 2012. 

 
(a) 

 
(b) 

 (c) 
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 372 Table 4. Analysis of DOI systems performed on large sample size with rapid diagnostic perspective  

Ref 
Operation 

type 
Acquisition time ML N Sensitivity Specificity Tissue types DF (T/N) Comparative analysis 

Parallel plate 

Carp et al., 2013 (80) CW, FD ~ 7 min No 17 88% 70% Normal and IDC HbT ↑ Single biomarker, low specificity, and 

high cost 

Anderson et al., 2015 (82) CW 4 - 10 min No 26 NA NA IDC, DCIS HbT ↑ H2O ↑ L 

↓ 

Cost effective and rapid acquisition 

Anderson et al., 2016 (83) CW NA No 80 NA NA IDC, DCIS, ILC, and 

LCIS 

HbT ↑ H2O ↑ L 

↓ SO2 ↓ 

Cost effective and multiple biomarkers 

Bed based 

Choe et al., 2009 (41) FD 8 to 12 mins per 

breast 

 

No 51 98% (95% 

CI=87–100%) 

90% (95% CI of wide 

range: 55–100%) 

IDC, DCIS, ILC, 

LCIS, FB, cyst and 

FBC. 

HbT ↑ HbO ↑ 

µs ↑ 

High sensitivity, high specificity, but with 

large acquisition time and costly  

Iftimia et al., 2003 (88) and 

Wang,James et al., 2008 (87) 

CW 4 min Yes 33 81.8 % 91.7% Benign and IDC A ↑ µs ↑ η ↑ Rapid acquisition, high specificity, 

integrated with ML, but costly 

Busch et al., 2010 (86) FD 8 to 12 mins per 

breast 

 

No 35 89% 94% Benign, IDC, DCIS, 

and ILC 

HbT ↑ High sensitivity, high specificity, but 

large acquisition time and costly 

Wang, Jia et al., 2010 (85) FD, CW 8 min No 9 RS RS Normal, DCIS, IDC, 

and IFC 

HbT ↑ H2O ↑ L 

↓ 

Reasonable development cost, but low 

sample size. 

Zhao et al., 2016 (91) CW, FD 90 sec No 11 RS RS Normal and IDC HbT ↑ H2O ↑ Rapid acquisition, but low sample size 

Cochran et al., 2018 (90) CW, FD Real-Time Yes 222 Accuracy of 86% 

 

Benign, IDC, ILC, 

DCIS, and LCIS  

HbR ↑ TOI ↑ 

H2O ↑ SO2 ↑ 

Real time, integrated with ML, high 

accuracy, and large sample size. 

Handheld 

Zhu et al., 2003 (92) FD ~13 min No 19 NA NA IC, ADH, LCIS, FB, 

and FBC 

HbT ↑  Single biomarker and low sample size 

Cheng et al.,2003 (95) CW Real-Time No 50 92% 67% Benign, IDC, and 

DCIS 

HbT ↑ SO2 ↑ Real time, but low specificity 

Chance et al., 2005 (96) CW ~10 min No 116 96% 93% Normal and cancer HbT ↑ SO2 ↓  Large sample size, high sensitivity, high 

specificity, but with large acquisition 

time 

Cerussi et al., 2006 (128) FD, CW 20 sec at each 

spatial location 

No 58 NA NA Benign and IDC H2O ↑ HbO ↑ 

HbR ↑ L ↓ TOI 

↑ 

No data on sensitivity and specificity and 

costly 

Kukreti et al., 2009 (97) FD, CW 10 sec at each 

spatial location 

No 60 91% 94% Benign and cancer MI ↑ High sensitivity, high specificity, but 

costly 

Zhang et al., 2014 (94) FD NA No 67 95.45% 73.33% FB, FBC, cyst, IDC, 

CP and MC 

HbT ↑ SO2 ↓  Low specificity and costly 

Erickson et al., 2015 (100) CW Real-Time No 5 RS RS IDC, DCIS, MTC HbT ↑ Low sample size with no data about 

sensitivity and specificity 

Zhu et al., 2016 (42) NA 5 sec No 288 96.6%–100% 77.3%–83.3% Benign, Tis, T1, T2, 

T3, and T4. 

HbT ↑ Large sample size, high sensitivity, high 

specificity, and rapid acquisition 

Mostafa et al., 2017 (101) FD Real-Time No 20 NA NA Benign, IDC, DCIS, 

LC 

HbT ↑ Real time, but no data about sensitivity 

and specificity 

RS – Retrospective study, DF(T/N) – Discriminating factor with ratio of tumor to normal, IDC – Invasive ductal carcinoma, DCIS – Ductal carcinoma in-situ, LC – Lobular carcinoma, ILC – Invasive lobular carcinoma, IC – 

Invasive carcinoma, FB – Fibroadenoma, ICC - Intracystic carcinoma, MP - malignant phyllodes, FBC – Fibrocystic, IFC – Inflammatory carcinoma, IMC - Invasive mammary carcinoma, ADH – Atypical ductal hyperplasia, 

CP - Cystosarcoma phyllodes, MTC - Metastatic carcinoma, and MC - Mucinous carcinoma, BV – Blood volume, η – Refractive index. 
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  The patient lying in a bed-based system is in a relaxed position, whether in a supine or prone 373 

position. Moreover, the bed-based system has been reported to have sensitivity and specificity of 374 

more than 90%.(41, 86) However, a significant challenge using a bed based system is using 375 

matching fluid-based chambers,(102, 103) which is susceptible to spilling and leakages. 376 

Additionally, due to the use of fluid, the issue of hygiene and cleanliness is also a concern.  377 

Replacing the fluid-based chamber with a motion-based contact technique requires maintaining 378 

optimal pressure and uniform contact with the breast surface, which is a challenge. Additionally, 379 

considering large-scale clinical trial for rapid diagnosis, the mechanical motion-based contact 380 

technique for different breast size is more prone to failure. Finally, the requirement of a specialized 381 

bed with chambers makes the system bulky and decreases portability. The bed-based system can 382 

be configured in a modular way to be deployed during the rapid diagnosis. Moreover, with the 383 

recent advancements of the bed-based system, taking less than 1 minute (64, 89) to perform 384 

imaging, the bed-based techniques seem to be a promising configuration to be used as a rapid 385 

diagnostic tool.  386 

The handheld system is a highly researched configuration and a promising technique to be 387 

used in breast cancer diagnosis,(45) especially with the recent advancement of real-time imaging 388 

of the breast.(95, 100, 101)  The handheld systems are easy to use, portable and have been reported 389 

with more than 90% sensitivity (42, 94–97) and more than 90% specificity.(96, 97) However, the 390 

major challenge is the manual scanning process, where the operator has to scan point-by-point 391 

over the breast. The diagnosis involving large sample size, an operator taking such measurements 392 

throughout the day would tend to make mistakes and may skip the scanning points due to 393 

monotony, which can lead to errors while reconstructing the images. Moreover, the non-uniformity 394 

of breast density/volume is a challenge for handheld devices. As the number of sources is limited 395 

and the operator must vary the scanning location manually, it is a challenge to automatically vary 396 

the intensity of the source based on the breast density/volume, i.e., higher density orthogonally 397 

towards the chest. Besides, the manual scanning process requires firm pressure to be applied by 398 

the operator (~3mm Hg) to obtain the required contact and manual control over this variable by 399 

the operator can lead to inaccurate image.(96) The handheld system is a promising technique to be 400 

used for rapid diagnosis; however, due to limited measurement area, the tool can be advantageous 401 

and reliable along with complementary techniques such as ultrasound (42, 92, 93) and 402 

mammography.(94)  403 
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Automatic interpretation of results using machine learning 404 

Transillumination imaging (TI) is performed by a visual interpretation of an image by a skilled 405 

clinician; however, machine learning algorithms are yet to be applied in TI. While, the automatic 406 

interpretation or detection of breast cancer using DOI has been performed by reconstructing optical 407 

signals into images by inverse modeling the diffusion effect, as showcased in-depth in this section. 408 

Segmentation and classification of the reconstructed images are difficult due to the presence of 409 

noise, motion artifacts, and image degradation because of short acquisition time. Researchers have 410 

used several machine learning methods to tackle the above problems and achieve high efficiency 411 

while performing different segmentation and classification algorithms, as tabulated in Table 5. 412 

Considering the rapid diagnosis, the machine learning algorithm needs to choose between these 413 

methods for high quality and low artifact reconstruction of images.  414 

In the latest development, McKinney et al. (104) used three independent Deep Learning Methods 415 

(DLM) while training each method with data augmentation applied to each image. Each model 416 

reported a cancer risk score between 0 and 1, while the final prediction was based on the mean of 417 

the predictions from each of these models. The study reported the use of AI resulted in a reduction 418 

of 1.21% in false-positive and 2.7% in false-negative in datasets from UK. Wang et al. (105) 419 

utilized absorption and scattering attributes along with a refractive index to isolate the lesion area. 420 

Based on mean coefficients and lesion area properties, and with the help of Support Vector 421 

Machine SVM, the classification of the lesion as cancerous or non-cancerous was achieved with 422 

an accuracy of 88.6%. Entropy and iterative selective methods rather than simple predetermined 423 

threshold methods improved performance. Taroni et al. (40) examined different tissue 424 

composition, i.e., water, hemoglobin, lipid, collagen, and their absorption parameters as potential 425 

input features to a discrete Adaboost classifier to identify malignant invasive ductal carcinomas. 426 

The type of collagen and the type of lesion had a significant impact on the performance of the 427 

Adaboost classifier.(106) 428 

Cochran et al. (90) used diffuse optical biomarkers' optical properties in the frequency 429 

domain as a feature to classify ductal and lobular invasive carcinomas against benign lesions using 430 

Logistic Regression. According to Breneisen et al.,(107) the Energy Spectral Density (ESD) can 431 

be used to differentiate malignant and healthy tissue, due to scattering properties of the tissue. The 432 
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respective ESDs of the scattered incident light was fed to a feed-forward Neural Network (NN), 433 

which determined the grade of the lesion. A secondary NN was developed to represent as a “critic” 434 

for indecisive cases from the primary feed-forward NN.  435 

Barbour et al. (108) investigated hemoglobin signals from the tissue to characterize the 436 

nature of the tissue. The oxygenated state and saturation of hemoglobin were given as input 437 

features for finite Markov Chain to determine the grade of the lesion. Zhang et al. (109) used 438 

Diffuse Correlation Spectroscopy (DCS) to estimate the Blood Flow Index (BFI), associated with 439 

tumors. The study compared three different methods:  L1 norm, L2 Norm, and Support Vector 440 

Regression (SVR) to estimate BFI, SVR proved to be most efficient with an error rate of 2.23%.  441 

Electronic design for DOI systems 442 

The critical aspect of imaging is the contrast, resolution, and penetration depth. The contrast and 443 

resolution of the image depend on the number and type of sources/detectors and spacing between 444 

them.  LASER or LED is used as a light source, the former generating narrower beamwidth and 445 

bandwidth; however, its thermal reliability is a concern. While, LED is comparatively cost-446 

Table 5. Machine Learning used in Diffuse Optical imaging tools to detect breast cancer  

Ref Features Methods Classes N 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

(105) Attributes extracted from 
absorption, scattering, and 

refractive index images 

Support Vector 
Machine 

Cancer and 
non-cancer 

33 88.6 81.8 91.7 

(40) Absorption differences at 
seven wavelengths 

Discrete Boosting 
algorithm 

Benign and 
malignant 

 

84 NA 80.5 ± 2.3  84.1 ± 5.5 

(106) Absorption differences at 
seven wavelengths 

Discrete Boosting 
algorithm 

Benign and 
malignant 

 

84 NA 88 79 

(90) Absorption and scattering 
properties from the 
frequency domain.  

Logistic 
Regression 

Benign and 
malignant 

 

222 86 NA NA 

(107) Energy Spectral Density Feed-forward NN Probably benign and 
highly suspicious 
malignant 

NA NA NA NA 

(108) HbO, HbT, SO2, tissue-Hb 
oxygen exchange 

Finite Markov 
Chain 

Benign and  
malignant 

NA NA NA NA 

(109) Blood Flow Index from 
DCS Signals 

Support Vector 
Regression 

- 10 NA ER:2.23% NA 

(104) Cancer risk score Three 
independent Deep 
Learning Method 

Benign and  
malignant 

28,953 NA 66.66* 96.26* 

* AI as second reader 
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effective, reliable, and robust, but has wider beamwidth and bandwidth. Additionally, a critical 447 

challenge is the unavailability of a single detector that is capable to detect light of different 448 

wavelengths with the same absolute sensitivity.  449 

The choice of the operating wavelength is based on characterizing specific tissue 450 

biomarker, for e.g., selective absorption of oxygenated hemoglobin and deoxygenated hemoglobin 451 

occurs between 635nm and 785, lipid absorption peak around 920 nm, water absorption peak 452 

around 975 nm, and collagen absorption peak around 1060 nm.(40, 110) Additionally, considering 453 

rapid diagnosis, the development cost of the system should be minimal, while being portable. The 454 

Table 6. Electronic design specifications of DOI in-vivo breast cancer imaging system 

Ref Operation Source Type Source power Detector  Wavelength (nm) 

Parallel plate 

(80) FD: 110 
MHz 

Laser diode  2mW (FD), 10mW 
(CW) 

PMT 635, 670, 690, 752, 
758, 810 and 830  

(81) CW, FD Laser diode NA PMT 660 to 850 and 900 to 
950 

(82, 83) CW Arc Lamp NA CCD 650 nm - 950 nm 

Bed based 

(41) FD: 70 
MHz 

Laser diode NA CCD  FD: 690, 750, 786, and 
830. CW: 650 and 905 

(88, 105) CW Laser diode 100 mW PMT 785, 808, and 830 nm 

(86) FD Laser diode NA CCD 650 - 950 nm 

(85) FD: 100 
MHz 

Laser diode NA PMT FD: 661, 761, 785, 
808, 826, and 849 
CW: 903, 912, and 

948 
(89, 90) CW, FD: 

70 MHz 
Laser diode 16 mW CCD 660, 690, 785, 808, 

and 830 nm 

(64, 91) CW, FD: 
100 MHz 

Laser diode < 120 mW PMT and PD 661, 785 and 826nm 

Handheld 

(92) FD: 140 
MHz 

Laser diode NA PMT 780 and 830 

(95) CW Laser diode 100 mW Si PD 690 and 830 nm 

(96) CW LED 10 mA Si PD 760 and 850 

(128) FD: 50 to 
500 MHz 

Laser diode 20 mW APD 661, 686, 786, 808, 
822, and 852 

(97) FD, CW FD: Laser 
diode,  

CW:  tungsten-
halogen 

20 mW APD, 
Spectrometer 

FD: 660, 690, 780, 
808, 830, and 850.  

(94) NA Laser diode NA NA NA 

(100) CW Laser diode < 5 mW ICCD  785 

(42) NA NA NA PMT 740, 780, 808, and 830 
nm  

(101) FD: 140 
MHz 

NA NA PMT 740, 780, 808, and 830 
nm 

PMT - Photomultiplier tube, CMOS - Complementary metal-oxide–semiconductor, APD - Avalanche photodiode (APD), Si PD - Silicon 
photodiode, CCD - coupled charge-coupled device), ICCD - Intensified charge-coupled device (ICCD) 
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TD systems (78, 84, 111) reportedly have higher cost due to expensive detector and source/detector 455 

driving system; however, FD (64, 89–91, 97) systems are reported as an alternative, still requiring 456 

costly instruments such as source modulation driving circuit and biasing network; while low-cost 457 

alternative are considered as CW (81–83, 88, 105) system albeit with lower information (i.e. no 458 

tissue scattering property). The electronic design specifications for different configurations, such 459 

as parallel plate, bed-based, and handheld probes, are tabulated in Table 6. 460 

 461 

Summary 462 

Breast cancer causes the most cancer deaths in middle aged women.  Diagnosis of breast cancer 463 

using current tools such as X-Ray mammography, ultrasounography and MRI while modestly 464 

accurate is complex and expensive.  Thermography is not used in clinical practice and non-optical 465 

spectroscopy techniques such as microwave spectroscopy, NMR spectroscopy, and molecular 466 

mass spectrometry have inherent or practical disadvantages making them unsuitable as a rapid 467 

diagnostic tool. Development of an inexpensive, portable tool that requires the least amount of 468 

human expertise to operate could greatly improve the accessibility of women to high-quality 469 

diagnosis of this dreaded disease. Optical spectroscopy-based imaging modalities appear to be 470 

eminently suitable for the rapid diagnosis of breast cancer. The elementary optical spectroscopy-471 

based techniques including Transillumination Imaging (TI) and Diffuse Optical Imaging (DOI) 472 

are comparatively more practical for rapid diagnosis of breast cancer in the field as compared to 473 

advanced optical spectroscopy techniques such as Raman spectroscopy and Fluorescence 474 

spectroscopy. The handheld Transillumination Imaging is inexpensive and easy to use, but its 475 

accuracy is not high, and a skilled clinician needs to interpret the transilluminated image. Diffuse 476 

Optical Imaging appears to be most promising. It provides a detailed spatial map of relative 477 

concentration of different cancer biomarkers and could be amenable to be used within a system of 478 

a handheld tool in combination with AI driven rapid analysis. Currently, DOI is lab-based and 479 

expensive to manufacture and needs improvement in its image resolution. 480 

The DOI tool is classified as parallel plate, bed-based, and handheld system. The parallel 481 

plate system includes both transmission and reflection data and gives results with and without the 482 

application of pressure with relatively low acquisition time. The parallel plate system considers 483 

breast volume variation and breast density variation. However, due to its mechanical design, it is 484 

prone to vibration-induced errors. Additionally, considering rapid diagnosis with large sample 485 



22 

 

size, it is more prone to failure due to mechanical motion. The parallel plate-based configuration 486 

is more advantageous in systems connected to bed-based configuration. 487 

The bed-based technique involves both transmission and reflection analysis while taking 488 

breast volume and breast density variation into account. Moreover, the patient is comfortable 489 

during the acquisition process, with the bed-based system having the sensitivity and specificity of 490 

more than 90%. However, the mechanical design, including a specialized bed decreases 491 

portability, and the spilling of chamber fluid and its hygiene is a concern. The motion-based 492 

contact bed-based technique is more favorable but is more prone to mechanical failure. With the 493 

recent developments in bed-based techniques taking the acquisition time to be less than 1 minute, 494 

the bed-based technique is a promising configuration to be used as a rapid diagnostic tool. 495 

However, there is a need to configure the bed-based system in a modular approach to improve 496 

portability and rapidly deploy the system. 497 

The handheld system primarily provides the reflection data and can compensate for breast 498 

volume variation by manually changing the number of scanning points. The sensitivity and 499 

specificity of hand-held systems are reported to be more than 90%. However, manually choosing 500 

the scanning points makes the process dependent on the operator’s skill. Considering an extensive 501 

number of tests, the operator can be prone to fatigue and reduced accuracies on skipping the 502 

scanning points. Hence, the handheld probe is more advantageous and reliable when used along 503 

with ultrasound or mammogram, where the location of the tumor is known beforehand.  504 

The FD and CW based rapid diagnosis systems are reported as an alternative to TD system, 505 

while the CW based system was considered as a low-cost alternative; however, with limited 506 

information on scattering data. Each of the modalities showcases potential to be used as a rapid 507 

diagnostic tool; however, there is a critical need to fully resolve all the challenges of being 508 

proficient in maintaining sensitivity with variation in breast volume and density between patients, 509 

portable, battery-powered, low-acquisition time, minimum human intervention, and integrated 510 

with machine learning techniques for automatic interpretation of the results. Additionally, the rapid 511 

diagnostic tool should quantify the main cancer biomarkers, such as total hemoglobin, water, and 512 

lipids. 513 

  514 
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