
RESEARCH ARTICLE

Optical Stokes flow estimation: an imaging-based control
approach

Paul Ruhnau Æ Christoph Schnörr
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Abstract We present an approach to particle image

velocimetry based on optical flow estimation subject to

physical constraints. Admissible flow fields are re-

stricted to vector fields satifying the Stokes equation.

The latter equation includes control variables that al-

low to control the optical flow so as to fit to the

apparent velocities of particles in a given image pair.

We show that when the real unknown flow observed

through image measurements conforms to the physical

assumption underlying the Stokes equation, the control

variables allow for a physical interpretation in terms of

pressure distribution and forces acting on the fluid.

Although this physical interpretation is lost if the

assumptions do not hold, our approach still allows for

reliably estimating more general and highly non-rigid

flows from image pairs and is able to outperform cross-

correlation based techniques.

1 Introduction

1.1 Motivation and overview

Recently, a novel class of variational approaches to

image fluid analysis has been introduced in Ruhnau

et al. (2005a, b), Kohlberger et al. (2003). These

methods are based on approaches originally developed

in the field of computer vision (Horn and Schunck

1981; Nagel and Enkelmann 1986; Schnörr 1991) and

suitably elaborated and modified for the purpose of

PIV. The prototypical approach presented in Ruhnau

et al. (2005) was most recently improved in Corpetti

et al. (2005) by taking into account higher-order reg-

ularization. For recent improvements concerning cor-

relation-based PIV techniques, we refer to Nobach and

Tropea (2005), Nobach et al. (2005) and references

therein.

The basic idea of variational optical flow approaches

is not to estimate displacement vectors locally and

individually, but to estimate vector fields as a whole by

minimizing a suitable functional defined over the entire

image section. Besides yielding dense flows with a high

spatial resolution, a key advantage of these methods is

that they allow for the robust estimation of coherent

flows by including variational penalty terms that en-

force spatial or temporal smoothness of the minimizing

vector fields.

In this work, we study a novel optical flow-based

approach to particle image velocimetry (PIV) that

incorporates physical prior knowledge in a more pre-

cise and explicit way: all admissible flows for estima-

tion have to satisfy the Stokes equation. In order to

estimate the specific flow of apparent velocities of

particles in an image sequence, control variables are

included and determined by minimizing a suitable

objective function which relates the flow and the con-

trol variables to given image sequence data. We show

that our approach not only estimates the flow from a

given PIV image sequence, but pressure and forces

acting on the real fluid as well, provided the real flow
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satifies the Stokes equation, too. Furthermore,

numerical experiments presented in this paper in

comparison with alternative approaches reveal that

fluid flow can also be accurately estimated from image

data in more general situations.

We wish to point out that advanced measurement

techniques are on the cusp of producing fully time-

resolved 3D flow measurements (Elsinga et al. 2005).

We expect that this trend will change the current par-

adigm underlying the algorithm design for flow esti-

mation from image measurements. While 2D-specific

problems like out-of-plane motions of particles will

become obsolete, the use of physical knowledge in a

mathematically and numerically sound way will be-

come natural and important for further progress. Our

approach presented in this paper may also be viewed as

a first step along this direction.

1.2 Related work

Our approach draws on the general literature on the

control of distributed parameter systems (Lions 1971).

For specific approaches in connection with fluid

dynamics, we refer to Gunzburger (2002). The appli-

cation of flow control techniques to image motion

estimation, as presented in this paper, is novel, how-

ever.

Concerning the incorporation of physical constraints

for flow estimation through image processing, several

interesting approaches have been suggested in the past.

Combining PIV and CFD by using cost functions were

proposed in Kaga et al. (1998), Ogawara et al. (1997).

In contrast to our approach, they can be understood as

post-processing methods: By correcting cross-correla-

tion velocity estimates so that they approximately

conform to the incompressible Navier–Stokes equa-

tion, outliers are detected and rectified.

More recently, physics-based non-linear dynamic

models (Okuno et al. 2000) have been introduced to

PIV. The velocity is again obtained by minimizing a

measure which consists of the residues of the Navier–

Stokes equation, the continuity equation, and the dif-

ference between estimated and observed image data.

The resulting non-linear optimization system is solved

using methods from evolutionary programming

(Michaewicz 1994). This procedure is repeated until

the difference between the observed and the estimated

image is sufficiently small. In principle, this method

allows a reliable estimation of velocity fields and

pressure estimates. The need to use general-purpose

evolutionary programming indicates, however, that

only little insight into the structure of the problem has

been gained (existence, multiplicity and stability of

solutions, and related dedicated algorithms). This

sharply contrasts with our approach developed below.

The reader may ask: why do we confine ourselves to

Stokes flows, as opposed to flows governed by the full

Navier–Stokes equation? In this connection, we wish to

point out that we consider, for the first time to our

knowledge, a quite difficult inverse problem—the joint

estimation of a flow along with related physical quanti-

ties from image sequences. This problem is intricate

through the interaction of various components, although

each of them individually behaves in a mathematically

simple way. Therefore, to study the computational fea-

sibility and robustness, we have chosen Stokes flows as a

first step which will also be involved as a subroutine

through linearization in future extensions of our work.

Notwithstanding this restriction, we demonstrated

below that our numerical results are competitive with

respect to alternative approaches of current research.

1.3 Organization

In Sect. 2 we will present our control approach and the

resulting constrained minimization problem. We will

detail the finite element discretization, the numerics

and features of our coarse-to-fine implementation in

Sects. 3.1 and 3.2. A range of numerical experiments on

ground-truth image pairs as well as on real-world im-

age sequences will be presented and discussed in Sect.

4. This part is subdivided into experiments that con-

form with our model and experiments that deviate

from it. We conclude in Sect. 5 and indicate extensions

within the variational control framework.

2 Approach

2.1 Constrained variational optical flow estimation

Let I(x, y, t) denote the gray value recorded at location

(x, y)T and time t in the image plane. A basic

assumption underlying most approaches to motion

estimation is that I is conserved, that is the change

of I(x, y, �) at location (x, y)T is due to a movement of

I(x, y, t) to the location (x + u Dt, y + v Dt)T during a

time interval Dt:

Iðxþ uDt; yþ vDt; t þ DtÞ � Iðx; y; tÞ: ð1Þ

Here, u = (u, v)T denotes the optical flow, that is the

apparent instantaneous velocity of image structures.

The frame rate Dt is assumed to be small, so that u Dt is
close to the actual displacement. In the following, we

put Dt = 1 without loss of generality.
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A common approach to estimating the optical flow

vector (u, v)T at some fixed location ðx; yÞT on the

image grid ðx; yÞT ¼ ðkDx; lDyÞT; k; l 2 Z; is to as-

sume u and v to be constant within a local spatial area

Nðx; yÞ around ðx; yÞT and to minimize1

X

k;l2Nðx;yÞ

�

Iðkþ uDt; l þ vDt; t þ DtÞ � Iðk; l; tÞ
�2

ð2Þ

as a function of u and v. Assuming additionally that
P

k;l2Nðx;yÞ Iðk; l; tÞ
2 does not vary with ðx; yÞT; the

minimizing values of u, v maximize the correlation

function

X

k;l2Nðx;yÞ

Iðkþ uDt; l þ vDt; t þ DtÞ Iðk; l; tÞ:

Variational motion estimation approaches explicitly

take into account smooth changes of the flow (u, v)T at

time t as a function of x and y: u = u(x, y), v = v(x, y). A

continuously formulated expression analogous to Eq. 2

then reads:

Z

X

�

Iðxþ uðx; yÞ; yþ vðx; yÞ; t þ 1Þ � Iðx; y; tÞ
�2
dxdy:

ð3Þ

From the viewpoint of variational analysis and

algorithm design, formulation (3) is not convenient,

however, because the dependency on u and v is non-

convex. A common way around this difficulty is (i) to

further approximate the objective function so as

to obtain a mathematically tractable problem, and (ii)

to apply the resulting variational approach to a multi-

scale representation of the image data I. Point (i) is

addressed by a Taylor series linearization of (3) and by

dropping the argument (x, y, t) for convenience:

Z

X

�

rI � uþ @tI
�2
dxdy: ð4Þ

The spatial and temporal derivatives of I can be esti-

mated locally using FIR filters. Point (ii) above is

briefly sketched in Sect. 3.2. For a more detailed ac-

count, we refer to Ruhnau et al. (2005).

Problem (4) is not well-posed because any vector

field with components rI � u ¼ �@tI; 8 x; y; is a

minimizer. The standard approach is to add a varia-

tional term enforcing smoothness of the flow (Horn

and Schunck 1981)

Z

X

n

ðrI � uþ @tIÞ
2 þ a

�

jruj2 þ jrvj2
�

o

dxdy ð5Þ

or smoothness of its divergence and vorticity (Suter

1994)

Z

X

n

ðrI � uþ @tIÞ
2 þ a

�

�rðr � uÞ
�

�

2
þ b
�

�rðcurluÞ
�

�

2
o

dxdy:

ð6Þ

In this paper, we investigate an alternative method.

Rather than penalizing the estimated flow with a

smoothness term, we require as an additional

constraint that (4) should be minimized subject to the

time-independent2 Stokes system describing the steady

motion of viscous media:

�lDuþrp ¼ f in X;
r � u ¼ 0 in X;
u ¼ g on C:

8

<

:

ð7Þ

Here, p denotes the pressure, l the dynamic viscosity, f

the body force acting on the fluid, and g the boundary

values that are defined on G which denotes the

boundary of W.

Our objective is to determine a body force f and

boundary values g that yield a velocity field u which

matches the apparent motion (measured by Eq. 4) as

well as possible. Note, however, that the minimization

of (4) subject to (7) only enforces vanishing divergence

of the flow u. The diffusion term in Eq. 7 has no impact

because f and g can be chosen so that every divergence-

free velocity field satifies the Stokes equation. There-

fore, we additionally regularize f and g, rendering the

whole system mathematicaly well-posed. As a result,

we finally obtain the objective functional

Jðu; p; f; gÞ ¼

Z

X

1

2

�

rI � uþ @tI
�2
dx

þ

Z

XnX0

a

2
jfj2dxþ

Z

C

c

2
jrCgj

2dC ð8Þ

(with x = (x, y)T) which is to be minimized subject to

Eq. 7. W0 in the second term in Eq. 8 denotes regions

in the image where we expect large forces acting on the

fluid (e.g., interfaces with solids). Therefore, we

1 Without loss of generality we take Dx = Dy = 1.

2 Note that we confine ourselves to the time-independent case as
we want to analyze image pairs only and therefore have no
additional information about the temporal evolution of the
velocity.
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exclude body force penalization at these locations. �G g

denotes the derivative of g tangential to the boundary.

In terms of control theory (e.g., Gunzburger 2002),

the approach can be summarized as follows: we wish to

find an optimal state (u, p) and optimal distributed

controls (f, g) such that functional J (Eq. 8) is mini-

mized subject to u, p, f and g satisfying the Stokes

system (7).

2.2 Optimality conditions

To derive the optimality system for determining opti-

mal solutions to Eqs. 8, 7, we transform the con-

strained optimization problem into an unconstrained

optimization with the Lagrangian function

Lðu; p; f; g;w; r; nÞ ¼ Jðu; p; f; gÞ ð9aÞ

�

Z

X

wTð�lDuþrp� fÞ þ rðr � uÞdx ð9bÞ

�

Z

C

nTðu� gÞdC ð9cÞ

and corresponding multipliers w; r; n: The first-order

necessary conditions then yield the optimality system,

which determines optimal states and controls:

�lDuþrp ¼ f in X;

r � u ¼ 0 in X;

u ¼ g on C;

8

>

<

>

:

ð10aÞ

lDw þ rr ¼ �ðrITu þ @tIÞrI in X;

r � w ¼ 0 in X;

w ¼ 0 on C;

8

>

<

>

:

ð10bÞ

wþ af ¼ 0 in XnX0;

w ¼ 0 in X0;

rn� l@w@n � cDCg ¼ 0 on C;

8

>

<

>

:

ð10cÞ

where DG g is the 1D Laplacian of g tangential to the

boundary. The state equation (10a) results from taking

the Gâteaux derivative of (9a, 9b, 9c) in the direction

of the Lagrange multipliers, reproducing the Stokes

equation (7). Equation 10b is the adjoint equation. It

specifies the first-order necessary conditions with re-

spect to the state variables u and p. Note that this

equation has the same structure as (10a) with just the

variables replaced by the adjoint velocity w and the

adjoint pressure r. Consequently, we can use the same

numerical algorithm to solve (10a) and (10b). The third

system of equations (10c) states the optimality condi-

tion, which is the necessary condition that the gradient

of the objective functional with respect to the controls

vanishes at the optimum.

We derive next the optimization algorithm for

solving (10a, 10b, 10c). Discretization and numerical

solution of subproblems (10a) and (10b) are detailed in

Sect. 3.1.

2.3 Optimization algorithm

Due to the large number of unknowns in the optimality

system (10a, 10b, 10c), we decouple the state system

(10a) and the adjoint system (10b), and apply the

gradient method for computing the solution of the

optimal control problem. We therefore first compute

the gradients of our objective functional with respect to

the body force f and with respect to the boundary

values g, taking into account the dependency of the

state variables on the controls.

When we change the distributed control f to f þ e~f;
where ~f is arbitrary, this change in f induces the state to

change from (u, p) to (u + euf), p + epf. The change uf
in the state is determined by the state system, i.e., we

have that

�lDðuþ eufÞ þ rðpþ epfÞ ¼ f þ e~f

r � ðuþ eufÞ ¼ 0
ðuþ eufÞ ¼ g on C:

8

<

:

ð11Þ

For e fi 0 this leads to the so-called sensitivity

equation

�lDuf þrpf ¼ ~f

r � uf ¼ 0
uf ¼ 0 on C:

8

<

:

ð12Þ

This equation means that an infinitesimal change of the

control function f in the ‘‘direction’’ of ~f induces the

infinitesimal change in the ‘‘direction’’ of uf and pf.

Next, let us derive a formula for the change in the

functional J(u, f) of Eq. 8 effected by an infinitesimal

change in the direction ~f in the control f. We will keep

track of both the explicit dependence of J on f and the

implicit dependence through the state (u, p):

h@fJ;~fi ¼
@Jðuþ euf ; pþ epf ; f þ e~fÞ

@e

�

�

�

e¼0

¼

Z

X

n

ðrITuþ ItÞrITuf þ afT~f
o

dx:
ð13Þ
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Substitution of the first adjoint equation (10b) yields

h@fJ;~fi ¼

Z

X

n

� ðlDwþrrÞTuf þ afT~f
o

dx: ð14Þ

Integrating by parts yields

h@fJ;~fi ¼

Z

X

n

� lDuTf wþr � ufr þ afT~f
o

dx

þ

Z

C

n

l �uTf
@w

@n
þ wT@uf

@n

� �

þ uTf rn
o

dC: ð15Þ

The boundary integral is zero, as w and uf are zero at

the boundaries. Now we can substitute the sensitivity

equation (12) into (15)

h@fJ;~fi ¼

Z

X

n

ð~f �rpfÞ
T
wþ afT~f

o

dx: ð16Þ

Again, integration by parts and substitution of the

second adjoint equation finally leads to

h@fJ;~fi ¼

Z

X

n

wT~f þ afT~f
o

dx: ð17Þ

An analogue derivation yields the gradient of J in

g-direction:

h@gJ; ~gi ¼

Z

C

n

� l
�@w

@n

�T
~gþ rnT~gþ crCg

TrC~g
o

dC:

ð18Þ

Now that we have found formulas for the gradients of

our objective functional, we can develop the gradient

algorithm:

We start with a velocity field u = 0 (or with any

other initial value) and solve the adjoint equation.

Computing the gradient of the functional with respect

to g and f, respectively (cf. Eqs. 17 and 18), yields

@fJ ¼ wþ af ð19aÞ

@gJ ¼ rn� l
@w

@n
� cDCg�

n

jCj

Z

C

�l
@w

@n
þ rn� cDCg

� �

� ndC ¼ 0:

ð19bÞ

Note that r is determined by the adjoint equation

(10b) only up to a constant. Equation 19b chooses this

constant so that the update of g satisfies the com-

patibility condition �G g�n dG = 0 (sum of inflow = sum

of outflow must be valid for incompressible fluids).

Having updated the controls, we solve the state

equation and proceed to the next iteration. After

convergence of the algorithm, the iterates satisfy

Eq. 10c, too.

Experiments have shown that using two individual

and adaptive step sizes for f and g, respectively, is

computationally both more reliable and efficient. This

leads to the algorithm 1 listed below. Note that the

stepsize parameters sf and sg are automatically selected

by the algorithm.

Algorithm 1 Gradient Algorithm

1: set initial u = 0
2: choose tolerance e

3: sf: = 1, sg: = 1, f0: = 0, g0: = 0
4: repeat
5: solve (10b) for (w, r)
6: fi = fi–1 –sf(a fi–1 + w)
7: solve (10a) for u
8: if J(u, fi) £ J(u, fi-1) then
9: sf : = sf/2
10: GOTO 6
11: else
12: sf: = 3/2 sf
13: end if
14: solve (10b) for (w,r)
15: gi ¼ gi�1 � sg

�

rn� l@w@n � cDCg�
n
jCjR

C
ð�l@w@n þ rn� cDCgÞ

T
ndC

�

16: solve (10a) for u
17: if J(u, gi) £ J(u, gi–1) then
18: sg : = sg/2
19: GOTO 15
20: else
21: sg : = 3/2 sg
22: end if
23: until |J(u, fi, gi) – J(u, fi–1, gi–1)|/|J(u, fi, gi)| < e

2.4 Relaxing the assumption of vanishing

divergence

Due to out-of-plane motion, that cannot be completely

avoided in 2D, the assumption of a vanishing diver-

gence will often not hold in practice. Optical Stokes

Flow’s strict enforcement of a vanishing divergence

may lead to large errors in the velocity field if this

assumption is violated.

Let us therefore modify the prior knowledge that we

use:

�lDuþrp ¼ f in X;
r � u ¼ �@u3

@z in X;
u ¼ g on C:

8

<

:

ð20Þ
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where u3 is the out-of-plane component (component in

z direction). Note, however, that u3 is unknown and

cannot be extracted from the algorithm’s 2D input

data. This is why we impose an additional constraint:

d ¼ @u3
@z should be small. This leads to the overall

optimization problem:

Jðu;p; f;g;dÞ ¼

Z

X

1

2

�

rI � uþ @tI
�2
dx

þ

Z

XnX0

a

2
jfj2dxþ

Z

X

b

2
jdj2dx

Z

C

c

2
jrCgj

2dC

ð21Þ

which is to be minimized subject to Eq. 20. The

corresponding optimization algorithm is equivalent to

the one presented in Sect. 2.3. The gradient of the

additional control d completes (19a, 19b)

@dJ ¼ bdþ r: ð22Þ

3 Discretization and implementation

3.1 Solving the subproblems

In order to apply algorithm 1 to the optimality system

(10a, 10b), we have to solve two saddle point problems

corresponding to the state equation (10a) and to the

adjoint equation (10b), respectively. In this section, we

explain how these problems are discretized and

numerically solved.

The unique vector field u(x, y) solving (Eq. 12) is

determined by the variational system

aðu; ~uÞ þ bðp; ~uÞ ¼ ðf; ~uÞ; 8 ~u

bð~p;uÞ ¼ 0; 8 ~p
ð23Þ

and a similar variational system determines the unique

solution w to Eq. 10b. Accordingly, we define for the

Stokes problem and for the adjoint problem,

respectively, bilinear forms and linear forms:

aStðu; ~uÞ :¼

Z

X

lru � r~udx

aAdjðw; ~wÞ :¼

Z

X

�lrw � r~wdx

ð24Þ

bStðp; ~uÞ :¼ �

Z

X

pr � ~udx

bAdjðr; ~wÞ :¼ �

Z

X

rr � ~wdx

ð25Þ

and the right hand sides:

ðfSt; ~uÞ :¼

Z

X

f � ~udx

ðfAdj; ~wÞ :¼

Z

X

�ðrITuþ @tIÞrI � ~wdx:

ð26Þ

We choose a regular tesselation of the image domain

W and discretize (23) using finite elements. It is well-

known from computational fluid dynamics that stan-

dard first-order finite element discretizations may

result in non-physical pressure oscillations or even in

so-called locking effects, where the zero velocity field

is the only one satisfying the incompressibility con-

dition.

Therefore, when solving the Stokes problem,

mixed finite elements are traditionally used. An

admissible choice is the so-called Taylor–Hood ele-

ment based on a square reference element with nine

nodes (Fig. 1). Each component of velocity fields is

defined in terms of piecewise quadratic basis func-

tions w located at each node, whereas pressure fields

are represented by linear basis functions / attached

to each corner node. It can be shown that Taylor–

Hood elements fulfil the so-called Babuska–Brezzi

condition (Brezzi and Fortin 1991), that is the

Fig. 1 Sketch of 2D Taylor–Hood elements: biquadratic velocity
elements (squares) and bilinear pressure elements (circles)
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discretized problem is well-posed and numerically

stable. Indexing each velocity node (squares of

Fig. 1) by 1, 2, ..., N, we obtain

uðx; yÞ ¼
X

N

i¼1

uiwiðx; yÞ ð27Þ

and similarly for v(x, y) and the components of w; ~u; ~w:

By analogy, we obtain for theM pressure nodes (circles

of Figs. 1, 2)

pðx; yÞ ¼
X

M

i¼1

pi/iðx; yÞ ð28Þ

and similarly expressions for p; r; ~p;~r: Hence, each

function u;w; ~u; ~w is represented by 2N real variables,

and each function p; r; ~p;~r is represented by M real

variables. For the sake of simplicity, we will use the

same symbols to denote these vectors. Equation 23

then reads

Au � ~uþ BTp � ~u ¼ f � ~u; 8 ~u

Bu � ~p ¼ 0; 8 ~p
ð29Þ

Hence, we obtain the discretized Stokes system

Auþ BTp ¼ f

Bu ¼ 0
ð30Þ

and a similar system for the adjoint equation. The

2N · 2N-matrix A factorizes into

A ¼
A11 0
0 A22

� �

; ð31Þ

where by virtue of (30):

ðA11Þk;l ¼ aððwk; 0Þ
T; ðwl; 0Þ

TÞ;

ðA22Þk;l ¼ aðð0;wkÞ
T; ð0;wlÞ

TÞ:
ð32Þ

The M · 2N-matrix B factorizes into

B ¼ ðB1 B2Þ; ð33Þ

where by virtue of (25)

ðB1Þk;l ¼ bð/k; ðwl; 0Þ
TÞ;

ðB2Þk;l ¼ bð/k; ð0;wlÞ
TÞ:

ð34Þ

Finally, the 2N-vector f factorizes into f = (f1
T, f2

T)T

where by virtue of (26)

ðf1Þk ¼ ðwk; 0Þ;

ðf2Þk ¼ ð0;wkÞ:
ð35Þ

In order to numerically solve the saddle point problem

(30), we employ the Uzawa algorithm (cf. e.g., Braess

1997). Since the matrix A is positive definite, we solve

the first equation of the system (30) for the unknown u:

u ¼ A�1ðf � BTpÞ ð36Þ

and insert the result in the second equation

BA�1ðf � BTpÞ ¼ 0: ð37Þ

This gives a problem which only incorporates the

pressure

ðBA�1BTÞp ¼ BA�1f: ð38Þ

The matrix (B A–1 BT) is symmetric and positive

definite. Therefore, we apply the conjugate gradient

0

0.5

1

0

0.5

1

Fig. 2 Left: Basis function / of a bilinear finite element. Right: Basis function w of a biquadratic finite element
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algorithm to (38). This requires a single matrix inver-

sion in every iteration step. For computational effi-

ciency, this is accomplished using a multigrid iteration

(cf. Hackbusch 1993). Note that A is just the system

matrix of the Poisson equation. For 2D problems, A

can be split into two systems (one for every dimension,

cf. Eq. 31), that can be solved in parallel. Algorithm 2

details the overall process.

Algorithm 2 Uzawa Algorithm

1: p0 2 R;Au1 ¼ f � BTp0: Set d1 = –q1 = B u1.
2: repeat
3: pk = BT dk
4: Approx. hk = A–1 pk using multigrid
5: ak ¼ dTkdk=ðp

T
khkÞ

6: pk = pk–1 – ak dk
7: uk+1 = uk + ak hk
8: qk+1 = –B uk+1
9: bk ¼ qTkþ1qkþ1=ðq

T
kqkÞ

10: dk+1 = –qk+1 + bk dk
11: until qk+1 < e

3.2 Coarse-to-fine approach

Due to the Taylor series linearization inherent in the

optical flow constraint, only slow motion can be accu-

rately computed by minimizing (Eq. 4) (approx. up to 1

pixel between exposures). This is why we apply our

approach to a multi-scale representation of the image

data I: we first compute a coarse motion field by using

only low spatial frequency components and undo the

motion, thus roughly stabilizing the position of the

image over time. Then the higher frequency subbands

are used to estimate the optical flow on the warped

sequence. Combining this optical flow correction with

the previously computed optical flow yields a refined

overall optical flow estimate. This process is repeated

at finer spatial scales until the original image resolution

is reached. For further details about coarse-to-fine

optical flow estimation (use of FIR filters, interpola-

tion, ...) we refer the interested reader to Ruhnau et al.

(2005).

Let u denote the overall velocity that results from

our computations, uold the current estimate of this

overall velocity, and ¶t Iw the temporal derivative

computed as difference between the second im-

age—warped with uold—and the first image. Then

Eq. 4 can be reformulated as

JðuÞ ¼

Z

X

1

2

�

rITðu� uoldÞ þ @tIw
�2
dx: ð39Þ

Note that motion over the image boundary G prevents

the computation of the spatial and temporal gradients

of the warped image Iw at specific locations. In order to

avoid error-prone filling-in heuristics (that use gradient

information from surrounding areas), we simply omit

the evaluation of the data term at these particular

locations.3 This reformulation does not affect the state

system and the optimality condition. The adjoint

system, on the other hand, is transformed into

lDwþrr ¼ �
�

rITðu� uoldÞ þ @tIw
�

rI in X;
r � w ¼ 0 in X;
w ¼ 0 on C:

8

<

:

ð40Þ

We could now—as we did in algorithm 1—start at

every resolution level with an initial zero velocity field.

This is a poor initialization, however: we know that uold
is a good approximation of the true velocity field:

therefore, we solve Eq. 10a for (u, p) before the first

iteration of every resolution level, using bilinearily

interpolated versions of f and g from the preceding

level. We obtain an initial velocity u that both satisfies

Eq. 10a and is a good approximation of the true

velocity field.

4 Experimental evaluation

This experimental section is divided into two main

parts:

• In Sect. 4.1 we present synthetic experiments that

fulfil the Stokes equation (i.e., creeping flows).

Besides the question of the accuracy of our method,

we want to go further into the question of how

meaningful the asserted estimates for pressure p

and body force f prove to be.

• In Sect. 4.2 we show (for synthetic and real-world

image pairs) that one can also achieve good velocity

estimates for highly non-rigid flows. In these cases,

however, we cannot expect the body-force and the

pressure distribution to contain physically relevant

information.

4.1 Stokes flows

We have selected two flow scenarios for which analytic

solutions exist due to symmetry: Poiseuille flow is a

viscous flow between two parallel plates and the sec-

tion Flow in an Annular Gap examines the viscous flow

between two infinitely long cylinders.

3 Note that due to the regularizer, we will still get reliable
velocity estimates at these locations.
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4.1.1 Poiseuille flow

We consider an incompressible Newtonian fluid with

constant density and viscosity flows between two par-

allel plates (at y = 0 and y = h) with infinite width. The

x-axis points in the direction of the flow. The velocity

distribution for such a system is given by (e.g., Landau

and Lifschitz 1952)

uðyÞ ¼ �
1

2l

@p

@x

h2

4
� y�

h

2

� �2
 !

: ð41Þ

This means that we can expect a parabolic velocity

profile, with the largest velocity in the middle between

the two plates. For our synthetic experiment, we cho-

se l = 1, h = 257 pixels, and @p
@x ¼ �1� 10�3: This

choice yields a maximum velocity of 8.256 pixels be-

tween two exposures. Figure 3 shows the synthetic

image and the target velocity field with which the im-

age was warped in order to get a synthetic image pair.

We used the same techniques as described in Okamoto

et al. (2000) (10,000 particles, 3 pixels average particle

diameter, 1 pixel standard deviation). As the Poiseuille

flow is truly 2D, the third component is zero every-

where. Please note that while in numerical hydrody-

namics one is accustomed to small mesh sizes (s << 1)

and small volumes (VOL � 1), we measure in terms of

pixels here. This is why the parameter choice may

appear uncommon.

In a first experiment, we set a = 100 and c = 200, and

we penalized the body force everywhere (i.e., W0 = ˘).

Figure 4 shows the reconstructed velocity component

u. The estimated velocity is almost exact (cf. also

Fig. 6), its RMS error is � 0.0734 pixels. However,

Fig. 6 also shows that there are problems at the

boundaries of the plates. They are caused by the forces

acting on the fluid. In fact, the locations where forces

act on the fluid are just boundaries of the plates: The

pressure-induced force acts orthogonally to the inter-

faces and is

fx ¼ �pn: ð42Þ

The frictional force at the interfaces acts in opposite

flow direction and is

fy ¼
h

2

@p

@x
: ð43Þ

Figure 4, left, shows that the algorithm has in fact de-

tected a force at the interfaces that acts in opposite flow

direction. However, the method also detects a (smaller)

force in themiddle of the pipe that acts in flow direction.

The reason for this error is quite obvious: in Eq. 8, we

added constraints on the body force that penalize theL2

norm of f. The correct body force, however, has an ex-

tremely high L2 norm at the interfaces. In order to yet

compute a reliable body force—and thus also pressure

estimates, as the pressure depends on velocity and body

force—we have to tell the algorithm at what locations

forces are likely to act on the fluid. Then we can exclude

the body force penalization at these locations.

Accordingly, in a second experiment, we switched

off body force penalization at the interfaces of the two

parallel plates (at y = 0 and y = h). The results can be

seen in Fig. 5, right: The reconstructed body force is

reasonable, the share that acts in reverse flow direction

is the frictional force (cf. Eq. 43) and the part that acts

orthogonally to the flow direction is the pressure-in-

duced force (cf. Eq. 42).

Figure 6 shows that also the RMS error has de-

creased considerably (RMS � 0.0212 pixels). Note

that there are still errors at the ends of the interfaces, the

reason for these errors is the regularization of

the boundary values g (cf. Eq. 8). The smoothness of the

boundary values enforced by Eq. 8 deviates from reality

at these locations.

Figure 4 shows the reconstructed pressure field on

the right. Taking a closer look at the pressure deriv-

ative in flow direction (cf. Fig. 7), we see that the

pressure derivative inside the tube is approx. 4 · 10–3,

which is the correct reconstruction. We point out that

due to the mixed finite element discretization, the

Fig. 3 Poiseuille flow: incompressible Newtonian fluid with
constant density and viscosity flows between two parallel plates.
This creeping flow satisfies the Stokes equation. Left: Synthetic
PIV image. Right: Target velocity field
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resolution of the pressure field is smaller than the

resolution of the reconstructed velocity. Therefore,

the pressure derivative has to be scaled with the

factor 4.

4.1.2 Flow in an annular gap

Suppose an incompressible Newtonian fluid flows

steadily within the annular gap of two infinitely long

Fig. 4 Left: Optical Stokes flow is able to reconstruct the parabolic velocity profile extremely accurately. Right: Using fluid-mechanics
priors, even the true pressure distribution can be reconstructed. Note the linear pressure decrease in flow direction

Fig. 5 Reconstructed body
force. Note that the arrows

are scaled in order to be
visible. If we specify regions
at which forces are expected
to act on the fluid (i.e., solid–
fluid interfaces), even forces
that act on the boundary can
be reconstructed. Left: f is
penalized everywhere (scaling
factor: 2,000). Right: no
penalization of f at the
interfaces (scaling factor: 50)
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Fig. 6 Left: If we penalize f everywhere, the mean RMS error is 0.0734 pixels. Right: By specifying the solid–liquid interfaces, the RMS
error decreases to 0.0212 pixels
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cylinders (R1, R2). The outer cylinder is fixed, while the

inner cylinder rotates with angular speed W. The

velocity distribution for such a setting is given by (e.g.,

Landau and Lifschitz 1952)

vðrÞ ¼
XR2

2

R2
2 � R2

1

r þ
XR2

1R
2
2

R2
2 � R2

1

1

r
: ð44Þ

The pressure is constant.4 For our synthetic example,

we have chosen R1 = 100, R2 = 220, W = 0.1 and l = 1.

This leads to a maximum displacement of 10 pixels

between two exposures. Figure 8 shows the synthetic

image as well as the target velocity field. We set

a = 100, c = 200 and W0 = ˘ in a first experiment.

Figure 9 shows the reconstructed velocity field. The

velocity field looks very reasonable. Figure 13, how-

ever, shows clearly a large error at the cylinder inter-

faces, in particular at the interface of the inner

cylinder. This error occurs for the same reason as in the

preceding example. The acting force is very large and

punctiform at the inner cylinder interface. This con-

tradicts the assumptions made in Eq. 8.

We next chose the same approach as in the pre-

ceding section to deal with the problem, that is

avoiding body force penalization at the boundaries.

This leads to very good results. The average RMS

error decreases to 0.0079 pixels (cf. Fig. 13).

Figure 10, right, shows that the velocity profile

agrees exactly with the analytically computed profile.

The tangential and orthogonal forces at the two

cylinder interfaces also correspond very well with the

analytically computed forces. The forces in tangential

direction read:

fR1
¼ �2l

XR2
2

R2
2 � R2

1

;

fR2
¼ �2l

XR2
1

R2
1 � R2

2

:

ð45Þ

The pressure is zero everywhere (cf. Fig. 10, left).

There are only minor problems at the cylinder

boundaries due to an increased numerical sensitivity. A

reason is that we deliberately omitted regularization of

f at these locations, for the sake of accurate recon-

struction (Figs. 11, 12, 13).

4.1.3 Noise and robustness

To examine the robustness of our reconstruction ap-

proach with respect to image noise, we repeated the

annular gap experiment (Sect. 4.1.2) but superimposed

white noise with a variance up to 50% of the grayvalue

range.

Figure 14 shows that the RMS velocity error in-

creases moderately only as a function of noise variance.

This result proves a pronounced robustness of our

approach. Most remarkable is the observation that the

accuracy of the reconstruction appears to be beyond

what can be extracted from the raw data without any

physical prior knowledge.

4.2 Navier–Stokes flows

In the forthcoming examples, the assumption of a

Stokes flow is definitely not valid, as these turbulent

flows are mainly governed by the convection term of

the Navier–Stokes equations. Therefore, we cannot

expect the pressure or body-force to be physically

accurate. However, our approach can also be used for

these high Reynolds numbers. The Stokes equation

then merely serves as a regularization term, and the

body-force can be chosen so as to mimic the nonlinear

effects of the convection term.

4.2.1 Synthetic highly non-rigid image pair

We studied a synthetic PIV image pair provided

by Carlier and Heitz (2005). The underlying highly non-

rigid velocity field was computed by a so-called pseudo-

spectral code that solves the vorticity transport

equation in Fourier space and evaluates a subgrid

model for simulating small-scale turbulent effects on

the larger scales of the flow. The synthetic image
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Fig. 7 Profile of the averaged pressure derivative in flow
direction. Note that the linear pressure decrease in flow direction
(–4 · 10–3 inside the pipe) is recovered extremely accurately

4 This is only true when solving the problem with the Stokes
equation. If we had used the Navier–Stokes equations, the
pressure distribution would read @p

@r ¼
rv2

r
:
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intensity function was generated as in the preceding

cases (Sect. 4.1). Its size is 256 · 256 pixels. Themaximum

displacement is approximately 3.5 pixels. We want to

analyze this image pair using the following approaches:

• Multi pass cross correlation (LaVision 2005):

Advanced cross-correlation approach (LaVision

Davis 7.1.1.34). Initial interrogation window size

32 · 32, final interrogation window size 8 · 8 and

Fig. 10 Left: Reconstructed pressure distribution (no penaliza-
tion on boundary): p is zero almost everywhere, some numerical
instabilities at the interfaces. Right: Profile of the velocity

distribution. Note that, if we penalize everywhere, the recon-
structed velocity field is much too smooth

Fig. 8 Creeping flow between
two rotating cylinders. Left:
Synthetic PIV image. Right:
Target velocity field

Fig. 9 From the visual
impression, both velocity
fields resemble the true
motion extremely well. Left:
Reconstructed velocity field
(penalization everywhere)
Right: Reconstructed velocity
field (no penalization on
boundary)
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Fig. 13 Left: RMS velocity error (av. 0.110 pixel) when penalizing the body force everywhere. Right: RMS velocity error
(av. 0.0079 pixel) when no penalization on the cylinder boundaries is performed

Fig. 11 Reconstructed body force. Left: Penalization everywhere (force scaled by 10,000). Right: No penalization on interfaces (force
scaled by 100). The frictional forces at the cylinder interfaces are extracted correctly

pi/2 pi 3/2 pi 2 pi

–0.25

–0.2

–0.15

–0.1

–0.05

0

est. orthogonal force

ex. orthogonal force

est. tangential force

ex. tangential force

pi/4 pi 3/2 pi 2 pi

0

0.01

0.02

0.03

0.04

0.05

0.06

est. tangential force

ex. tangential force

est. orthogonal force

ex. orthogonal force

Fig. 12 Optical Stokes flow is able to compute the forces that act on the cylinder interfaces. Left: Tangential and orthogonal forces at
the inner cylinder boundary. Right: Tangential and orthogonal forces at the outer cylinder boundary
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50% overlap manually selected for best perfor-

mance. In order to interpolate the velocity vectors

to the fine grid (i.e., one vector per pixel), second

order spline interpolation is used.

• Horn and Schunck (Ruhnau et al. 2005): First-

order regularization, no incompressibility con-

straint is imposed (cf. Eq. 5). The smoothness

parameter k = 0.005 was manually selected for best

performance.

• 2nd order regularization (Yuan et al. 2005): These

authors use higher-order regularization (cf. Eq. 6)

with an additional incompressibility constraint.

Instead of mixed finite elements (as we do), the

authors use the so-called mimetic finite differencing

scheme. Temporal coherency is not exploited.

Parameters: k1 = 0.5, k2 = 0.05, manually selected

for best performance.

• Optical Stokes flow computation (this paper): l = 1,

a = 100, c = 200 selected by hand.

Figure 15 shows the spatial error distributions for

the different algorithms. Note that all variational ap-

proaches are able to outperform the cross-correlation

method. Optical Stokes Flow computation yields

the best results (average RMS error = 0.0484 pixels).

Figure 16 compares the vorticity estimates for the

cross-correlation approach and optical Stokes flow

estimation.

Figure 17 shows how well the individual approaches

are capable of recovering the different frequencies of

the vorticity. While the spectrum of the optical Stokes

flow estimate resembles the true spectrum very well,

cross-correlation seems to underestimate higher fre-

quencies. This had to be expected since cross-correla-

tion relies on the assumption that the velocity gradient

within an interrogation window is negligible. Even

advanced window deformation techniques cannot fully

resolve the high frequencies that are present in the

velocity field.

It is interesting to note that optical Stokes flow gives

extremely good results eventhough its prior knowledge

is inadequate. In order to understand this fact, let us

first summarize what type of prior knowledge the

competing approaches use:

• The cross-correlation approach assumes that the

velocity field is piecewise constant. This assumption

is weakened by advanced window-deformation

techniques.

• The Horn and Schunck method assumes small

velocity gradients.

• Higher-order div curl regularization assumes a

smooth vorticity.

This compilation shows that the priors of all ana-

lyzed approaches are severely inadequate. It is clear

that we are currently at the starting point towards

physically more and more plausible regularizers and

that optical Stokes flow is the most plausible regular-

izer that is currently available. In the conclusions sec-

tion we will state in which direction we expect research

to go on.

4.2.2 Highly non-rigid real world image pair

Figure 18 shows a sample image of the experimental

evaluation of the spreading of a low diffusivity dye in a

2D turbulent flow, forced at a large scale. In contrast to

the preceding examples, no tracer particles were

brought into the fluid but a mixture of fluorescein and

water. For more details about the experimental setup,

we refer to Jullien et al. (2001). Cross-correlation ap-

proaches are not able to extract valid velocity fields

for this type of input data (passive scalar images).

Figure 18 shows, however, that our optical Stokes flow

approach is capable of extracting a very reasonable

velocity distribution. We chose the same parameters as

in Sect. 4.2.1.

4.2.3 Out-of-plane motion: separation bubble

The synthetic image sequence shown in Fig. 19 was

generated by means of the software prescribed in Hain

and Kähler (2005, 2005). Determination of the particle

image displacements is based on the solution of a direct

numerical simulation (DNS) of a laminar separation

bubble.

The main problem in this example is the fact that the

true velocity field of this sequence is three-dimensional

(maximum out-of-plane velocity: 1 pixel5). Because we0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.2

0.3

0.4

0.5

0.6

noise

R
M

S
 e

rr
o

r

Fig. 14 RMS velocity error (in pixels) when adding different
amounts of Gaussian noise (zero mean and variance up to 50%.)

5 We assume that the (imaginary) grid in out-of-plane direction
has the same resolution as the in-plane grid.
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analyze a 2D projection, the divergence-free con-

straint, that is strictly enforced by the Stokes equation

is not valid (cf. Fig. 21). This is why we use the modi-

fied method of Sect. 2.4 to analyze this image pair.

Figure 20 compares the error of the cross-correlation

method with our modified Stokes equation’s velocity

error. While cross-correlation yields an average error

of 0.0331 pixel, the velocity field recovered by the

modified Stokes approach is more reliable. Its average

RMS error is 0.0212 pixels (Fig. 21).

Fig. 16 Estimated velocity
field and its curl. Left: Cross
correlation. Right: Optical
Stokes flow. Note that cross-
correlation slightly
underestimates the vorticity
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Fig. 15 Top left: Multi-pass cross-correlation (DaVis), av. err. = 0.1420 pixel. Top right: Horn and Schunck, av. err. = 0.0821 pixel.
Bottom left: 2nd order regularization, av. err. = 0.0525 pixel. Bottom right: Optical Stokes flow computation, av. err. = 0.0484 pixel
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Fig. 19 Left: Synthetic image
(separation bubble, size:
512 · 512). Right: Synthetic
velocity field. Note that the
velocity field is three
dimensional. Therefore,
particles leave and enter the
illuminated image plane.
Furthermore, the 2D
projection is no longer
divergence free
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Exact Solution

Optical Stokes Flow

2. Order Regularization

1. Order Regularization

Cross Correlation

Fig. 17 Energy of the vorticity (for frequencies between 0 and P/2) of the different algorithms (logarithmic plot). Energy spectrum of
optical Stokes flow estimate is closest to the true solution, while cross-correlation underestimates higher frequencies

Fig. 18 Left: Passive scalar image (size: 512 · 512). Right: Recovered velocity field using optical Stokes flow (l = 1, a = 100, c = 200).
Note that cross-correlation approaches completely fail for this type of image data
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5 Conclusions and further work

We presented a novel variational flow control ap-

proach for PIV that uses the Stokes equation as prior

knowledge. Methods from distributed parameter con-

trol theory were used to solve the arising constrained

optimization problem. The experimental evaluation

showed that, as long as we confine ourselves to flows

that are actually governed by the Stokes equation, the

proposed algorithm is not only capable of reliably

estimating the velocity fields between image pairs, but

it can also extract the pressure distribution and forces

acting on the fluid.

The experiments also showed that our approach is

able to outperform other optical flow-based methods as

well as cross-correlation methods on highly non-rigid

(Navier–Stokes) flows. The reason for this is the high

resolution that can be achieved. We demonstrated that

optical flow based approaches not only yield dense

vector fields—with proper regularization that does not

penalize velocity gradients—but that the spatial reso-

lution of these fields compares favorably with cross-

correlation approaches.

It has also been shown that a minor modification our

approach without altering the overall computational

structure (Sect. 2.4) enables the successful application

of our approach also to scenarios where the out-of-

plane velocity is not negligible.

Optical Stokes flow offers dramatic improvement

when evaluating image pairs with dense gray value
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Fig. 21 Out-of-plane velocity (left) leads to divergence of the 2D projection (right). We have to use the modified optical Stokes flow
approach to reliably reconstruct the target velocity field
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Fig. 20 Left: RMS velocity error of cross-correlation approach (smallest window size 16 · 16, 50% overlap, mean
RMS = 0.0331 pixel). Right: RMS velocity error of modified optical Stokes flow (l = 1, a = 100, b = 200, mean RMS = 0.0212 pixel)
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functions (Fig. 18), whereas cross-correlation ap-

proaches completely fail. To summarize, the use of

optical Stokes flow might be advantageous in the fol-

lowing three scenarios:

• Stokes flows: If the flow is actually governed by the

Stokes equations, not only the velocity can be

estimated but also pressure and forces that act on

the fluid.

• Highly non-rigid flows: The increased spatial reso-

lution that optical Stokes flow offers permits the

estimation of high-resolution velocity fields.

• Scalar images: While cross-correlation approaches

fail for this specific kind of image data, optical flow

approaches give very reasonable velocity estimates.

Our future work will concentrate on two main

aspects: first, in view of advanced measurement

techniques (Elsinga et al. 2005), we will focus on three-

dimensional flow analysis where imposing physical

constraints is natural, and where other problems like

out-of-plane motions will become obsolete. A second

topic for future work is the extension of our approach

to include the convection term of the Navier–Stokes

equations, leading us to the study of involved non-

linear constrained optimization problems for estimat-

ing physically consistent fluid flows that may further

increase the accuracy of image-based fluid flow esti-

mation.

Acknowledgments The authors thank Johan Carlier (Cemag-
ref) for providing the turbulent image pairs and Rainer Hain (TU
Braunschweig) for providing the cross-correlation estimates.
Support by the Deutsche Forschungsgemeinschaft (DFG, SCHN
457/6) within the priority programme ‘‘Bildgebende Messver-
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