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Abstract: In this work, we have proposed and designed a 1 × 1 optical switch based on the optical
phase-change material, Ge2Sb2Se4Te1 (GSST), for GSST-assisted silicon racetrack microring. Its optical
power can periodically be exchanged between the straight silicon waveguide and the GSST/Si hybrid
racetrack waveguide due to the formed directional coupling structure. By changing GSST from the
crystalline state to the amorphous state, the switch shifts from the ON state to the OFF state, and
vice versa. With finite-difference time-domain method optimization, the proposed switch shows an
extinction ratio of 18 dB at 1547.4 nm. The insert losses at the ON and OFF states are both less than
1 dB. The proposed switch unit has the potential to build an N × N switch matrix.

Keywords: optical switch; optical phase-change material; racetrack microring

1. Introduction

Data traffic over the optical networks has been dramatically increasing at an exponen-
tial rate. The optical switch matrix is crucial for large-scale optical cross connect (OXC).
Among different platforms, silicon photonics exhibit great promise in data centers, cloud
computing and internet connections [1–3]. A silicon switch matrix can be constructed by
the typically used microring (MR) and Mach–Zehnder interferometer (MZI) building block.
However, for a switching unit based on the carrier dispersion effect or thermo-optic effect,
the device length always reaches several hundreds of microns due to the limited refractive
index (RI) change (<0.01). The enlarged chip size requires uniform and highly precise
fabrication [4]. Moreover, a switch matrix unit based on the carrier dispersion effect can
only provide moderate optical isolation, which implies that the crosstalk (CT) is improved,
setting up a limitation on the scale of the switch matrix. Moreover, the total power con-
sumption will increase exponentially in the large-scale switch matrix, accompanied with
an unfavorable temperature increment. Therefore, the switch building block that could
offer better fabrication uniformity, low static and dynamic power consumption is strongly
needed in future OXC.

Low loss, low power consumption, compact size, and large extinction ratio are desired
features of an integrated component when it is applied as a switching unit in the N × N
switch array. There was a previous study of the broadband optical switching matrix with
innovative technologies. The reported optical switch cell with a footprint 240 µm × 9 µm
shows an extinction ratio of ~13 dB, an insertion loss of less than 2 dB, a crosstalk of around
12 dB, and the bandwidth is over 150 nm [5]. In [4], the three-waveguide directional coupler
with a size of 100 µm × 180 µm constructs the 2 × 2 switch unit of a Benes network.
The insert losses for the cross and bar states are 0.013 and 0.32 dB, respectively, while the
CTs when at two states are −37 and −32 dB, respectively. In [6], the proposed switch matrix
shows a low loss of 0.9 dB per off state ring and 2.0 dB per on state ring. Its bandwidth
is no larger than 0.8 nm. In addition, MRR has been used in wavelength-selective optical
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switching. In [3], the designed photonic switch shows an ER of ∼20 dB at the resonance
wavelength. Meanwhile, the excess losses at the through port and drop port are 0.9 dB and
2 dB, respectively.

Optical phase-change materials (O-PCMs), including two-dimensional O-PCMs of
graphene [7,8], transition metal carbide/nitride [9], transition metal dichalcogenide [10],
three-dimensional O-PCMs of VO2 [11,12], Ge2Sb2Te5 (GST) [3,13], and Ge2Sb2Se4Te1
(GSST), as well as indium tin oxide (ITO) [14,15], gradually play an important role in non-
volatile integrated optical switches, modulators and computing. Different from devices
built on classic electro-optic [16–18] or thermo-optic [19–21] effects, switches based on
O-PCMs rely on the optical property change (e.g., refractive index change >1) caused by the
transition between amorphous (a-) and crystalline (c-) states. Therefore, the incorporation
O-PCM and silicon photonics could compensate for the disadvantages of chip size, power
consumption and non-volatility in silicon switches.

As a novel phase change material, GSST has attracted remarkable attention owing to
its considerable optical characteristic variations in the amorphous and crystalline states.
Compared to GST, GSST has an excellent optical figure of merit (FOM) improvement over
two orders of magnitude, unprecedented broadband optical transparency [22]. The mate-
rial, therefore, represents a new class of O-PCMs where the phase transition only triggers
refractive index modulation but without the loss penalty. The GSST-assisted switch is
non-volatile and self-holding, which ensures its stable function in large-scale switching
matrices. Since power consumption only happens during the phase change process, the
elimination of static power consumption allows for the low-power operation of the GSST
switch, compared to the case based on the TO effect or carrier dispersion effect. This ad-
vantage of power saving is more apparent when the switching status has no change for a
long time. In order to improve switch performances, different switch structures have been
extensively studied. Compact footprints and sharp spectral selectivity are the most signifi-
cant advantages of the MRR switch [3,23–27]. For example, a 1 × 1 wavelength-selective
optical switch based on GST-assisted all-pass MRR demonstrates an extinction ratio (ER)
of 12.5 dB and an insert loss of 2.5 dB [25]. Comparatively, the wider bandwidth (BW)
can be expected in the directional coupler (DC) [4] or Mach–Zehnder interferometer (MZI)
structure [28]. Therefore, MRR and compact DC structures are supposed to be combined
with each other for a better solution.

In this paper, a 1 × 1 optical switch constructed by a straight silicon waveguide
and a GSST-loaded (GSST/Si) racetrack MRR is theoretically demonstrated. The phase-
matching in the formed DC structure can be fulfilled when GSST is in the amorphous state.
The resulting strong coupling causes the peak resonance to decrease at the output port
of straight GSST-loaded waveguide. When the GSST transfers to the crystalline state, the
phase mismatch weakens the coupling effect in the DC structure, which results in the power
increasing at the output port of the straight GSST-loaded waveguide. The proposed switch
can work within a broad bandwidth, which offers it good potential in on-chip switching
matrix construction.

2. Principle and Design

The mature O-PCM of GSST has the advantages of fast crystallization, large resis-
tance and favorable refractive index change between amorphous and crystallization states.
The crystallization of GSST can be realized within several ns, which makes it ideal for
an application in optical switching. A GSST film may transform from the amorphous
state to the face-centered cubic crystallized state, accompanied by a reduction in square
resistance. The full transformation to a hexagonal structure causes a further decrement in
resistance. Then, the resistance is maintained when the temperature is over the threshold.
Therefore, the optical characteristics of the GSST/Si hybrid waveguide, including the mode
field distribution, propagation constant and optical absorption are different from those of
the traditional Si waveguide. The mode coupling and transmission are supposed to be
studied to determine the key parameters of the hybrid waveguide.
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2.1. Switch Structure

The proposed optical switch is shown in Figure 1. The GSST thin film covers one race
of the MRR that neighbors to another straight silicon waveguide. These two neighbored
waveguides construct a DC coupler that could offer a relatively long coupling length.
The phase-matching condition is satisfied between the racetrack and the straight waveg-
uide when GSST is in the amorphous state. The optical input will couple to the ring,
and the output power in the straight waveguide decreases dramatically at the resonance
wavelength, which corresponds to the OFF state. When GSST is in the crystalline state,
the resulting phase mismatching causes no power exchange between the two waveguides.
The input power will directly output from the straight waveguide that corresponds to the
ON state.
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Figure 1. Schematic configuration of the proposed 1 × 1 optical switch based on a GSST-assisted
racetrack MRR.

2.2. Switch Optimization
2.2.1. Single-Mode Waveguide

In this work, 220 nm thick top silicon and 2 µm thick silicon oxide are used as
the waveguide core and lower cladding. The refractive indices of silicon and silica are
3.467 and 1.444 (λ = 1550 nm), respectively. The complex refractive indices of GSST are
3.375 + 0.00018i in the amorphous state and 5.0 + 0.42i in the crystalline state, respec-
tively [4]. Compared with the traditional silicon waveguide, the propagation loss of an
O-PCM-assisted silicon waveguide will show a higher loss, because the imaginary part
(corresponding to the attenuation coefficient) of the complex refractive index of PCM will
increase. Owing to this issue, it is desirable to enhance the coupling between the racetrack
MRR and the bus waveguide, which will theoretically increase the ER. The notch depth
is related to both to the racetrack MRR roundtrip loss and the power coupling coefficient
between the ring and bus waveguide [29]. In this work, the radius Rd was set as 5 µm to
increase ER. The bending radius we have chosen is much larger than the waveguide width
(Rd ≥ 10 × Wd). Hence, the bending loss caused by the waveguide bending can be ignored.
Additionally, the radius Rr in the racetrack MRR is set as 10 µm to reduce the bending loss
as far as possible.

As mentioned above, the DC structure is designed to satisfy the phase-matching
requirement, which means that the GSST covered-waveguide and straight silicon waveg-
uide have similar effective refractive indexes (neff), when GSST is in the amorphous state.
The three-dimensional finite-difference time-domain (3D-FDTD) method is used to simulate
and optimize the switch design [3]. Firstly, the neff of the straight silicon waveguide as a
function of its width Wd is calculated and shown Figure 2. For a low-loss single-mode prop-
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agation, Wd is selected to be 500 nm. The inset shows the mode distribution at neff = 2.445.
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Figure 2. Effective refractive index neff as a function of silicon straight waveguide Wd.

Then, the geometric parameter of GSST-assisted racetrack MRR is investigated. Notably, the
silicon ring has a consistent waveguide width Wr. The GSST film width WO and thickness
TO are studied to satisfy the phase-matching condition. Here, Wr and TO are chosen to be
450 nm and 45 nm, respectively, to improve the calculation efficiency. The result of neff as
a function of WO is shown in Figure 3. When WO is 300 nm, the neff of the GSST covered
silicon waveguide is 2.444, which is very close to that of the straight silicon waveguide.
The insert picture shows that the single-mode intensity profile WO is 300 nm.
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2.2.2. DC Structure

Following finite-difference eigenmode calculations, the modal intensity profiles of
the GSST-loaded silicon waveguide in the amorphous state and in the crystalline state are
shown in Figure 4a,b, respectively. In the crystalline state, GSST with a sufficiently high
index leads to more mode power distribution in the GSST layer, as shown in Figure 4b.
In contrast, the mode field mainly distributes in the silicon waveguide when GSST is in the
amorphous state.
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Figure 4. The modal intensity profiles of a silicon waveguide loaded with a GSST strip in the
(a) amorphous and (b) crystalline states.

The TE-polarized supermodes profiles in two DC waveguides, the GSST-loaded silicon
waveguide and the silicon waveguide without GSST, are shown in Figure 5. When the
GSST is in the amorphous state, the phase matching leads to a strong coupling between the
two waveguides with well-defined even (symmetric) and odd (antisymmetric) supermodes,
as shown in Figure 5a,b. In contrast, the large effective index disparity between the two
waveguides when GSST is in the crystalline state results in two isolated modes, as shown
in Figure 5c,d. Therefore, by tuning GSST states, the supermodes can be separated into two
independently propagating modes in the GSST-loaded silicon waveguide and the silicon
waveguide without GSST, which implements the optical switching.
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For better switching performance, the major parameters, including the coupling length
L and the gap width Wg are supposed to be optimized. For simulation efficiency, the finite
difference eigenmode is first adopted for a coarse search. Then, 3D-FDTD calculations
are used to further refine the results to determine the best parameters. Figure 6 shows
the normalized transmission in the racetrack MRR as a function of the coupling length L,
when the launched TE mode propagates through the DC coupler. The gap width Wg is
first chosen as 175 nm, which is sufficiently close for coupling. Here, the amorphous and
crystalline states are considered, respectively. It can be seen that the power in the racetrack
MRR increases firstly when GSST is at the amorphous state. Then, it decreases with the
increment of L, which can be expected in a coupling system with two phase-matched
optical waveguides. In contrast, when GSST is in the crystalline state, weak cross-coupling
happens. Most power stays in the straight silicon waveguide, which is due to the phase
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mismatching between the two optical waveguides. Hence, L is compromisingly selected to
be 15 µm.
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With the same method, the remaining power in the racetrack MRR are investigated as
a function of the DC coupler gap Wg, when GSST is in the amorphous and crystalline state,
respectively. As shown in Figure 7, when GSST is in the amorphous state, the transmission
in racetrack MRR increases to the highest value of 0.95 at Wg = 125 nm, which corresponds
to strong coupling, and the least power remains in the straight silicon waveguide. When Wg
is larger than 125 nm, the transmission reduces with the increment of Wg, which implies
that the coupling weakens, and most power remains in the straight silicon waveguide.
When GSST is in the crystalline state, the failed phase matching leads to a few power
exchanges in the DC structure. Most input optical power remains in the straight silicon
waveguide. Considering the fabrication feasibility and the strongest coupling, Wg is
selected as 125 nm.
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To be noted, according to the relationship between Q factor and Wg, when strong
resonances happen at certain wavelengths, there is no direct connection between Q factor
and Wg, unless the resonance between the microring and the bus waveguide is very weak.
In that case, Wg that can be represented by the coupling coefficient will become the key
factor to determine the coupling. In fact, Q may change with Wg, which is attributed to the
variation in the coupling coefficient between the ring and bus waveguide [30].



Photonics 2022, 9, 117 7 of 10

3. Results and Discussion

With the above optimized dimensional parameters, the switching performance was
theoretically investigated by the 3D-FDTD method. The simulated optical power distribu-
tions in the OFF (a-GSST) and ON (c-GSST) states are shown in Figure 8a,b, respectively.
As shown in Figure 8a, when GSST is in the amorphous state, most input light power cou-
ples to the racetrack MRR at the resonance wavelength 1547.4 nm. As shown in Figure 9, for
the case of 150 µm long switch, the resonance depth and insertion loss (IL) are −18.861 dB
and −0.187 dB, respectively. The loss mainly originates from the absorption of amorphous-
state GSST. When GSST is in the crystalline state, almost no resonance oscillation can
be observed in the MMR, which originates from the phase mismatching induced by the
refractive index change in GSST, as shown in Figure 8b. The extinction ratio based on the
resonance depths difference between two states is about −18 dB.
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As shown in Figure 9, the 3 dB bandwidth of the proposed switch is ~1 nm. No obvious
resonance wavelength shift occurs in different GSST states. Notably, dual resonance
peaks with a distance ~6.04 nm can be observed here. This phenomenon is different from
the reported single-waveguide GST-based MRR switches, in which GST is embedded
in the cavity and a remarkable wavelength shift is unavoidable [3]. Compared to the
present optical switches that adjust the operation wavelength by laser trimming or thermal
tuning [3], the dual resonance wavelengths make it possible to be extended for low-loss
higher-port N × N arrays. Importantly, according to the features of the different network
architectures of S&S, PILOSS, Crossbar and Benes, the specific switch metrics are supposed
to be built on practical demands. However, the size of traditional switching metrics
construction will increase remarkably with the enlargement in array scale. One possible
solution is to avoid using large-size switching blocks. Directly introducing PCM to the
active arm of the silicon waveguide to implement the ON/OFF of the optical path can
effectively reduce the unit size. Another solution is to introduce the inter-layer coupling,
which changes the signal routing from one-dimension to two- or three-dimension [31,32].
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To better evaluate the proposed switch, its theoretical performance was compared to
that of other O-PCM switches. Since these designs are built on different material platforms
and principles, it is hard to conduct an evaluation with unified standards. Nevertheless, the
comparison is implemented in terms of insertion loss, operation wavelength, bandwidth,
and extinction ratio. As shown in Table 1 below, GST and MRR are adopted in [3,25].
Compared with these two designs, a wider bandwidth and lower insertion loss can be
realized by our proposed switch; meanwhile, a close extinction ratio can also be obtained.
Compared to [4], which adopts a DC structure through a higher insertion loss is with this
work, better bandwidth and extinction ratio performances are fulfilled. Though a far larger
bandwidth can be realized with the plasmonic waveguide structure in [11], it has a much
lower insertion loss than that in this work.

Table 1. Switching performance comparison with reported works.

O-PCM Structure/Effect IL BW (nm) λ (nm) ER (dB) Ref

GSST DC 0.4 dB/40 µm
0.06 dB/40 µm NA 1550 NA 4

GST MRR 0.9 dB/2 dB NA 1563 ~20 3

GST MRR 2.5 dB ~0.1 1550 12.5 25

VO2 Plasmonic 4.15 dB 76 1550 18 11

This work
(GSST) MRR 0. 862 dB/100 µm

0. 187 dB/150 µm ~1 1547.4 ~18

Limited by lab facilities, we simply propose a possible switch fabrication process in
this study. Firstly, the silicon waveguide ring could be formed by e-beam lithography
and sequential inductively coupled plasma etching. Next, polymethylmethacrylate resist
(PMMA) is spin-coated on the wafer, and the area where GSST is supposed to be deposited
is opened by another e-beam lithography and development. Since GSST film is on the MRR
side, its size can be reasonably enlarged for the convenience of laser spot heating. As has
been reported, GSST can be formed by radio frequency (RF) sputtering a stoichiometric
Ge2Sb2Se4Te1 target. After the PMMA layer is removed, the silica upper cladding can be
deposited on top of silicon waveguide by plasma-enhanced chemical vapor deposition.

Optical irradiation [33–35] and electrical heating [36–38] have been adopted to realize
the transition between amorphous and crystalline states. The optical irradiation heating
works via a free-space laser, which is driven by electrical current. The electrical pulses with
a tunable length and amplitude can be generated with a function generator and amplified
by a high-gain amplifier, before implanted to the laser. The output optical pulses may
be coupled into an SMF, collimated, and focused down to the sample using an objective.
In contrast, electrical heating via low-loss ITO electrodes, which can be directly placed on
the top of GSST film, is driven by applying voltage. If without the upper-cladding, the
electrode size can be greatly enlarged, which is much more convenient for operation. If the
upper-cladding is over the silicon core, part of upper-cladding is supposed to be removed
for the convenience of the metal electrodes and probes [25]. Therefore, the high-speed phase
transformation between the amorphous and crystalline state in this GSST-assisted MRR
waveguide can be triggered by heating the µm-scale spot with focused laser radiation at a
wavelength of 975 nm [25], resulting in an optical switching. The switching performance
could then be optimized by iteratively increasing the laser pulse time and power.

4. Conclusions

A 1 × 1 optical switch based on GSST-assisted silicon racetrack MRR has been theo-
retically proposed. The racetrack MRR and DC structure are designed and optimized by
the FDTD method to meet the phase-matching condition. By tuning GSST between the
crystalline and amorphous states, the output power from the straight silicon waveguide
can be changed from an ON to OFF status. The proposed switch of 30 µm × 55 µm shows
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an extinction ratio of ∼18 dB at the resonance wavelength. The insert losses at the ON state
and OFF state are both less than 1 dB within the 3 dB bandwidth of 1 nm. No continuous
power consumption is needed to maintain the switching state due to the nonvolatility of
GSST. Therefore, the proposed switch can work within a broad bandwidth at a low power
cost, giving it good potential in on-chip switching matrix construction.
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