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Abstract: Traditional temperature detection has limitations in terms of sensing accuracy and re-
sponse time, while chip-level photoelectric sensors based on the thermo-optic effect can improve
measurement sensitivity and reduce costs. This paper presents on-chip temperature sensors based
on polysilicon (p-Si) waveguides. Dual-microring resonator (MRR) and asymmetric Mach–Zehnder
interferometer (AMZI) sensors are demonstrated. The experimental results show that the sensitivities
of the sensors based on AMZI and MRR are 86.6 pm/K and 85.7 pm/K, respectively. The temperature
sensors proposed in this paper are compatible with the complementary metal-oxide-semiconductor
(CMOS) fabrication technique. Benefitting from high sensitivity and a compact footprint, these
sensors show great potential in the field of photonic-electronic applications.

Keywords: temperature sensors; polysilicon; dual-microring resonator; AMZI

1. Introduction

Silicon photonics are a promising solution for large-scale and high-performance pho-
tonic integrated circuits (PICs) with a growing amount of applications in the optical in-
terconnections [1,2], programmable photonics processors [3,4], and optical sensors [5–7].
Integrated silicon photonics sensors especially, have attracted great attention in the fields
of environmental monitoring [8], industrial production [6,9], medical diagnosis [10], and
chemical analysis [11], due to their high sensitivity, compact footprint, and mass produc-
tion capabilities [12,13]. Besides high-performance optical sensors, readout equipment and
interrogators are also crucial for lab-on-chip (LoC) photonic sensors [5,7].

Nowadays, most silicon photonic devices and circuits are demonstrated on the silicon-
on-insulator (SOI) platform [14–16]. Crystalline silicon (c-Si) is the most widely used
material due to its low optical losses and excellent electronic properties [17]. However, it is
challenging to achieve three-dimensional (3D) multilayer PICs and electronic-photonics
integrated circuits (EPICs) based on c-Si due to the extreme difficulty in full wafer bonding
and polishing. In that case, low-temperature deposited materials such as hydrogenated
amorphous silicon (a-Si:H) [18,19], silicon nitride (SiN) [20–25], or polysilicon (p-Si) [26]
have been deposited and pattern above SOI wafers for multilayer PICs and EPICs. However,
the low charge mobility in a-Si:H and SiN thin films limits their use as active components
such as electro-optic modulators. P-Si, a collection of single-crystal silicon grains separated
by grain boundaries, shows relatively low-loss and similar mobility to c-Si [27]. Addition-
ally, the p-Si thin film transistor (TFT) has the merits such as high field effect mobility,
high integration and high speed, high-definition display, low power consumption, and
self-aligned structures [28–30]. With these good characteristics, p-Si is a promising material
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for realizing multilayer active photonic devices and EPICs [31,32]. For a reliable on-chip
system, a temperature monitor is necessary. Optical sensors have attracted lots of attention
because of their high sensitivity, compact footprint, and property of anti-electromagnetic
interference. To improve the reliability and performance of 3D PICs, in this paper, we
demonstrate two kinds of p-Si temperature sensors based on the dual-microring resonator
(MRR) and asymmetric Mach–Zehnder interferometer (AMZI). The temperature sensitiv-
ities of the sensors are 87 pm/K and 85 pm/K, respectively. Both of these sensors are
suitable for temperature measurement of 3D PICs and EPICs.

2. Design, Fabrication, and Characterization

The devices were fabricated with the 180 nm p-Si photonic multi-project-wafer (MPW)
process at the Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS).
The 220 nm thick p-Si was deposited on the SiO2 buffer at 2 µm of thickness at 620 ◦C. The
sensor is designed for C-band operation. For single-mode propagation, the geometry of the
waveguide is 500 nm × 220 nm. Deep ultraviolet (DUV) photolithography was employed
to define the waveguide patterns, followed by inductively coupled plasma (ICP) etching of
silicon. To simplify the fabrication process, we chose one-step etching of 150 nm for both
grating couplers and ridge waveguides. A 1 µm thick SiO2 upper cladding was deposited
on the waveguides.

2.1. The Structure of MRR

MRRs are usually compact with a typical radius of several micrometers. The narrow
linewidth of resonance dip is attractive for highly sensitive optical sensors [33]. However,
the large detection range means a small ring radius, which results in increased bending
loss in the ring. To overcome the trade-off between detection range and sensitivity, we
adopt a dual-MRR structure with different circumferences and a different free spectral
range (FSR), as shown in Figure 1. As a result, the transmittance reaches the minimum only
at the overlapped resonant peaks for each of the ring resonator.
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Figure 1. Microscopic image of the dual-MRR temperature sensor.

Our dual-MRR sensor consists of a ring (MRR1) and a racetrack (MRR2) resonator.
The gap between the ring and bus waveguide is 300 nm. The racetrack resonator consists
of a directional coupling (DC) coupling region. For the coupling region, the gap and the
length are 400 nm and 10 µm, respectively. The radii of the ring and racetrack are 30 µm
and 40 µm, respectively. A broadband tunable laser system (Santec Full-band TSL-550)
covering the ultra-wide tuning range of 1260 nm to 1630 nm was used to characterize
the fabricated devices. The resolution is 1 pm for MRR, narrow linewidth components,
in the measurements. This system combines up to three tunable lasers (TSL-550) with
an optical switch module (OSA-110). The light from output grating is measured through
an optical power meter (MPM-210H). The light from laser and devices is coupled into
the devices through a vertical fiber coupling system with a polarization controller. The
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minimum loss of the reference grating is ~10.42 dB for the fundamental transverse elec-
tric (TE) mode. The spectrum of the dual-MRR sensor from 1543 nm to 1568 nm at
25 ◦C is shown in Figure 2a. The on-chip insertion loss is ~1.46 dB. Two group resonances
with different FSRs are observed. The FSRs for different MRRs are FSR1 = 2.9 nm and
FSR2 = 2.41 nm, respectively. We observe the resonance dips at 1546.00 nm and 1578 nm.
The FSR for our dual-MRR is about 14.56 nm. Figure 2b shows the transmission of the res-
onator peak at 1560.56 nm. The full width at half maximum (FWHM) of the resonance peak
for the present resonator is about ∆λ = 463 pm at 1560.56 nm, indicating a loaded Q factor
Qload = λ/∆λ of 3370.
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Figure 2. (a) The spectrum of the dual-MRR sensor. (b) The transmission of overlapping
resonant peaks.

The temperature response of the sensor was investigated by placing it on a high-
precision temperature console stage with a temperature resolution of 0.1 K. Figure 3a shows
the measured spectra of the dual-MRR temperature sensor, indicating a linear wavelength
shift with temperature from 0 K to 20 K. The resonant wavelength is extracted and linearly
fitted as shown in Figure 3b. The slope of fitting results presents the temperature sensitivity,
which is calculated as ∆λ/∆T = 85.74 pm/K with a correlation coefficient (R2) of 0.99996.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 9 
 

 

fabricated devices. The resolution is 1 pm for MRR, narrow linewidth components, in the 
measurements. This system combines up to three tunable lasers (TSL-550) with an optical 
switch module (OSA-110). The light from output grating is measured through an optical 
power meter (MPM-210H). The light from laser and devices is coupled into the devices 
through a vertical fiber coupling system with a polarization controller. The minimum loss 
of the reference grating is ~10.42 dB for the fundamental transverse electric (TE) mode. 
The spectrum of the dual-MRR sensor from 1543 nm to 1568 nm at 25 °C is shown in 
Figure 2a. The on-chip insertion loss is ~1.46 dB. Two group resonances with different 
FSRs are observed. The FSRs for different MRRs are FSR1 = 2.9 nm and FSR2 = 2.41 nm, 
respectively. We observe the resonance dips at 1546.00 nm and 1578 nm. The FSR for our 
dual-MRR is about 14.56 nm. Figure 2b shows the transmission of the resonator peak at 
1560.56 nm. The full width at half maximum (FWHM) of the resonance peak for the pre-
sent resonator is about Δλ = 463 pm at 1560.56 nm, indicating a loaded Q factor Qload = 

λ/Δλ of 3370. 
The temperature response of the sensor was investigated by placing it on a high-

precision temperature console stage with a temperature resolution of 0.1 K. Figure 3a 
shows the measured spectra of the dual-MRR temperature sensor, indicating a linear 
wavelength shift with temperature from 0 K to 20 K. The resonant wavelength is extracted 
and linearly fitted as shown in Figure 3b. The slope of fitting results presents the temper-
ature sensitivity, which is calculated as Δλ/ΔT = 85.74 pm/K with a correlation coefficient 
(R2) of 0.99996. 

 
Figure 2. (a) The spectrum of the dual-MRR sensor. (b) The transmission of overlapping resonant 
peaks. 

 
Figure 3. (a) Spectra of the dual-MRR sensor at different temperatures (ranging from 0 K to 20 K). 
(b) Overlapping resonant peak wavelength at different temperatures. 
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(b) Overlapping resonant peak wavelength at different temperatures.

2.2. The Structure of AMZI

Mach–Zehnder Interferometers (MZIs), one of the most widely used structures, have
been demonstrated in a wide range of applications, including wavelength division multi-
plexers [34,35], optical switches [36], electro-optical modulators [37] and biosensors [38,39].
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In this paper, we also propose AMZI temperature sensors based on the p-Si platform. The
microscopic image of AMZI is shown in Figure 4. It consists of two 3 dB couplers and
two arms with different lengths. Directional coupler (DC), Y-branch splitter, and multi-
mode interferences (MMI) are common structures for 3 dB couplers. Considering with the
bandwidth and process tolerance, we choose MMI as 3 dB couplers for the AMZI sensors.
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Figure 4. Microscopic image of the temperature sensor based on AMZI.

The 1 × 2 MMI used in the sensor is shown in Figure 5a. A series of cascaded MMIs
were fabricated to characterize the insertion loss and uniformity of the output waveguides,
as shown in Figure 5b. Transmission spectra from ports 1–7 in the range of 1460 nm to
1580 nm are shown in Figure 5c. Then, we fit the transmission loss at 1550 nm and found
the slope of the linear fitting was −4.45, as shown in Figure 5d. It means the excess loss of
MMI is 1.54 dB. The MMI shows superior uniformity according to the transmission spectra
of ports 6 and 7.
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Figure 5. (a) Schematic of 1 × 2 MMI. (b) Microscopic image of the cascade MMI. (c) Measured
trans-mission spectra of the cascaded 1 × 2 MMIs at the wavelength range of 1460–1580 nm.
(d) Linear fitting of the normalized transmission at 1550 nm wavelength.
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The FSR is also important for an AMZI, which is given by

FSR =
λ2

ng∆L
(1)

where λ is the center wavelength, ng is the group index, and ∆L is the path length difference
between the arms. The group index ng is 4.11, which is calculated through finite difference
eigenmode (FDE) method. The center wavelength λ is 1550 nm. The interferometer path
length difference ∆L is 280 µm. Thus, the FSR of AMZI is 2.08 nm.

The same characterization system with a dual-MRR sensor is applied for the AMZI.
The transmission spectrum of our designed AMZI sensor is shown in Figure 6 when
the temperature is 25 ◦C. The AMZI shows an insertion of 16.5 dB. The FSR of AMZI is
2.06 nm, which is consistent with the calculated result.
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Figure 6. The spectrum of our designed AMZI.

We chose the resonant wavelength dip at 1549.07 nm to demonstrate the sensing
application. The drift of the characteristic wavelength observes the temperature change.
Figure 7a plots the spectrum change of AMZI when the temperature change varies from
0 K to 20 K. The extinction ratios of our designed AMZI’s resonant peak are almost constant
with increasing temperatures. Figure 7b shows the linear fitting of the resonant wavelength
changing with temperature changing. The sensitivity of the temperature sensor, which
equals the slope of the straight line, is 0.0866 with a correlation coefficient (R2) of 0.998.
Therefore, the AMZI sensor has a sensitivity of 86.66 pm/K.
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3. Discussion

The performance comparison between temperature sensors on different platforms is
listed in Table 1. In [40], a silicon-based dual-polarization MRR with a polyvinyl-alcohol
(PVA) upper cladding is demonstrated for measuring humidity and temperature simulta-
neously. For TE and transverse magnetic (TM) polarization modes, the sensitivities of the
sensor are 69.0 pm/K and 30.6 pm/K, respectively. Multifunctional sensors with humidity
and temperature monitors are attractive, but sensitivity is lower than in our work. Low
depth for the TM mode resonator is also a challenge for practical applications. To increase
the sensitivity, fano resonance is achieved by introducing an air hole with a diameter of
368 µm into the center of the coupling [41]. However, the sensitivity is only 75.3 pm/K with
an extinction ratio (ER) of 9.57 dB. Both of the MRR- and AMZI-based sensors demonstrated
in this paper show a large ER of ~35 dB. However, the gap between the bus waveguide and
ring of the sensor in [41] is 83 nm, which is hard for a MPW process. Replacing the silicon
or silica waveguides with polymer waveguides is another effective method to improve the
sensitivity. In [42], a MZI sensor with two arms consisting of hybrid waveguides providing
the opposite temperature-dependent phase changes is demonstrated. One arm of the MZI
sensor is narrowed to 40 nm, leaking the light to SU-8 cladding with a negative thermal
optical coefficient (TOC). The opposite temperature dependent phase change enhances the
sensitivity to 172 pm/K. In [43], a chip-scale temperature sensor with a high sensitivity
of 228.6 pm/K based on a rhodamine 6G (R6G)-doped SU-8 whispering gallery mode
microring laser is developed. However, polymer materials need an effective method to
improve their long-term stability [44,45]. Using the same whispering gallery mode micror-
ing structure, a low sensitivity of 19.37 pm/K is measured, owing to low TOC of SiN [46].
Another effective method is using Michelson interferometer (MI) to improve the influence
of light propagation by heater. A compact size of 120 µm × 80 µm temperature sensors
with 113.7 pm/k sensitivity is achieved [47]. This structure is also useful for thermo-optic
switches [48]. In our work, we demonstrate two types p-Si temperature sensors based on
MRR and AMZI structures. The fabrication is well compatible with the CMOS fabrication
technique. Low fabrication temperatures enable the p-Si sensor to be used in multilayer
integrated optical circuits. The sensitivity is to the same degree as the c-Si sensor. With
new material introduced and useful structure applied, the sensitivity could be improved
sharply. Moreover, p-Si is a normal material for electronic integrated circuits. A fully
integrated biosensing electronic–photonic system-on-chip (EPSoC) could be achieved using
this platform [7,49,50].

Table 1. Comparison of temperature senors.

Reference Waveguide
Materails Structure Sensitivity

(pm/K) Radius/Footprint

[40] c-Si MRR 69.0 pm/K 20 µm
[41] c-Si MRR 75.3 pm/K 20 µm
[42] c-Si AMZI 172 pm/K N.A.
[43] R6G-SU-8 MRR 228.6 pm/K 110 µm
[46] SiN MRR 19.37 pm/K 100 µm
[47] c-Si MI 113.7 pm/K 120 µm × 80 µm

This work p-Si MRR 85.7 pm/K 30 µm
This work p-Si AMZI 86.6 pm/K 400 µm × 260 µm

4. Conclusions

In conclusion, we demonstrated two types of p-Si temperature sensors experimentally.
The two types of sensors were dual-MRR and AMZI structures. The dual-MRR sensor had
a large FSR of 14.56 nm and the Qload of dual-MRR is 3370. We optimized the 1 × 2 MMI
of the AMZI sensor with an excess loss of 1.54 dB and uniform spectral uniformity. For
both sensors, we used the shift of the resonant wavelengths to calculate the amount of
temperature change. The results show the sensitivity of the dual-MRR sensor and AMZI
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sensor are 85.74 pm/K and 86.6 pm/K, respectively. It confirms that the temperature sensors
based on the p-Si waveguides have large temperature sensitivity and a compact footprint.
Therefore, they show great potential to realize temperature monitoring of multilayer
integrated optical circuits and EPICs.
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