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We propose an optical tensor core (OTC) architecture for neural network training. The key computational components of the
OTC are the arrayed optical dot-product units (DPUs). The homodyne-detection-based DPUs can conduct the essential com-
putational work of neural network training, i.e., matrix-matrix multiplication. Dual-layer waveguide topology is adopted to
feed data into these DPUs with ultra-low insertion loss and cross talk. Therefore, the OTC architecture allows a large-scale
dot-product array and can be integrated into a photonic chip. The feasibility of the OTC and its effectiveness on neural
network training are verified with numerical simulations.
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1. Introduction

Deep learning becomes a milestone strategy of modern machine
learning[1], performing with superior ability in many areas and
applications[2–6]. One of the major driving forces of deep learn-
ing is the surge of computational power. Among the procedures
of deep learning, neural network training consumes the most
time and energy. This is because an inference only takes one for-
ward propagation to complete. However, a complete training
takes thousands of rounds of forward and backward propaga-
tions. For now, the computational power demanded by neural
network training doubles every 3.4 months[7] due to dramatic
neural network complexity expansion. Traditional digital pro-
cessors are thereby faced with bottlenecks caused by neural net-
work development.
Recently, optical neural networks (ONNs) were proposed as

an alternative to break through electronic problems, such as the
clock rate limit and energy dissipation of data movement[8]. By
mapping the mathematical model of the neural network
onto analog optical devices, ONNs obtain results on the fly of
light with potential ultra-low energy consumption[9]. Various
ONN architectures are proposed and demonstrated based on
unitary optics[10,11], wavelength division multiplexing[12], free-
spacemodulators[13], diffractive optics[14], free-space homodyne
detection[15], etc. Especially, the free-space homodyne
ONN[15] carries out dot-products by homodyne detection and
electron accumulation (HDEA), enabling the matrix-matrix

multiplications. Note that the matrix-matrix multiplications
are the essential computing process of neural network
training. Therefore, the free-space homodyne architecture can
conduct neural network inference and training on the same
hardware. However, free-space implementation is bulky and
instable.
Here, we propose an optical tensor core (OTC) architecture

that can be integrated into photonic chips for neural network
training. In this architecture, the matrix-matrix multiplication
is conducted by the dot-product units (DPUs) meshed on a
two-dimensional (2D) plane. The principle of the DPUs is based
on the HDEA process, i.e., multiplications are fulfilled by homo-
dyne detection, and the summation is completed by electron
accumulation. Here, the components of DPUs are optical wave-
guide devices so that the DPU array can be integrated. Besides,
the input data are fed into the DPU array through dual-layer
waveguides. Provided that the waveguide crossings are inevi-
table if the date-feeding waveguides andDPU array are deployed
on a single 2D plane, the dual-layer waveguide topology of the
data-feeding waveguides can mitigate the insertion loss and
crosstalk of such crossings. The sub-millidecibel (mdB) inser-
tion loss per crossing[16] guarantees a large-scale OTC. The pro-
posed OTC succeeds the strengths of free-space homodyne
ONN (high speed, high reconfigurability, and large scale) and
potentially features aberration immunity and compactness by
removing the third space dimension and lens structure of
free-space architecture.

Vol. 19, No. 8 | August 2021

© 2021 Chinese Optics Letters 082501-1 Chinese Optics Letters 19(8), 082501 (2021)

mailto:wzou@sjtu.edu.cn
https://doi.org/10.3788/COL202119.082501


2. Principle

No matter how the neural network structure varies (fully con-
nected, convolutional, and recurrent), the basic mathematical
model of neural network training comprises matrix-matrix mul-
tiplications and nonlinear activation functions[17]. The OTC
focuses on conducting matrix-matrix multiplications, which
consume the most computational power during training.
Figure 1 illustrates the OTC architecture. Suppose A and B
are two input matrices: A has dimensions of M × S, and B
has dimensions of S × N . The multiplication between the two
matrices comprises M × N dot-products. As illustrated in
Fig. 1(a), the OTC works with a pulsed laser. The repetition rate
of the pulse train is the system clock rate f m. The generated pulse
train splits into two equal branches for the data modulation of
matrices A and B, respectively. In each branch, the pulse train
evenly splits multiple times to meet the scale of the rows in A
and the columns inB. In themodulation array, the data ofmatri-
ces are modulated on the amplitudes of optical pulses. The
modulation rate equals f m. Each row of A (Ai,∶ in the plot) or
each column of B (B∶,j in the plot) is serially modulated on
the amplitude of the pulse train. The modulated pulse trains
enter the DPU array through dual-layer waveguides. Inter-layer
couplers (ILCs)[16,18] are adopted for the transition between
layers. In the schematic of Fig. 1(a), two different colors are used
to show the overpass and underpass waveguides. During trans-
mission, the waveguide crossings of overpass and underpass
waveguides impose ultra-low loss (below 1 mdB/crossing) and
crosstalk (below 40 dB) between the signals of the upper and
lower layers[14]. At each crossing of the bus waveguides, a
DPU is deployed for the dot-product calculation. The structure
of a DPU is illustrated in Fig. 1(b). Two splitters (directional
couplers) are applied to drop a portion of light from the bus
waveguides. A phase shifter on one arm is used to adjust the

phase for homodyne detection. An ILC on the other arm is
adopted to transit lower-layer optical pulses to the upper layer.
An HDEA is employed for dot-product calculation (the princi-
ple is described below). The HDEA is set up by a 3 dB directional
coupler, a balanced photo-detector (BPD), and an accumulation
capacitor with a triggered switch. The DPU array contains
M × N DPUs in total, and the optical intensity is averagely dis-
tributed on these DPUs. Note that optical pulses should pass
through the same optical lengths before encountering at each
DPU. Isosceles-shaped waveguides are designed to guarantee
that the optical lengths between DPUs and the modulator array
are always the same.
The principle of HDEA is described here. Suppose a pair of

incident optical pulses have amplitudes of Ai,k and Bk,j (the
kth element of input vectors), respectively, and arrive at the
3 dB directional coupler at the same time. Because of optical
interference, the upper and lower detectors of the BPD generate
current pulses. The subtracted current pulse is accumulated on
the capacitor in the form of electrons or charges. When the ini-
tial phase difference of incident optical pulses is π=2, the number
of accumulated electrons on the anode panel is proportional to
the amplitude multiplication of the incident optical pulses,
i.e., Ai,k × Bk,j. When the initial phase difference is −π=2, elec-
trons on the anode drift away. The phase inversion takes place
at the push–pull modulation rather than the phase shifter. All
phase shifters stay static once the calibrations are completed.
To calibrate the DPU, one should set all modulators to their
maximal transmission rate and adjust the phase shifters to reach
the maximal output current of every BPD. After multiple (k is
from one to S) optical pulse pairs are fed and electrical pulses
are accumulated on the capacitor, the dot-product of vectors
is completed. Results are acquired by sampling the voltage on
the anode panel. Once the voltage is sampled, the trigger
switches on to discharge the electrons for the preparation of

Fig. 1. (a) Schematic of the OTC. An example scale of 3 × 3 is depicted. ILC, inter-layer coupler; Mod array, modulator array. (b) Detailed schematic of a DPU. A
portion of light is dropped from the bus waveguides. PS, phase shifter; DC, directional coupler. (c) Impulse response of the HDEA. Time constant τ of the circuit is
defined as voltage decays to 1/e. (d) An example of electron accumulation. Optical pulses arrive at the HDEA with interval of 1/fm. The accumulation time is T.
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the next dot-product. Note that the accumulated electrons are
not permanent. If the input vectors have massive lengths, the
initially accumulated electrons start to leak spontaneously.
Figure 1(c) illustrates the impulse response of the HDEA. The
electron leakage time constant τ is critical to the electron accu-
mulation. As illustrated in Fig. 1(d), if the time constant of elec-
tron leakage is shorter than the accumulation time T , the
accumulation result is distorted. Numerically, the final sampled
voltage is described by

Vo ∝
XS

k=1

e−
S−k
fmτ · Ai,k · Bk,j: (1)

With fixed input vector length S and clock rate f m, a larger
time constant leads to better dot-product results. We implement
a simulation program with integrated circuit emphasis (SPICE)
to show the rise time and leakage time constants of HDEA. The
adopted equivalent circuit model of the photodetector is referred
to in Ref. [19]. With the accumulation capacitance of 10 pF, the
rising time is 47.7 ps, and the leakage time constant is 109.1 ns.
Results indicate that the sampling rate of electronic acquisition
(the trigger) can be as slow as 10 MHz. Given that the clock rate
of optical pulses is at the level of dozens of gigahertz (GHz), the
HDEA process easily supports the dot-product calculations with
vector length over 1000. Note that larger junction resistance
(> 100 kΩ) is often considered in photodetector models.
Together with the progress on high-speed pulsed lasers and
modulators, larger input lengths are expected. According to
Ref. [15], large vector length indicates that the required optical
power of each DPU is low. If the vector length surpasses 1000, a
milliwatt-level pulsed laser has potential to support anOTCwith
105 DPUs. Note that the laser efficiency, detector efficiency,
modulator efficiency, coupling loss, and waveguide loss are
highly relevant to the feasible DPU scale. These degrading

factors should be carefully considered and designed in OTC
fabrication.

3. Results

To validate the effectiveness of the OTC architecture, neural net-
work training is simulated. In the simulation, we adopt two net-
work models [fully-connected (FC) and convolutional] to
conduct the image classification task of the modified National
Institute of Standards and Technology (MNIST) handwritten
digits. Figure 2 illustrates the network models in detail. The
input images of the FC network and the convolutional network
are from the MNIST dataset. In the four-layer FC network
[Fig. 2(a)], the image is flattened to vectors in the first layer
and propagates by matrix multiplications through the cascading
layers. The numbers of neurons in the hidden layers are set to

Fig. 2. (a) FC network. The matrix multiplications are implemented on OTC.
ReLU after each layer is conducted in auxiliary electronics. The output is
the one-hot classification vector given by the softmax function. (b) The con-
volutional network. Convolutions are conducted on OTC. Max pooling layers
shrink the image size by half. All layers are ReLU-activated except for the pool-
ing layers and the last layer.

Fig. 3. (a) Loss functions of the FC network during training. Results of the
standard MBGD algorithm (Std. train) and the on-OTC training are illustrated.
(b) The prediction accuracy of the FC network during training. The training
accuracy and the testing accuracy of the standard MBGD algorithm are
depicted without marks. The on-OTC training is depicted with marks.
(c) Loss functions of the convolutional network during training. (d) The pre-
diction accuracy of the convolutional network during training.
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784, 512, 86, and 10, respectively. The second and third layers
adopt rectified linear units (ReLU) as the activation function,
and the last layer uses softmax function to yield the one-hot clas-
sification vector. As illustrated in Fig. 2(b), the convolutional
network comprises two convolutional layers, two max pooling
layers, and two FC layers. The kernel size of the convolutional
layers (first and third layers) is set to 3 × 3, and the output chan-
nel numbers are 16 and 32, respectively. The activation function
used in the convolutional network is the ReLU except for the last
layer. The last layer uses the softmax function.
The OTC is simulated to conduct all matrix multiplications of

fully-connected layers and generalized matrix multiplication
(GeMM) of convolutional layers. Auxiliary electronics, includ-
ing analog-to-digital converters (ADCs) and digital processors,
are utilized for the nonlinear operations. Specifically, max pool-
ing, image flattening, nonlinear activation functions, and data
rearrangement are executed by auxiliary electronics. Note that
the temporal accumulation of the optical pulses significantly
lowers the sampling speed by about 1000 times. Low-speed
ADCs and digital processors can be utilized in the neural net-
work training. Detailed discussions about the auxiliary electron-
ics can be found in Ref. [15], where auxiliary electronics are
similarly utilized. In the simulation, the optical pulses are
assumed to be push–pull modulated with no phase shift. The
clock rate (i.e., the repetition rate of optical pulses) is set at
50 GHz. The accumulation time T depends on the size of input
vectors: for those larger than 100, T is set at 25 ns; otherwise, T is
set at 2.5 ns to mitigate the impact from electron leakage. The
leakage time constant (τ = 109.1 ns) yielded in the SPICE sim-
ulation is used in the neural network training. We also consider
the insertion loss of waveguide crossing as 1mdB/crossing, while
the crosstalk is neglected for its minor influence on the results.

We adopt mini-batch technology during training: the batch size
of FC network training is 50, and the batch size of convolutional
network training is 120. The mini-batch gradient descendent
(MBGD) algorithm is applied to update the network parameters.
Sixty-five epochs are executed in total. The learning rate is 0.02
during the initial 50 epochs and decreases to 0.004 from the 51st
to 65th epochs.
Figure 3 shows the training procedure of the FC network and

the convolutional network. As shown in Fig. 3(a), the loss func-
tion of the FC network drops with the growth of training epochs.
For reference, we draw the loss function of the standard MBGD
algorithm conducted by the 64 bit digital computer. The OTC-
trained loss drops along with the standard MBGD algorithm,
converging to a very small value. The corresponding prediction
accuracy of the FC network is illustrated in Fig. 3(b). The train-
ing accuracy is calculated via 10,000 randomly picked inferences
in the training set of MNIST, and the testing accuracy is calcu-
lated via 10,000 inferences in the test set. The initial parameters
of the OTC training and standard training are the same. It can be
found that the accuracies of the OTC training increase alongside
with the standard MBGD algorithm. Finally, the training accu-
racy of the OTC reaches 100%, and the testing accuracy is
around 98%, thus verifying the effectiveness of the OTC on
the FC network training. Figure 3(c) shows the loss function
of the convolutional network during training: the OTC-trained
loss function almost overlaps with the standard-trained refer-
ence. From the prediction accuracy results in Fig. 3(d), we also
observe that the training of the convolutional network on the
OTC is effective. The training accuracy is around 99%, and
the testing accuracy is around 98%. The results above validate
the feasibility of OTC training on both the FC network and the
convolutional network.

Fig. 4. Parameter visualization of the trained neural networks. (a) Trained parameters of the fourth layer in the FC network model. The standard-trained param-
eters are provided for reference, and the normalized deviation is depicted. (b) and (c) Distributions of trained parameters and deviations of the second and third
layers of the FC network. The counts are normalized by the maximal counts. (d) Trained kernels of the first convolutional layer in the convolutional network. (e) and
(f) Distributions of trained parameters and deviations of the first and second FC layers of the convolutional network. (b), (c), (e), and (f) share the same figure
legends.
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We visualize the trained parameters in Fig. 4 to study the
impact of the OTC on the neural network training. The param-
eters of the OTC training and standard training are initialized
with the same random seeds so that they converge to similar
optimums. The standard-trained and the OTC-trained param-
eters of the fourth layer of the FC network are illustrated in
Fig. 4(a). The parameters of the fourth FC layer form a 10 × 86
matrix. It is found that the OTC trained parameters have small
deviations compared with the standard-trained parameters. The
absolute deviations (magnified five times) are depicted. The sto-
chastic distributions of the parameters and deviations in the sec-
ond and third FC layers are shown in Figs. 4(b) and 4(c). We
observe that the distribution of the OTC-trained parameters
overlaps with that of the standard-trained ones. The deviations
are small and concentrate at zero. It is inferred that the OTC has
a fairly minor impact on FC network training. Figure 4(d) shows
the convolutional kernels of the first convolutional layer, trained
by the OTC and standard MBGD, respectively. The deviations
between these two sets of kernels are unnoticeable. In Figs. 4(e)
and 4(f), the parameter distributions and deviation distributions
of the cascading FC layers are depicted. The deviations also con-
centrate at zero, implying that there is a minor impact from the
OTC on convolutional network training. It is worth remember-
ing that the OTC-trained inference accuracy is the same as the
standard-trained one (as shown in Fig. 3). Therefore, the minor
impact imposed by the OTC does not cause noticeable deterio-
ration to the effectiveness of neural network training.

4. Conclusion

In summary, OTC architecture is proposed for neural network
training. The linear operations of neural network training are
conducted by a DPU array, where all optical components are
waveguide-based for photonic integration. In view of the
HDEA principle, the OTC architecture adopts high-speed opti-
cal components for linear operations and low-speed electronic
devices for nonlinear operations of neural networks.
According to the results of SPICE circuit simulation, large elec-
tronic leakage time constant (over 100 ns) allows the dot-
product calculation of massive vectors (length over 1000) to
be conducted by the HDEA. To solve the problems of insertion
loss and crosstalk of the data-feeding waveguide crossings, dual-
layer waveguide topology is applied for the data feeding. The
ultra-low crossing loss and crosstalk enable a large-scale dot-
product array. The 2D planar design of the OTC eradicates
the demand for the third space dimension or the lens structures,
potentially featuring high compactness and immunity to aber-
ration. Simulation results show that neural network training
with the OTC is effective, and the accuracies are equivalent to
those of the standard training processes on digital computers.
Through analyzing the trained parameters, we observe that
the OTC training leaves minor deviations on the parameters
compared with the standard processes without any apparent
accuracy deterioration. In practice, the optical and electro-optic
components including push–pull modulators, splitters, ILCs,

waveguides, and photo-detectors suffer from fabrication devia-
tions. These deviations affect the numerical accuracy of the OTC
andmay result in performance degradation of the trained neural
networks. However, the OTC training is an in-situ training
scheme, of which the training results are potentially robust to
hardware imparities, as recently demonstrated in in-memories
computing research[20]. In future study, investigation about
the OTC’s robustness to hardware imparity based on fabricated
OTC chips is of great interest.
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