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ABSTRACT 

This paper presents a transfer theory for determination of the image 

space and image spectrum of a three -dimensional object. The theory assumes 

the existence of volumes of stationarity, called "isotomes," into which 

the object must be divided. Isotomicity is approximated, over sufficient- 

ly small volumes, in the diffraction- limited case. 

The main development assumes the object to be radiating incoherently; 

the results are as follows: 

The image (irradiance) distribution i(x,y,z) is the three - 

dimensional convolution of the point spread function s(a,ß,y) with the 

object distribution o(x',y',z'). The image spectrum I(wl,w2'w3) is 

defined as the three -dimensional Fourier transform of i(x,y,z). It is 

found that I obeys a transfer theorem, I = F.0, where F(wl,w2,w3) is the 

three -dimensional Fourier transform of s(ct,ß,y) and 0(wl,w2'w3) is an integral 

transform of o(x',y',z'). This transfer theorem establishes the value of 

using F as a criterion of optical design. In the Fraunhofer approximation, 

F may be represented as a line integral across the pupil U. This shows 

that F contains a simple pole at col = w2 = O. Nevertheless, all integrals 

involving F are convergent. The pupil representation for F also shows 

that F is zero outside a restricted volume E of (wl,w2,w3)- space. Because 

F is bandwidth- limited, F, I, s, i and T (the optical transfer function) 

individually obey sampling theorems. These theorems imply that if each 

point in image space is regarded as an independent degree of freedom, there 

can be no more than 1 /0f4 degrees of freedom /volume in image space. 

For coherent object radiation, analogous theorems of convolution, 

transfer, and sampling can be constructed. In addition, the "amplitude" 



transfer function W(wl,w2,w3), defined as the Fourier transform of the 

point amplitude distribution u(a,ß,y), is proportional to the pupil func- 

tion and to S[w3 - (w2 + w2) /2k], where 6 is the Dirac delta function and 

k = 2r /a. This relation is used to establish sampling theorems for u and 

for g (the image amplitude) and to express g(x,y,z) as a double integral 

over U and O. 
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I. INTRODUCTION 

A real object, such as a ball, has three -dimensional extent in 

space. At present, the image of a real object cannot be described by a 

transfer theory unless the object approximates one of two idealized 

limits. These are the "transverse" object and the "longitudinal" object. 

The "transverse" object' is defined as the radiance distribution 

within a given plane normal to the optical axis. The transfer theory that 

applies, due to Duffieux,2 is familiar to workers in the field of image 

evaluation.3 For purposes of distinction, this theory will be called the 

"lateral" or "transverse" transfer theory. In an approximate sense, 

lateral transfer theory also applies to any three -dimensional object that 

is sufficiently distant from the optics. In this case the optics - 

detector arrangement has a depth of focus that is sufficiently large to 

mask any spatial departures, over the object, from the transverse plane. 

Hence, the measured image gives no information about depth variation 

across the object. 

The "longitudinal" object' is defined as the radiance distribution 

that exists along a line which is directed in an arbitrary field direction 

(from the nodal point for that direction). The irradiance distribution 

that exists along the Gaussian image of the longitudinal object obeys a 

"longitudinal" transfer theory. Longitudinal transfer theory also applies 

if the object has a finite thickness, but then the radiance must be 

assumed to be uniform within any cross section of the object, even if it 

is not. Consequently, all information is lost about the radiance varia- 

tion within any cross section. 

The aim of this paper is to describe the image and image spectrum of 

a three -dimensional object by means of a suitably generalized transfer 
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theory. A surface object is probably the most common type of object 

observed by the unaided eye. When the object is itself an aerial image, 

which has three -dimensional extent, it must be represented as a volume 

distribution. The generalized transfer theory will apply to objects of 

both types. 

The development is similar to that of lateral transfer theory,3 and 

corresponding results of the two developments are frequently compared. 

Since the generalized transfer theory does not require the object to 

approximate an idealized model, such as a plane or a line, there are no 

"information losses" of the types previously considered. 

AN ISOTOME, OR VOLUME 
OF STATIONARITY 

ISGRIC ` 
die 
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Fig. 1. Object and image spaces for three -dimensional 

image formation. The region of isotomicity is 

exaggerated for emphasis. Image irradiance 

i(r) is shown to arise from overlap of the 

point spread functions from differential areas 

do. of the object. 

¡Cr) 

Fig. 1 identifies the main parameters of the problem. The optics 

are of focal length f and radius ro; H and H' are the principal points. 
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We introduce the vector notation 

I' = 
(xr 

,y 
r 

, 

Zr) 

rG = (xG,yG,zG) 

r = (x,y,z) 

dr' = dx'dy'dz' 

dr = dxdydz. 

In the above, r' is a general object point, rG is the corresponding 

Gauss point, and r is a general point in the image space. The origins for 

primed and unprimed coordinates are H' and H, respectively. 

Any given object may generally be described as either a surface 

distribution of radiance ao(r') (as illustrated in Fig. 1), or a volume 

distribution of radiance aV(r'). The differential radiance dN from ob- 

ject point r' is then given as either 

or 

dN(r') = ao(r')do(r') (1.2a) 

dN(r') = av(r')dr', (1.2b) 

where do is a differential area on the surface o. Comparing Eqs. (1.2a) 

and (1.2b), it is noted that au and 
aV 

are dimensionally different 

quantities. 
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II. POSTULATES 

Lateral transfer theory is based on two assumptions: stationarity 

and superposition.3 As is well known, these conditions are met by an ob- 

ject which radiates incoherently from an "isoplanatic "4 area of the object 

plane. It will be seen that three -dimensional generalizations of these 

assumptions imply a three -dimensional transfer theory. 

A. Stationarity 

Let s(r';r) represent the irradiance at r due to a point source at 

r'. Let rG locate the Gauss point corresponding to r'. We shall require, 

as our condition of stationarity, that 

s(r';r) = s(r - rG). (2.1) 

The portion V of the object space that obeys (2.1) will be called an 

"isotome" (from the Greek "iso" and "tomos," meaning "equal" and "volume 

section," respectively). A surface o that lies within V, as in Fig. 1, 

will be called "isotomic." If the entire object is not "isotomous," it 

must be subdivided into volumes V which are individually isotomous. Each 

volume V can then be separately treated by the generalized transfer theory. 

This technique is especially useful if each V is a meaningful fraction of 

the object. 

Physically, (2.1) requires the point spread function to remain in- 

variant under changes in position of the Gauss point. This will be true 

if each point within V has essentially the same wave aberrations. The 

existence of stationarity in two dimensions, within an "isoplanatic" 

patch, has been established;5 hence, the existence of usefully large (as 

described above) volumes of stationarity seems likely, in particular cases. 

Appendix I verifies isotomicity in the diffraction -limited case. 



-5- 

For a material object with longitudinal extent, some radiation from 

distant object points might be scattered or reflected by nearer object 

points. Such "radiation blockage" will affect s(r';r) and consequently 

must be taken into account when determining the isotomous volume. Unless 

the object is an aerial image, "radiation blockage" will always be present 

for object types aV and will sometimes be present (depending on the shape 

of surface a) when the object is of type ao. 

B. Superposition 

The condition of superposition requires that the irradiance i at 

due to point sources at -4 and r2 be given as the sum 

i(r) = s(ri;r) + s(r2;r). (2.2) 

As in the transverse case, this condition is satisfied by point sources 

that radiate in a mutually incoherent manner. From (2.2), if r' = r2, 

that is, if a "strength" of two point sources is present at ri, then 

-4- -> 

i(r) = 2s(ri;r) . (2.3) 

By continuing the process we establish that source strengths o(r!), where 

i = 1,2,...,N, cause an 

N 

1(r) = o(i)s(ri;r). 

i=l 
(2.4) 

The o(r:) are necessarily unitless, so that i has the (irradiance) unit of 

s. Eq. (2.4) is sometimes called the principal of linearity, and may be 

generalized to include a continuum of source, or object, strengths. If 

the object is characterized by a volume distribution ov(r') over volume V, 

i(r) = oV(r')s(r';r)dr', 

V 

(2.5a) 
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whereas an object distribution o0(1') on surface o causes an 

i(r) = J oa(')s(';r)do(r'). (2.5b) 

a 

Objects ov and oa must have units of (volume) -1 and (area) -1, respectively, 

so that i and s have identical units. 

On physical grounds, 

and 

ov 
a av 

oa °` ac 

(2.6) 

that is, object strength is proportional to object radiance. Hence ov and 

00 may be experimentally determined by measuring the radiance distribution 

of the object. 

Since i is due to the superposition of real images, any object must 

obey either 

or 

oa(r') = 0 

oV(r') = O 

} for z' 5 f. (2.7) 

Constraint (2.7) will be assumed throughout this paper. 

An object which is partially type ov and partially type oa produces 

an i(i) which is the sum of Eqs. (2.5a) and (2.5b). 



-7- 

III. CONVOLUTION THEOREMS 

Assuming an isotomous, incoherently radiating object, we may use 

identity (2.1) in Eqs. (2.5). Then 

3 
i(r) = 

depending on the object type. 

1 oV(r')s(r-rG)dr' or 

V 

Jo 
oo(')s(-)do(r') , 

In order to integrate over the primed coordinates it is necessary 

to express rG in terms of r'. From first -order optics, 

rG = fr'(z'-f)-l. (3.1c) 

Eqs. (3.1) are the required convolution integrals. They may be used in 

the mathematical determination of i(r) when the object and point spread 

function are given. 

In the case of an object oo located in a plane z' = constant, Eq. 

(3.1b) becomes 

¡ 

i() = J I o6(r')s(r-mr')dxdy' (3.2a) 

where m = f(z' -f) -1. (3.2b) 

Eqs. (3.2) describe transverse image formation in any plane z. 
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IV. IMAGE SPECTRUM 

Continuing a three -dimensional development, we define the image 

spectrum I(Q) as 

I(Sa) = (27r) 
-312 

I i()exp(- jSr)dr, (4.1a) 

Image 

where S = (wl,w2,w3) (4.1b) 

and J = (-1)1/2 (4.1c) 

Parameter -St represents a triplicate of spatial frequencies. For later 

use, we define 

w = (wl,w2) (4.2) 

Since i(r) is generally a function of three spatial coordinates, 

I(a) represents a spatially "complete" Fourier spectrum of i(r). It will 

be shown in Section V that definition (4.1a) implies a three -dimensional 

transfer theorem. 

In any plane z beyond the exit pupil, the total image power Pi must 

be conserved. Algebraically, 
CO 

r f i(x,y,z)dxdy = Pi (4.3) 

-CO 

for all z >_ O. Using (4.3) and (4.1a) we find that, in particular, 

(27)- 1 /2Pid(w3) (4.4) 

where 6 is the Dirac delta function.6 Eq. (4.4) shows that I is singular 

at S2 = (0,0,0), and that I(0,0,w3) is independent of the nature of the ob- 

ject and of the point spread function. This independence will not be 

true at any other triplicate S2 of frequencies. 
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By the Fourier inversion theorem,? Eq. (4.1a) yields 

i(r) = (20-3/2 
1 

I6)eXp(ji2'r)di2, 
E 

where d2 = dwldw2dw3, 

(4.5a) 

(4.5b) 

and E represents the three -dimensional "passband" for frequencies , which 

is established in Section VIII. Eq. (4.5a) allows i(r) to be computed 

4- 

from a known 1(Q). It is proven in Appendix II that integral (4.5a) 

generally converges, in the Fraunhofer approximation,8 even though 

1(0,0,0) is singular. 
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V. TRANSFER THEOREM 

We shall consider the three -dimensional frequency spectrum of Eq. 

(3.1b). Using definition 

gration orders on the right 

I(S2) = (27) -3/2 
1 

(4.1a) on the left 

side, we obtain 

do(r')o(i') 
J 

o 

side, and rearranging inte- 

drs(r - rG)exp(- jS2r). (5.1) 

All space 

The change of variable, 

4 
p= r - rG E(a,ß,Y), dp E dadßdY, (5.2) 

is employed in (5.1), along with (3.1c). There results 

I62) = 0(6'F(6, (5.3) 

which is the required transfer theorem. In (5.3) 

0(2) = I do(1)o0(r')exp[-jf(z'-f)-152x'] (5.4) 

0 

and F(SZ) = (27) -3/2 dps(P)exp(-ji-24) . (5.5) 
1 

All space 

Eq. (5.3) therefore exhibits a separation in the effects of the object and 

the optics upon I. Were I defined as a one- or two -dimensional transform 

of i, this separation would not generally occur. 

In the case of a volume distribution oV(r'), Eq. (5.4) is replaced by 

00) = J 

V 
dr'oV(r')exp[- jf(z'- f)- 1r']. (5.6) 

We note from Eqs. (5.4) and (5.6) that 062) is not the true Fourier 

spectrum of o(r') in general. Eqs. (5.4) and (5.6) define a new type of 

transform. Because of constraint (2.7) the quantity (z' - f) -1 cannot be 

singular, so that 0 is well defined. 
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The transfer theorem in the transverse case is well known: 

It(w;z) = Ot(w;z')T(w;z -mz'), 

00 

where It(i;z) = (2r)-1 
J f 

i()exp[-j(wlx + w2y)]dxdy, 

(5.7a) 

(5.7b) 

Ot(w;z') = ) o(r')exp[-jm(wlx' + w2y')]dx'dy', (5.7c) 

- 
CO 

T(w;z-mz') = (27)-1 
J 

( s(a,ß,z-mz')exp[-j(wla+w2ß)]dadß, (5.7d) 

-OD 

and z' locates the object plane. Eq. (5.7a) results from the use of defi- 

nition (5.7b) in Eq. (3.2a). Eq. (5.7a) cannot be sequentially used in 

the optical relay of an image through a series of lens systems. This is 

because all successive images of a plane object have three -dimensional ex- 

tent, whereas Eq. (5.7a) assumes the object to be confined in one plane 

z'. Hence, Eq. (5.3) is the only transfer theorem which can be sequen- 

tially used in the case of serial imagery as described. 
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VI. TRANSFER FUNCTION: F(S2) 

The "complete" optical transfer function FO) is observed, in Eq. 

(5.5), to be the three -dimensional Fourier transform of s. The origin of 

coordinates (a,ß,y) is the Gauss point. 

As in derivation of Eq. (4.4), we have 

F(O,O,w3) _ (270-1/2Pd(w3) 

where P is the total power in any receiving 

tion. Eq. (6.1) is consistent with the 

and either (5.4) or (5.6). 

By using Eqs. (5.7d) and (5.5), 

(3.2b) and (5.2), we have 

00 

F(S2) = (27)-1/2 ( dYT(w;Y)eXp(-Jw3Y) 

- 

Then by the Fourier inversion theorem, 

CO 

T(w;Y) = (20-1/2 
1 

(6.1) 

plane y within the spread func- 

implication of Eqs. (4.4), (5.3), 

as supplemented by identities (3.1c), 

(6.2a) 

dw3F(51)exp(Jw3Y) , (6.2b) 

- 

which establishes that F and T are Fourier transform pairs. Although 

F(0,0,0) is infinite (as discussed previously), the integral (6.2b) gener- 

ally converges. This is proved in Appendix II. 

Eq. (6.2a), or an equivalent sampling expression in Section IX, may 

be used to compute F(S) from knowledge of T(w;y). Other methods for the 

determination of F are derived in Sections VII and IX. 

From definition (5.5), F(2) is a generally complex function. 

Accordingly, FO) has a modulus 1F(S) I and a phase A(Sa) defined by 
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F(Q) = IF(WleXPHA(Q)], (6.3) 

where F and A are real. 

By applying the Fourier inversion theorem to Eq. (5.5), we have 

s(P) = (27)-3/2 
J 

F()exP0p)e. (6.4) 

E 

It is shown in Appendix II that integral (6.4) converges generally. 
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VII. DEPENDENCE OF F6) ON PUPIL FUNCTION 

A. Derivation 

POINT 
SO 

Po 

f - _.... F' 1% ....._._ -v"---41" 
WAVE 
SURFACE 

REFERENCE % STOP 

SPHERE SPHERE EXIT PUPIL 

r 

O.A 

Fig. 2. Parameters of the pupil and of the point spread function space. 

Referring to Fig. 2, let axes a'ß'y' have their origin at Gauss 

point G. Let axis y' lie along r, and let axis ß' be in the plane that 

passes through rG and the optical axis. A reference sphere of radius rG 

intersects the optical axis at H'. Axes PQ are oriented such that P is 

perpendicular to the a'y' plane. As is customary, we assume field angle 

2 1/2 
(x2 + y22 ) /zG ß' to be so small that axes a'y' coincide with axes aßy, 

respectively.9 Then a' = a, ß' = ß, y' = y, and the image amplitude u is 

given by the Fraunhofer approximation8 as 

00 

u(a,ß,Y) = (arG)-1 
1 J 

dpdgU(p,q)eXp[Jk(2rG)-1(p2+g2)Y+jkr ß) l(pa+q1, 
(7.1) 

where a is the wavelength of light, and k = 27/X. Using (7.1) and the 

well -known relation 

s = u.u* (7.2) 

in definition (5.7d), we establish the well -known autocorrelation repre- 

sentation 
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CO 

T(w;y) = (27)-1 
JJ 

q-rGw2/k] 

X exp[jy(pwl/rG + qw2/rG - w2/2k)]. (7.3) 

Eq. (7.3) differs from the usual autocorrelation formulal° in its explicit 

presentation of the y dependence. This dependence is traditionally ab- 

sorbed into the pupil function dependence of Eq. (7.3) because the y 

dependence is usually of secondary interest. We now substitute Eq. (7.3) 

into Eq. (6.1a). After an interchange of the orders of integration, 

CO 

F() = (27)-3/2 
JJ 

dpdgU(P,q)U*(P-rGwl/k, q-rGw2/k) 

CO 

X J dyexP[Jy(Pwl/rG + gw2/rG - w2/2k - w3)]. 

By two identitiesll the y integral in (7.4) is 

27rGIw11IS[p+w11 (w2q - rGw2/2k - rGw3)]. 

Substitution of (7.5) into (7.4) yields 

co 

F(-) = (2Tr)-1/2rGlwll-1 f dgU[P(q)q]U*[P(q)-rGwlk-1, q-rGw2k 1] 

where p(q) = wll (rGw2 /2k + rGw3 -qw2). 

(7.4) 

(7.5) 

(7.6a) 

(7.6b) 

In Eq. (7.6a), U and U* are evaluated along two parallel straight lines in 

the pupil. This may be further simplified by evaluating U in the PQ 

coordinate system and U* in a system P'Q' such that 

P 
= rGwlk-1 

and q' = q - rGw2k -1. 

(7.7) 
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Fig. 3. Transfer function F represented as a line integral 

across the pupil. Integration path r is confined 

to overlap region R. 

Referring to Fig. 3, F() is then evaluated as one line integral along the 

straight path r between points A and A'. Path r extends over overlap 

region R of the (generally vignetted) pupil PQ and its displaced equiva- 

lent P'Q'. From Eq. (7.6b), r is perpendicular to 00' and is located 

distance b(s) from origin 0, where 

b(Q) = rGw(2k)-1 rG (w3/w). (7.8) 

Integration path r is thereby determined for any It is interesting to 

note that 

b(w1,w2,0) = 
1', 

in terms of the relative displacement 00' of the two pupils. 

(7.9) 
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Result (7.6a) may be further simplified through the replacement of 

integration variable q by a coordinate Q along F. From Fig. 3 and Eq. 

(7.6b) , 

Hence 

where 

dq = (wl/w)di. (7.10) 

A' 

F(S2) = (2Tr)-1/2rG 
1 

f 

A 

(7.11a) 

S2 is in passband E. (7.11b) 

The notation in (7.11a) is meant to imply that U and U* are evaluated in 

their respective coordinate systems. 

In summary, Eqs. (7.8) and (7.11) determine F() for a general pupil 

function. Examination of these equations shows that w3 contributes to F 

only in its capacity to locate integration path F. We see from (7.11a) 

that F contains a simple pole at w = 0; this is the essential reason for 

the behavior noted in Eq. (6.1). 

H. Experimental Determination of F(S) by Use of a Shearing Interferometer 

Eq. (7.11a) suggests that F(S2) may be experimentally determined by 

the use of a shearing interferometer.12 Pupil function U is physically 

sheared, or displaced, from itself by an amount rGw /k, and a slit is placed 

upon path r, as located by Eq. (7.8). The light flux passing through the 

slit is, according to Eq. (7.11a), proportional to F62). This method is 

already being used in experimental determination of T(w;y),12 where the 

light flux passing through overlap region R is instead measured. 

C. Numerical Calculation of F62) 

Eq. (7.11a) may be numerically processed by an electronic computer. 

The speed of computation is facilitated by the one -dimensional nature of 
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the integral. By contrast, the pupil function representation (7.3) for 

T(w;y) involves a double integration and, hence, considerably more compu- 

tation time. 

4- 

D. Normalization of F(Q) 

The normalized transfer function T(w;y) has several properties which 

facilitate its practical use: T is (1) solely a function of the optics; 

(2) unitless, and (3) bounded at all We note from definition (5.5) and 

Eq. (6.1) that F does not obey any of these properties. For example, 

(1) is violated because F is proportional to the source strength, accord- 

ing to (5.5). 

Using Eq. (7.11a), we can define a new function F(S2) that obeys all 

three properties and is proportional to F6): 

where 

.4- > 

F(Q) = wK(w) F(S2) , 

K(w) = (201/2rG1 f IU(n,e)12dn. 

-CO 

In the above, (n,A) are polar coordinates corresponding to (p,q), and 

A = tan 
-1 

(w 
1 
/W 

2 
). 

By substitution of (7.11a) into (7.12a), 

A' 

F(-6 = JAU* J IU(n,e) I2dn. 

(7.12c) 

(7.13) 

It can be seen from this relation that F(s2) obeys requirements (1) -(3). 

In general, the denominator D(A) of (7.13) must be evaluated at all 

azimuths A. However, because IUI2 = ITI2 (the energy transmittance), D(A) 

does not depend on the aberrations and should be simple to compute in 

general. 
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In most instances T = 1; that is, the optics are uncoated. Then D 

is independent of 0, unless there is vignetting. If the pupil is round 

and of radius ro, then D(0) = 2ro. 

From Eq. (7.13), F(Si) < 1 for a general function U, and F(0,0,0) = 1. 

Also, by Schwarz' inequality, 

1F6bI < IFo(-6I, (7.14) 

where subscript o indicates diffraction -limited optics. The optics are 

assumed to be uncoated. 

E. Diffraction -Limited Case 

Q 

B 

PP 

Fig. 4. Determination of F for a diffraction -limited, 

circular pupil. F = AA' /BB'. 

In the diffraction limit 

1 for Inl <_ r 

U(n,O) = { 
o 

0 for Inl > ro, 

(7.15) 

independent of O. The pupil is assumed to be nonvignetted, with radius 
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ro. For a general w we may shift pupils along the P axis because, by 

(7.15), U is radially symmetric. Then, by substituting (7.15) into Eq. 

(7.13) , 

Fo() = AA'/BB', (7.16) 

as defined in Fig. 4. By sight, 

BB' = 2ro. 

By elementary geometry 

AA' = 2[ró - (rGw/2k + rG1w31/w)2]1/2, 

(7.17) 

(7.18) 

where 1w31 is taken because, by inspection of Fig. 4, AA' is even in w3. 

By substitution of (7.17) and (7.18) into Eq. (7.16), 

[1 - (rG /r0)2(w /2k + Iw31/w)2]1/2 for in E 

Fo(Q) 
= 

{ > 

0 for S2 not in E. 

Bandpass region E is derived in Section VIII. 

(7.19) 
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VIII. BANDPASS REGION FOR F AND F 

3 
We seek a region E in a -space within which F (or F) is generally 

zero. From Eqs. (7.8) and (7.11), F is zero whenever (1) region R is 

zero, or (2) r falls outside of R. 

Condition (1) is first considered. From Fig. 3, 

F(Q) = 0 when w >_ 2ao, where ao = kro /rG. (8.1) 

In the above, ro is either the pupil radius or a radius that contains a 

generally vignetted pupil. We note that (8.1) is independent of w3. 

Condition (2) is accomplished, according to Eq. (7.8), when, for a 

given ws2a , 

0 

1w31 >_ (w/2k)(2a0-w); (8.2a) 

or, for a given w3 that obeys Iw31 < a2 /2k, when either 

w S ao - (aó -2kw3)1/2 

(8.2b) 

or w > ao + (aó -2kw3)1/2. 

Eqs. (8.2b) indicate that, except at w3 = 0, F is bandwidth -limited at 

both large and small values of w. The latter property has no parallel in 

the dependence of T(w;y) upon w. 

Conditions (8.2) may be combined to define a volume E in S2 -space 

within which F is generally nonzero. As shown in Fig. 5, region E is 

enclosed within the surfaces 

w3 = ±(w/2k)(2a0 - w) (8.3) 
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M.)" 

CIRCLE OF 
RADIUS 2 eG., 

li; (2cC.- tu) 

Fig. 5. Bandpass volume E in 2 -space for F(2) and I(2). 

Region E is generated by rotation of the curve 

w3 = w(2k)-1(2a0-w) about the w3 axis. 

From Eqs. (8.1) and (8.2), F is zero when independently 

¡wit > 27R 

or 1w21 > 2nR 

or 10)31 > 27R 
3' 

where R = ao /Tr and R3 = aó/(47k). 

(8.4) 

(8.5) 

Eqs. (8.4) will be used later in the derivation of sampling expressions. 

It is interesting to note from (8.5) that ratio 

R3 /R = ao /4k = (8f4 #) -1 (8.6) 

where fit = rG /2ro. (8.7) 

Hence in all practical cases 

R3 « R. 

Consequences of (8.8) are discussed in Section X. 

(8.8) 
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IX. SAMPLING THEOREMS 

A. Derivations 

By use of Eqs. (8.4) and (5.5), we have the following sampling 

theorems :13 

and 

F(SZ) = 

(20-3/2 s(2.1r/2a ,mTr/2a ,2nTrk/a2) 

R,m,n ° 
o 0 

X exp[-jTr(R,wl/2ao + mw2/2ao + 2nkw3/a(23)], 

for Iwll <2ao, Iw2I <2ao, Iw3I <a2 
/2k; 

or 0, for S2 not in E; 

s(a,8,y) = X s(kTr/2ao,mTr/2ao,2nTrk/aó) 
Q,m,n 

X sinc(2aoa-QTr)sinc(2ao8-mTr)sinc(aóy/2k-nTr) . 

(9.1) 

(9.2) 

All summation indices are integers that range from - to +°. Spatial 

2 

points (2,712ao,mr /2ao,2nrk /ao) will be called "sampling points," as is 

customary. 

Eq. (9.2) shows that s is known throughout all space once it is 

determined at the sampling points. From (9.2), 

and 

s(a,8,0) = X s(ß.Tr/2a ,mTr/2a ,0)sinc(2a a-Q,Tr)SinC(2a 8-mTr) (9.3) 

k,m 
o 0 o o 

s(0,0,y) = X s(0,0,2nTrk/aó)sinc(aóy/2k-nTr) . (9.4) 

Eq. (9.3) is known from transverse theory, and Eq. (9.4), which relates 

values of the Strehl definition, has recently been derived.' 

By use of Eqs. (8.4) and (6.1), we have the sampling expressions:13 

F(52) = (20-1/2 X T(w;2kTrn/aó)exp(-2jkTrnw3/20) (9.5) 

n 
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T (w; y) _ 1 T (w; 21urn/aó) sinc (a2y/ 2k-nr) . 

n ° 

(9.6) 

Eq. (9.6) indicates that the curves T(w), as determined in different re- 

ceiving planes y, are interrelated by a sampling theorem. 

Owing to relations (4.1a) and (5.3), I is limited to the same pass - 

band as is F, and we may make the replacements 

and 

(a,ß,Y) ± (x,y,z) 

s - i (9.7) 

F -; I 

in Eqs. (9.1) through (9.6). Eq. (9.2) then shows that any image space is 

degenerate, and is, in fact, known everywhere if it is known at the sampl- 

ing points. This is an important limitation on, for example, the informa- 

tion content within an emulsion. 

B. Experimental Determination of F62) by Use of Sampling Theorems 

Eq. (9.1) may be used to determine F(S2) for a fabricated optical 

system if the sampled values of s are experimentally determined. Because 

(9.1) is a summation, which may be exactly evaluated on the electronic 

computer, the error in any resulting value of F is due solely to experi- 

mental error in values of s; there is no computational error. 

Alternatively, Eq. (9.5) shows that F(S2) may be experimentally 

determined by determining T(w;y) in the "sampling planes" yn = 2krrn /aó. 
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X. SUMMARY AND DISCUSSION 

A transfer theory has been established to describe the image of a 

three -dimensional object. This theory is based on the existence of 

"isotomicity," as defined in Eq. (2.1). According to Eqs. (3.1) and 

(5.3), the image -forming ability of an optical system is determined by 

either the point spread function s(p) or the "complete" optical transfer 

function F(wl,w2'w3). Function F is shown, in Eq. (6.2a), to be the 

Fourier transform with respect to the y(longitudinal) direction of the 

"lateral" transfer function T(w;y). 

The generalized transfer theory becomes identical with the lateral 

transfer theory in the limit 

oV(r') o(x',y')s(z'-zó) (10.1) 

of a transverse object o(x',y'), where z' = z' is the object plane. This 
o 

can be shown by substituting (10.1) into Eq. (5.6), with subsequent use of 

Eqs. (5.3), (4.5a), and (6.2b). In this case, i(r) is determined by the 

Fourier transform of F, as in Eq. (6.2b), and therefore by T(w;y). 

Practical use can be made of the convolution theorem (3.1) and the 

transfer property (5.3) if the object can be subdivided into isotomes 

which are not too numerous. (The order of 10 would be desirable.) 

Appendix I establishes a method for estimating the size of isotomes in the 

diffraction -limited case. 

Eq. (9.2) and its analogy in image space (based on substitutions 

[9.7]) establish a limit on the information density of three -dimensional 

image space. Regarding each independent image value as a degree of free- 

dom for the image, there can be no higher information density than 

1 /X3f4 degrees of freedom /volume (10.2) 
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in image space. The value (10.2) corresponds to a diffraction -limited 

system, and is based on cutoff frequencies R and R3 of Eq. (8.5). Because 

R3 «R in general, the z- distance 1/2R3 between sampling points is much 

greater than the corresponding x and y distances of 1 /2R. Hence, a much 

higher density of image information is contained in a direction normal to 

the optical axis than parallel to it. 

A lens system designed such that F is constant at all S2 will, 

according to Eqs. (5.3) and (4.5a)(with infinite limits), produce an image 

that is the Gaussian distortion of the object. Hence, any transverse ob- 

ject is perfectly imaged, and with a magnification determined by position 

z of the object plane. This property would be most advantageous for a 

lens that is to operate at a variety of conjugates (e.g., the relay lens). 

Use of F(s) as a design criterion seems, therefore, to be indicated. In 

this regard, it is interesting to note relations between moments of the 

F(6') distribution and derivatives of s(p) at p = 0, as implied by Eq. 

(6.4). Also, to compute F(.) from ray -trace data, the geometrical ap- 

proximation to F(') must be expressed in terms of ray intercepts in the 

spot diagram. This may be accomplished by taking the limit A - 0 in 

Eq. (7.11a) and using l'Hópital's rule. 

Three -dimensional image processing is suggested by the following. 

We may invert Eq. (5.6), expressing object oV in terms of its spectrum 0: 

oV(r') = (210 
-3f4(z'-f)-4 

J 

d00(2)exp[jf(z'-f)-1r']. (10.3) 

-CO 

4- 

If 0(c) of Eq. (5.3) is substituted into Eq. (10.3), and the infinite 

limits in (10.3) are replaced by bandpass region E, a method is indicated 

for the approximate reconstruction of a three -dimensional object by ob- 

servation of its image. 
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All of the foregoing has assumed the object to be radiating in- 

coherently. If the opposite assumption is made, a transfer theory for 

image amplitude g(r) can be constructed, where 

i(r) = ig(r)12. (10.4) 

A condition of stationarity and convolution, transfer, and sampling 

theorems can be constructed which are completely analogous to those of 

the incoherent case. Parameter F of the latter case corresponds to an 

"amplitude transfer function" W(S2) of the coherent case,14 defined as 

W62) = (2ir) 
-3/2 

( dPu(P)exp( 
-jS2 5) 

All space 

(10.5) 

It is interesting to obtain a pupil -representation for W(0). By sub- 

stituting Eq. (7.1) into Eq. (10.5), we find that W(S2) is proportional to 

U(rGwl/k, rGw2/k)6(w2/2k-w3). (10.6) 

This shows that W is bandwidth -limited to a region 

w 5 ao,w3 < 
2 
/2k 

o, 
(10.7) 

Therefore, both u(p) and g(r) obey sampling theorems that correspond to 

(9.2), once the sampling intervals are adjusted. 

We may also use relation (10.6) in the coherent analog to Eqs. 

(4.5a) and (5.3) in combination. Amplitude g(r) is found to be propor- 

tional to 

1f 
dwldw2U(rGwl/k,rGw2/k)0(wl,w2,w2/2k)exp[j(wlx+w2y)+jzw2/2k]. (10.8) 
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This equation is especially useful because it involves only a double 

integration and depends directly upon the pupil function. 
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Appendix I. ISOTOMICITY IN THE DIFFRACTION- LIMITED CASE 

We are to establish the extent to which condition (2.1) is obeyed as 

the position r' of a point source is changed. Eqs. (7.1) and (7.2) will 

be used in establishing s(r';r). 

Assume a point source, of total power output E, to be located at 

general field position r'. Then the irradiance at the pupil is approxi- 

mately E/47r'2, so that 

U(p,q) _ (E/47)1/2r,-1. 

Substituting (11.1) into (7.1) leads to 

J 

ro 
u = u(v,Y) _ (7E)1/2(rGr')- duuJo(kuv/rG)exp(jkU2Y/2rG) (11.2a) 

0 

where v = (a2 + ß2)l /2 and u = (p2 g2)1/2 
(11.2b) 

Since (11.2a) is dependent upon r' and rG in modulus only, we suspect that 

any isotome will be in the form of a spherical shell of thickness Or'. 

This is shown, below, to be true at small field angle positions. 

2 

We now observe the effect upon Iut of a radial change Ar' in posi- 

tion of the point source. In particular, we examine resulting changes in 

the Iu(v,0)I2 and Iu(0,Y)12 distributions, since they are easy to estimate 

and, at the same time, correlate with changes in the overall Iu(v,y)I 
2 

distribution. 

From Eq. (11.2a), we have 

Iu(v,0)I2 = s(v,0) = (7E/4X2)(ro/r1)4(r'-f)2f(1)-2[2J1(aov)/aov] 2, 
(11.3a) 

where f = fsec0), (11.3b) 
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is the field angle between r' and the optical axis, and J1 is the first - 

order Bessel function. Relation (_3.1c) was used. Also, from Eq. (11.2a), 

lu(0,Y)12 = s(0,Y) = (TrE/4a2)(ro/r')4(r,_f)2f-2Esin(aóY/4k)/(aoY/4k)]2. 
(11.4) 

The invariance of s(v,0) and s(O,y) under changes Ar' can be observed 

through behavior of the central maximum s(0,0), the radial distance Rv to 

the first zero of s(v,0), and the axial distance ZY to the first zero of 

s(O,y). From (11.3) and (11.4), 

s(0,0) = (TrE/4a2)(ro/r')4(r-f4))2fcp 
-2, 

Rv = (1.64a/ro)f(pr'(r'-y-1, 

and ZY = (2a /ro)(fr')2(r'- f(1)) -2. 

Using these equations we can compute the relative changes in s(0,0), Rv, 

and Z due to changes Ar'. We note that these relative changes will depend 

upon field angle q to a certain extent, because of relation (11.3b). 

However, in many cases is sufficiently small (less than about 20 °) that 

fc _ f over the object. In these cases the isotomes are then spherical 

shells. When cp is appreciable, relative changes in parameters (11.5) must 

be evaluated due to changes Acp as well as changes A 

As an example, we use relations (11.5) for the case r' = 2f, 

Ar' /r' = 5 %, and small. Using differentials we find that As(0,0)/s(0,0) 

= 0 identically; AR /R 
N) 

= -5 %, and AZy /Z.y = -10 %. This indicates that 

isotomicity holds fairly well within the shell r' ±0.05r', 4) small, in 

this case. 
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Appendix II. CONVERGENCE OF THE INVERSE FOURIER TRANSFORMS 

Functions I and F are "generalized "15 in the limit of unit "modify- 

ing factors "15; this is indicated by Eqs. (4.4) and (6.1). For a 

generalized function f(x) the repeated Fourier integral 

CO 

(2Tr)-1 
1 

dwexp(jwx') ( dx'f(x')exp(-jwx') 

_00 

equals f(x) at each value of x for which it converges.15 Hence, in order 

to prove that inverse transforms (6.4), (6.2b) and (4.5a) converge to s(p), 

T(w;y), and i(r), respectively, we need only establish that the inverse 

transforms converge. For example, in the diffraction -limited case it can 

be shown that the known functions s(p) and T(w;O) are converged upon by 

integrals (6.4) and (6.2b), respectively. The general convergences of 

transforms (6.4), (6.2b), and (4.5a) are shown below. 

A. Transform (6.4) 

By defining 
CO 

c(0) = j IU(11,0)I2dn (11.6) 

and substituting Eqs. (7.12) into Eq. (6.4), we have 

( 

-+ 

s(p) = (2u)-2rG 
1 

F(S2)wl E(0)exp(jStp)dSt. 

E 

(11.7) 

Owing to factor w -1, the integrand is singular at w = O. We show below 

that integral (11.7) converges at all p, despite this singularity. 

Replace Cartesian coordinates p and S2 in (11.7) by cylindrical co- 

ordinates (v,(1),y) and (w,O,w3), respectively, where 

a = v sine 

(11.8a) 

= v cosa 

and 

wl = w sinO1 
(11.ßb) 

w2 = w coso 
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Bandpass E is determined by Eqs. (8.1) and (8.3). Eq. (11.7) then 

becomes 
271- 2a0 g(w) 

s(v,(1),Y) =(27)-2rG 
J J J dw3dwd6F(w,e,w3)E(e) 

0 0 -g(w) 

(11.9a) 

X exp[jwvcos(4)-0) + jw3y], 

where g(w) = (w /2k)(2a0-w) and w <- 2a0. (11.9b) 

By definitions (7.13) and (11.6), F and E are bounded at all Z. In addi- 

tion, the integration limits in (11.9a) are finite. Hence, integral 

(11.9a) must be finite at all -P. 

B. Transform (6.2b) 

By the use of Eq. (8.3), integral transform (6.2b) becomes 

(w) 

T(w;Y) = (2)-1/2 dw3F(S2)exp(jw3Y) 

-g(w) 

By Eq. (7.11a), F is nonsingular, except at w = O. Now 

g(w) < aó/2k 

because T(w;y) is nonzero only when w _< 2a0. Since integrand and limits in 

(11.10) are then finite, except at w = 0, (11.10) must be finite for 

w # 0. 

The case w = 0 is now considered. Substitution of Eq. (6.1) into 

(11.10) yields 

T(O,O;Y) = (2)P, (11.12) 

a finite number. 

C. Transform (4.5a) 

By using polar coordinates (r';p), defined by 
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x = r'sin 

} = r'cos Y 

and Eqs. (5.3), (7.12), (11.6), and (11.8a), Eq. (4.5a) becomes 

2n 2ao (w) 

i(r) = (2n) -2rG J J 
j 

dw3dwdOc(6)0(w,A,w3)F(w, 0,w3) 

0 0 -g(w) 

X exp[jwr'cos(6-4) + jw3z]. 

By either definition (5.4) or (5.6), any 0 due to a real object must be 

nonsingular at all Also, Eq. (7.13) shows that F is nonsingular at 

all .. The integral (11.14) must then be convergent, because its inte- 

grand and limits are finite. 
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