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Los Alamos National Laboratory
Los Alamos, New Mexico 87545, US A.
and
R. B. Fiorito and D. W. Rule
Naval Surface Warfare Cente:
Silver Spring, Maryland 20903-5000, U.S.A.

Abstract

Optical transition radiation (OTR) measurements of the electron-beam
emittance have been performed at a location just before the wiggler in the Los
Alamos Free-Electron Laser (FEL) experiinent. Beam profiles and beam divergence
patterns from a single macropulse were recorded simultaneously using two in-
tensified charge-injection device (CID) television cameras and an optical
beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were
performed. Preliminarv results are comparcd to a reference variable quadrupole,
single screen technique. New aspects of using OTR properties for pointing the
e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are

addressed.

I. INTRODUCTION

Characterization of the electron beam .iiving a Free-Electron Laser (FEL) is an important
aspect of opumizing such systems. In particular, good electron -beam emittance can be a critical
issue ensuring spatial overlap of the optical and electron beams in the wiggler. An effective,
newly developed technique for measuring electron-beam emittance on a single macropulse (and
perhaps a few micropulses) of the high-current, high-energy electron beams uses the unique
prepesties of optical transition radiation (OTR). This radintion is emitted when a charged-
particle beam transits an intesface between two media of different dielectric constants.
Radiation is emitted in both forward and backward directions. The buckward lobe 15 a
funct n of the Fresnel reflection coefficients so that detection at 90° to the beam Jirection is
practical [1-3}. Prehiminary beam- profile measurements at the l.os Alamos FEL were repodted

previously [4], and the applicability to the FELs is a'so addressed in Reference S,
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Two sets of measurements were successfully performed at Los Alamos. Beam profiles and
beam-divergence patterns from a single screen were recorded using two intensified
charge-injection device (CID) television cameras and an optical beamsplitter. Data were
recorded with and without polarization effects on both x and y axes. The separation and width
of the OTR angular distribution lobes (6~1/-y) agreed with the measured electron-beam energy.
Preliminary analysis of the data yielded results consistent with the expected divergence of a
few mrad. The beam-spot detector was also used in conjunction with the standard technique of
varying the fields in a quadrupole doublet and measuring the spatial profiles. These data will
allow a comparison of the OTR siugle-shot technique to the multishot quad-scan results. A two-
foil OTR interference experiment was also performed. The comparison of these various
emittance measurements will be discussed. Based on these results and further calculations, an

OTR experiment for the Boeing FEL is being planned.

II. TRANSITION RADIATION EXPERIMENTAL PROCEDURES

As mentioned briefly in the introduction, OTR’s unique properties can be exploited to
provide minimally intercepting (thin foil or film) electron-bearn diagnostics for position and
profile, intensity, emittance, and energy on a single macrcpulse. Figure 1 shows the qualitative
OTR patterns for normal and oblique incidence as compared to Cherenkov radiation. When the
OTR foil is at 45° to the beam: the radiation is emitted in an annular pattern around a ray at
90° 1o the beam direction, a standard viewing port geometry. In Fig. 2 the angular distribution
pattern is displayed in more detail, and the lobe features include an opening angle
Bp proportional to 1/7, a peak intensity proportional to v?, a lobe-width proportional to e-beam
divergence (emittance), and a spectral function propartional to 1/,2 for an aluminium foil for

example.

The experiment was fieided at a position just before the wiggler in the Los Alamos FEL
experiment as shown in Fig. 3. A 60° achromatic bend brings the 20 MeV e-beam onto the
oscillator axis. Viewing ports on either side of the quadrupole doublet (Q3) before the wiggler
and screens at either end of the wiggler were used to align the beam with the laser reference
on the oscillator axis. It is noted that for FELs an alignment laser often exists for this purposc.
In this case, the same alignment laser is specularly reflected from the OTR foil and used to
align the two intensified CID televisicn cameras. A large diameter pellicle splits the GTR,
Retroflections of the alignment laser off the camera sensors, intensifier entrance window, and
the front surface of the two Nikon 85 mm, /1.4 lenses were used to align the detectors to
about I mrad accuracy. A special object at infinity source was used to focus the angular

distribution camera [2], while fiducials at the OTR foil object plane were used to focus the
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other camera. The sensors were adjusted so that the laser spot was detected in the central
channel (x and y) position of the data-acquisition system. A remotely cperated shutter and

linear polarizer were placed at the exit port for the OTR source.

Figure 4 schematically shows how both the spatial intensity (beam spot profile) and the
OTR angular distribution patiern can be recorded by focussing at the image plane and the
focal plane (infinity), respectively. The spatial calibration was based on known fiducials in the
object plane while the angular sensitivity was determined by deflecting a small laser heam with
a motor-driven mirror and recording the mirror angle change and the pixel position of the spot

in the microcomputers,

We nominally operaied with about a 30-us-long macrcpulse, 46-ns micropulse spacing, and
~1.2 nC/micropulse, and minimal magnetic bunching in the 60° bend. This implies the
micropulse duration was about 25 ps and our peak currents were about S0A and average
currents were about 0.7uA. Towards the end of the runs, we lengthened the macropulse to
100us, increased the charyge to 3 nC/micropulse, and bunched to our limit of about 10 ps. In
this mode, the peak-current was ~300A and the average was 6uA. The OTR foils were polished

molybdenum, aluminized fused silica, and 7.6 um-thick Kapton,

111. EXPERIMENTAL RESULTS AND PRELIMINARY CALCULATIONS

Data were obtained with both single-foil and two-foil setups and with several different
e-beam focusing conditions and average curr*nts. Due to space himitations only a few examples
will be shown. It is highly probable that our simple assumptions on the electron-beam
distributiens will have to be modified to account for a core of good quality beam (lower
emittance) superimposed with a halo of poor-quality beam (high emittance). Also, the present

calculation does not include energy spread effects.

Ficare $ is a compaosite figure showing single-foil GTR data for both beam divergence
and beam profiles. The beam was focussed to an x-waist and the lincar polarizer was oriented
horizontally. The images are shown in the upper two quadrants and the profiles are displayed
in the two lower quadrants. In the lower left quadiant, the characteristic lobe -structure of I|| IS
seen on tha horizontal axis and I; for a vertical scan is shown on the vertical axis. The
x and y-beamspot profiles are seen in the lower right quadrant. Figure O shows a comparison
of the data in Fig. 5 to a calculation for I = 20 MeV and the rms x-component of beam
divergence of 4.9 mrad obtained from a least-squares fitting routine. The two lobe peaks can
be seen at approximately 125 mrad as expected for y = 41, There are some deviations between

the two curves, and as mentioned in the opening of this section, this 1s a preliminary anadysis,



The x-component of emittance, €5 calculated by using the above value of 4.9 mrad and the

half width, half maximum intensity of the beamspot of 0.8 mn: is ¢, = 4 mm mrad. Similar

X
values were obtained for the y-component of emittance, ¢

y
For comparison to the OTR angular pattern result, we used the variation of the beam spot
profile with quadrupole (Q3) field variation to determine emittance somewhat independently
(but using OTR light for the profile determinations). Using the fuli-width-at-half-maximum
(FWHM) spot-diameater values, we fit the data to the appropriate hyperbola. We obtained

unnormalized emittances of €, = 1.5 mm mrad and ¢_ = |l.Ila mm mrad, where it is noted that

in these cases the x and y waists were obtained separatyely. We did not observe such small
values when we tried to focus simultaneously in x and y, nor when we ran at the higher peak
current mode described in section . The underlying assumption of the quadrupole focusing
method is a ypiform density ellipse in phase space, while the analysis of the OTR angular
distribution was based on a gaussian distribution of beam-particle angles at the beam waist.
Reconciliation of these two distributions should account for most of the differences between
the two measurements [6]. Finally, the actual beam distributions may need to be modeled more
carefully for both emittance measurement techniques. Energy-spread effects should be

included in that step.

A two-foil OTR interference experiment was also performed. The first foil was a thin,
transparent (7.6 um = 0.3 mil) Xapton film spaced 0.5 mm in fron* of the aluminized fused-
silica screen. Figure 7 shows the predicted patterns for the parallz; (l") and nerpendicular (1)
polarization components for this system at 45° to the beam and t.r divergences of 5.0 and 1.37
mrads. The latter value is an estimated lower limit for this assemnly due to the beam
scattering by the first foil. The predicted three fringes were observed with no filter, a 600-nm
band pass filter, and with the polarizer oriented on both x and y axis. Figure 8 shows a
horizontal profile through the experimental interference pattern with a 600 x 40 nm bandpass

filter. Several liles of data are still (0 be analy.ed.

In regard 10 foil survivability issues, we have some preliminary results also. The
aluminized fused-silica screen was bombarded for several hours a day for four days at the
lower current mode (still about 600 micropulses per macropulse) with no observable damage.
However, at the high mode (2000 micropulses, ~300A peak current), the aluminum flaked off in
tens of minutes. This may have been partially a differential heating effect with the fused-
silica substrate (which appeared undamaged). In the two-foil assembly, a similar experiment
was performed. We observed no apparent damage to the Kapton front foil, and the aluminized

fused silica was affected tess than in its single foil tests over tens of minutes. Kapton foil
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flatness or tautness may have altered during the low- to higher-current runs, but no significant

effect on the interference patter., was observed.

As was noted in early OTR experiments by Wartski {7], the position of the central
minimum of the OTR pattern is sensitive to the angle of interception of the electron beam with
respect to the foil normal. Thus by adjusting the, steering magnets and observing both the beam
image and the angular distribution image with respect to the laser reference points, one can
carefully align the e-beam with the alignment laser axis, which in our case was also the FEL
oscillator axis. This technique was used in our experiments, and should considerably simglify

FEL e-beam tuning for the wiggler region.

Finally, we briefly address our preliminary designs for the Boeing FEL experiment. Since
the e-beam energy is 110 MeV, larger spacing between the interferometer foils is possible .
Therefore, we will be able to look at the front face of the second foil directly. Predicted
interferograms for several cases of beam divergence are shown in Fig. 9. The upper figure
shows the 0.4 and 0.6 mrad for a foil spacing of 4 cm, and the lower figure shows the
difference between 0.6 and 0.9 mrad for tke foil spacing of 2 cm. In both cases, a bandpass
filter at 450 nm was assumed. Our initial experiments may use thin carbon foils as the first
foil and existing polished-aluminum mirrors as the second surface. Qur e-beam "pointing"

studies will also be done during these experiments.

1V. SUMMARY AND CONCLUSIONS
The OTR technique compares favorably with standard emittance diagnostics that rely on
measurement sequences (quadrupole field variation) at one screen position or two screens.

Several advantages for OTR are:
¢ Measurements are possible on a single macropulse (source strength permitting),
e Data structure and theory allow on-line evaluation of emitlance,

e A single position in the beamline can be used for e-beam profile, divergence, and

angle (pointing) measurements,
e Thinner screens (foils) reduce beam scattering and x-ray production, and
e QTR provides a simultaneous e-beam energy diagnostic (~1% accuracy),

Some disadvantages are related to source brightness, the required careful optical

alignments, and convolution of divergence and energy effects. In the final analysis though,
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OTR -based diagnostics should prcvide information vital to optimization of FEL performance

and the validations of simulations of FEL experiments.
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Figure Captions

A schematic representation of OTR and Cherenkov radiation patterns.

A schematic representation of the OTR angular distribution pattern dependence on
e-beam parameters where v is the Lorentz factor..

A schematic experimental setup for the OTR experiments on the Los Alamos FEL.
A schematic representation of the focus at the object (beam spot) and focus at
infinity (angular distribution) techniques.

A composite of OTR single foil data showing both divergence and beam spot images
(upper) and profiles (lower).

A comparison of divergence data from Fig. 5 to a calculation with o = 4.9 mrad.
Predicted interferogram patterns for the Los Alamos case.

Experimental profile for the interference experiment data exhibiting the expected
three fringes.

Predicted interferogram for several cases of e-beam divergence for the Boeing FEL

case.
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Schematic of OTR Experiment
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Initial Two-Foil
Interference Pattern
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INITIAL PREDICTED INTERFEROGRAM FOR
BOEING BURST MODE ELECTRON-BEAM EMITTANCE

110MeV, BEAM DIV. 0.4 & 0.6 mrad, 450nm, L=4cm

y €, =(457),(€8w) mm mrad
1.00 A
'{ \ !:\ rpy= '/zmm
0.80 "
, f ¥
= \
20.60 j 1‘ } ‘I 'J'l’\ ,
- 0.40 'f \ : ‘,’ sy
z IREER TR
] \’l Y
/o

457

O.oo .J#l#l;l&‘_]_.ilxlxl.l_;_x
-0.008 -0.004 0.000 0.004 0.008

110MeV, BEAM DIV. 0.6 & 0.9, 450nm, L=2cin

y € =(90w) (135%) mm mrad
r N ry=Ymim
A
<
T | \/‘\
z ‘ '
w \ )
- \
z
0.20 i 90 T "--"'
0_00_1__1__; I U U U N U W SN S SR R U U S X
-0.008 -0.004 0.000 0.704 0.008

ANGLE (radians)

Fip. 9



